

Journée SFT - Groupes METTI et Modes de transfert - 13 juin 2013 Caractérisation thermique température-température

Estimation de propriétés thermophysiques à partir de la mesure de deux températures : de la caractérisation de matériaux composites en laboratoire au contrôle in situ de l'isolation de bâtiments

Vincent FEUILLET, Mustapha KARKRI, Laurent IBOS, Jean-Pierre MONCHAU, Mohamed LARBI YOUCEF, Yves CANDAU CERTES, Université Paris-Est

Partie I Caractérisation de matériaux composites

Contexte et objectifs :

- Banc expérimental DICO
- Caractérisation thermique de matériaux composites ou isolants
- Excitation thermique périodique
- Enceinte à vide (10⁻⁵ à 10⁻⁴ mbar)
- Régulation de température par circulation de fluide (-20° C à 180° C)

Mesure simultanée de la conductivité et de la diffusivité thermiques

UNIVERSITÉ

-PARIS-EST

Vue du porte-échantillon du banc expérimental DICO

Caractérisation de matériaux composites

Principe de mesure :

- Echantillon positionné entre deux plaques métalliques
- Excitation périodique imposée par un élément Peltier placé sous le porte échantillon
- Signal d'excitation : somme de N sinusoïdes ($1 \le N \le 5$)
- Amplitude V_i et phases φ_i déterminées empiriquement
- Mesures de température par thermocouples de part et d'autre de l'échantillon
- Application *LabView*[©] : signal de commande du Peltier, mesures thermocouples

Synoptique du banc expérimental DICO

UNIVERSITÉ

- PARIS-EST

CERTEs

Partie I

Caractérisation de matériaux composites

Modélisation thermique :

- Hypothèses :
 - Transfert unidirectionnel
 - ⇒ Régime périodique établi
 - ⇒ Echange avec la face arrière
 - *⇔ Résistance de contact*

• Méthode des quadripôles thermiques :

$$[Q] = \prod_{i=1}^{N} [Q]_{i}$$

• Fonction de transfert théorique :

$$\tilde{H} = \frac{\tilde{T}(x_s)}{\tilde{T}(x_e)} = f(k,a)$$

UNIVERSITÉ

— PARIS-EST

Caractérisation de matériaux composites

Identification de paramètres :

• Estimation de la conductivité et de la diffusivité thermiques :

⇒ Minimisation de l'écart quadratique entre les parties réelles et imaginaires des fonctions de transfert expérimentale et théorique

$$S(\hat{\beta}_{k,a}) = \sum_{i=1}^{N} \left[\left(\tilde{H}_{real}(f_i) - H_{real}(f_i) \right)^2 + \left(\tilde{H}_{imag}(f_i) - H_{imag}(f_i) \right)^2 \right]$$

 \Rightarrow Incertitudes statistiques déduites de la matrice de variancecovariance σ^2

$$\operatorname{cov}(\hat{\beta}_{k,a}) = \sigma^{2} (m.m^{T})^{-1} \begin{cases} m = \left(\frac{\partial \hat{H}}{\partial \hat{\beta}_{k,a}}\right) & \operatorname{cov}(\hat{\beta}_{k,a}) = \left[\begin{array}{c} \sigma_{k} & \sigma_{k\hat{a}} \\ \sigma_{a\hat{k}} & \sigma_{\hat{a}}^{2} \\ \sigma^{2} = \frac{S(\hat{\beta}_{k,a})}{N-q} & \operatorname{cov}(\hat{\beta}_{k,a}) = \beta_{k,a} \pm 2\sigma_{\hat{\beta}_{k,a}} \\ \end{array} \end{cases}$$

• Limitations :

⇒ Non-prise en compte de l'incertitude sur les paramètres supposés connus du modèle

⇒ Méthode bien adaptée pour des polymères et composites d'épaisseur entre 1 et 10 mm

Non-adaptée pour matériaux fins (films) et/ou conducteurs (métaux): résistances de contact trop influentes

UNIVERSIT

σ

UNIVERSITÉ

-PARIS-EST

Caractérisation de matériaux composites

Exemple de mesure :

• Echantillon de PTFE de 5 mm d'épaisseur

Caractérisation de matériaux composites

DICO étendue :

- Excitation thermique périodique
- Seconde plaque métallique supprimée
- Echantillon à l'air ambiant
- Caméra thermique en face arrière

mesure simultanée de l'émissivité, de la conductivité et de la diffusivité thermiques

UNIVERSITÉ

— PARIS-EST

Vue du porte-échantillon avec un échantillon de PTFE en partie recouvert de peinture noire

Caractérisation de matériaux composites

Principe de mesure :

- Echantillon fixé sur une plaque de duralumin avec thermocouple (face avant)
- Excitation périodique imposée par un élément Peltier placé sous la plaque de duralumin
- Mesure par caméra thermique du flux émis par la face arrière de l'échantillon
- Application *LabView*[©] : signal de commande du Peltier, mesures thermocouple et caméra

Caractérisation de matériaux composites

Calcul de l'émissivité et de la fonction de transfert thermique expérimentale :

CERTES

- Comparaison à une surface de référence d'émissivité connue (peinture noire)
- Mesure du flux émis et du flux incident réfléchi par la surface
 - ⇒ Méthode modulée
 - ⇒ Séparation des deux flux
- Emissivité directionnelle :

$$\varepsilon_{s} = \varepsilon_{ref} \cdot \frac{T_{s,camerd}^{3} \Delta T_{s,camera}}{\overline{T}_{ref,camerd}^{3} \Delta T_{ref,camera}}$$

• La fonction de transfert expérimentale :

$$\widetilde{H}(f) = \frac{\widetilde{T}_{s}(f)\widetilde{T}_{E}^{*}(f)}{\widetilde{T}_{E}^{2}(f)}$$

UNIVERSIT

— PARIS-EST

Face arrière de l'échantillon

Contrôle de l'isolation de bâtiments

Contexte et objectifs :

• Projet DPE_IITI (*Diagnostic de Performance Énergétique et Inspection de l'Isolation par Thermographie Infrarouge*)

• Acteurs du projet :

ADEME (financement), FLIR, TCEP Ingénierie, mairie de Noisiel, Alpheeis

- Contrôle de l'isolation d'une paroi d'un bâtiment d'un groupe scolaire
- Thermographie infrarouge passive

 Mesures additionnelles (éclairement solaire, températures d'air...)

Diagnostic thermique d'une paroi sur site

UNIVERSITÉ

-PARIS-EST

- PARIS-ES

UNIVERS

Contrôle de l'isolation de bâtiments

Grandeurs mesurées :

- *paramètres atmosphériques : station météo développée au CERTES*
- *températures de paroi ou d'éléments rapportés : caméras, thermocouples*
- *mesures additionnelles : paramètres atmosphériques locaux, albédo de la surface*

Pilotage du système de mesure par application *LabView échantillonnage 1 min*

Évolution entre deux campagnes de mesures successives :

- février 2011 : ensemble des capteurs relié par câbles au système d'acquisition à l'intérieur
- octobre 2011 : système d'acquisition Wifi pour les capteurs extérieurs

ceRTes

Partie II

UNIVERSITÉ

PARIS-EST

- Évaluation du niveau d'isolation de la paroi examinée :
 - Les mesures sur site sont combinées à une modélisation numérique des transferts de chaleur
 - Méthode des éléments finis (code Comsol)
 - Estimation des différents paramètres inconnus de l'étude
 - Minimisation de l'écart entre températures mesurées et estimées

CERTEs

Partie II

Contrôle de l'isolation de bâtiments

- Différentes configurations de températures pour l'identification :
 - Températures de paroi extérieure T_{ext} ou intérieure T_{int} seules
 - Gradient intérieur/extérieur T_{int} - T_{ext}
 - Période d'échantillonnage de 5 min sur la semaine entière de mesure
 - Initialisation $\beta_{\text{init}} = [h_{\text{ext}} = 10 \text{ W.m}^{-2}.\text{K}^{-1}; h_{\text{int}} = 5 \text{ W.m}^{-2}.\text{K}^{-1}; \alpha = 0.3; e_2 = 6 \text{ cm}]$

Températures prises en compte	<i>h</i> _{ext} (W.m⁻².K⁻ ¹)	<i>h</i> _{int} (W.m⁻².K⁻ ¹)	α	e ₂ (cm)	R _{paroi} (K.m².W⁻¹)	
T _{ext}	9.06 (0.05)	11.33 (0.47)	0.53 (0.02)	2.23 (0.05)	0.87	
T _{int}	7.94 (0.03)	6.33 (0.02)	0.32 (0.01)	5.47 (0.03)	1.72	}
$T_{\rm int}$ - $T_{\rm ext}$	9.25 (0.05)	4.72 (0.09)	0.27 (0.01)	4.40 (0.08)	1.44	J

 $R_{paroi}^{théorique} = 1.33 \text{ K.m}^2 \text{.W}^{-1}$

UNIVERSIT

PARIS-ES

Résultats d'estimation pour chaque configuration de températures prise en compte

 \rightarrow Analyses sur T_{ext} et T_{int} :

 $h_{int} > h_{ext}$ et/ou e_2 éloignée de l'épaisseur réelle d'isolant

 \rightarrow Analyse sur le gradient :

e₂ proche de l'épaisseur réelle d'isolant

→ Bonne concordance entre gradients mesuré et calculé après identification

 \rightarrow Faibles résidus, en grande majorité <1° C en valeur absolue

→ Quelques écarts plus importants coïncidant avec des variations brusques et importantes d'ensoleillement :

probable imprécision de la mesure du flux variation du coefficient d'échange non prise en compte

Identification à partir du gradient $\Delta T = T_{int} - T_{ext}$ en fonction de la durée d'analyse $\Delta t_{analyse} = t_{final} - t_0$

→ Diminution puis augmentation de l'écart type moyen des résidus à partir du moment où la journée ensoleillée est prise en compte

→ Diminution des incertitudes sur chaque paramètre pour une durée d'analyse de plus en plus importante, ceux-ci restent faibles même pour une courte durée d'analyse (<6% pour $\Delta t_{analyse}$ =1 jour) 21/24

estimée est obtenue pour $\Delta t_{ech} < 150$ min

