

Journée SFT – Caractérisation 2 T – 13 Juin 2013

Intérêts de la prise en compte du thermogramme en face avant pour la caractérisation thermophysique instationnaire en face arrière de mousses métalliques

Fabrice Rigollet, Jean-Laurent Gardarein, Fredéric Topin, Nathalie Ehret IUSTI, UMR CNRS – AMU, Marseille

Projet ANR FOAM (Mars 2011 + 48 mois) piloté par le CTIF (Centre Technique Industries Fonderie)

- Mousse d'aluminium de fonderie coulé autour de billes de sable régulièrement empilées → Structure régulière
- Pores de 14mm ou 10 mm, droits ou inclinés (10°)
- porosité voisine de 0,84
- Mousse en sandwich entre deux semelles (2mm) d'aluminium, coulées également

A quel(s) paramètre(s) thermophysique(s) d'une telle mousse métallique à forte porosité une expérience instationnaire pourrait permettre d'accéder ?

- Concevoir une expérience de thermique instationnaire : quel type de chauffage, à quel endroit, combien de temps, quelle durée d'expérience?

Quelle(s) mesure(s)? A quel(s) endroit(s)? A quelle fréquence?

Quel modèle thermique? Quelles hypothèses (1D?, linéaire?, homogène?)

Quels paramètres estimer, supposer connus?

Quelle confiance accorder aux paramètres estimés?

- A La caractérisation par convolution avant arrière
- B- Le matériau mousse et l'expérience instationnaire
- C Modèle et stratégie d'estimation
- **D** Résultats des estimations
- E Peut-on identifier le flux entrant en face avant?
- F Résumé

Annexes : expérience en transmittance avec pertes effusives réalisées sur des sables de fonderie

<u>A – Caractérisation d'un échantillon par méthode instationnaire, méthode convolutive</u>

Le problème posé : caractérisation d'un échantillon

- Initialement à température ambiante
- Chauffé en face avant par une source (radiative, plan chaud,...) qui délivre q₀(t) (W/m²)
- Siège d'un transfert 1D instationnaire entre la face avant et la face arrière
- Avec de possibles pertes (convectives ou effusives) sur chaque face

Schéma quadripolaire général

(dans l'espace de Laplace, grandeurs fonction de p(s⁻¹))

<u>NB :</u> les pertes symbolisées par un dipôle d'impédance \overline{Z}_{∞} peuvent aussi bien représenter

- Des pertes vers un milieu solide initialement à l'ambiante, semi-infini d'effusivité b_{∞} tel que :
- Des pertes vers un fluide initialement à l'ambiante, avec un coefficient d'échange h tel que : $\bar{Z}_{\infty} = \frac{1}{h}$ Vers un 'coefficient d'échange effusif' $h_{eff}(p) = b_{\infty}\sqrt{p}$ qui baisse au cours du temps (quand p \rightarrow) ?...

<u>NB</u>: $\overline{\varphi}_{in}$ est le flux net entrant dans l'échantillon, égal à $\overline{q}_0 - pertes$

Il pourra aussi faire l'objet d'une estimation en fin de processus

Ecriture en impédance : le thermogramme arrière est relié à la source en face avant

$$\bar{\theta}_{out} = \bar{Z}_{out-in}(\mathbf{p})\overline{q_0}(\mathbf{p}) \text{ avec } \bar{Z}_{out-in}(\mathbf{p}) = \frac{1}{C + A\left(\frac{1}{\bar{Z}_{\infty in}} + \frac{1}{\bar{Z}_{\infty out}}\right) + B\frac{1}{\bar{Z}_{\infty in}\bar{Z}_{\infty out}}}$$
Dépend de données 'in'
(avant) et 'out' (arrière)

Ecriture en transmittance : le thermogramme arrière est relié au thermogramme en face avant

$$\bar{\theta}_{out} = \overline{W}_{out}(\mathbf{p})\bar{\theta}_{in}(\mathbf{p}) \qquad \text{avec} \qquad \overline{W}_{out}(p) = \frac{1}{A + B\frac{1}{\overline{Z}_{\infty out}}}$$
Dépend de données
'out' (arrière)

Ecriture en impédance : le thermogramme arrière est relié à la source en face avant

$$\bar{\theta}_{out} = \bar{Z}_{out-in}(\mathbf{p})\overline{q_0}(\mathbf{p})$$

Conséquence en face arrière (mesurée) Cause en face avant, non mesurée en général, mais de forme temporelle connue (Dirac, Echelon, Créneau, sinus) à une constante énergétique près : $\overline{q_0}(p) = q_0 \overline{g}(p)$, q_0 en J/m² ou W/m² selon la situation

Ecriture en transmittance : le thermogramme arrière est relié au thermogramme en face avant

$$\overline{\theta}_{out} = \overline{W}_{out} (p) \overline{\theta}_{in} (p)$$

Conséquence en face arrière (mesurée)

'Cause' en face avant (mesurée), elle-même conséquence du flux en face avant (voir ci-dessous)

Relations températures-flux en face avant

 $\frac{\text{Relation thermogramme-source}}{\overline{q_0}(p) \text{ en face avant}}$ $\bar{\theta}_{in}(p) = \frac{\overline{Z}_{out-in}(p)}{\overline{W}_{out}(p)} \overline{q_0}(p)$

$$\frac{\text{Relation thermogramme-flux entrant }\bar{\varphi}_{in} \text{ en face avant}}{\bar{\theta}_{in}(p) = \frac{\bar{Z}_{out}(p)}{\bar{W}_{out}(p)} \bar{\varphi}_{in} = \bar{Z}_{in}(p) \bar{\varphi}_{in}} \quad \text{avec}$$
$$\bar{Z}_{out}(p) = \frac{1}{C + D \frac{1}{\bar{Z}_{mout}}} \quad \text{telle que} \quad \bar{\theta}_{out}(p) = \bar{Z}_{out}(p) \bar{\varphi}_{in}$$

Ecriture en impédance : le thermogramme arrière est relié à la source en face avant

 $\bar{\theta}_{out} = \bar{Z}_{out-in}(\mathbf{p})\overline{q_0}(\mathbf{p})$, avec $\bar{Z}_{out-in}(\mathbf{p}) = f(A, B, C, \bar{Z}_{\infty in}, \bar{Z}_{\infty out})$, dépend :

- de caractéristiques de l'échantillon (via A, B et C),
- de la nature des échanges en face arrière (via $\overline{Z}_{\infty out}$) <u>ET</u> en face avant (via $\overline{Z}_{\infty in}$)
- de caractéristiques de la source (forme temporelle $\overline{g}(p)$ et constante énergétique q_0)

<u>Exemple</u> : chauffage par un créneau de flux radiatif de puissance q_0 (W/m²) en face avant pendant tc avec pertes convecto-radiatives en face avant (h) et effusives en face arrière (b_{∞}), pour un monocouche d'épaisseur e, diffusivité a, effusivité b, conductivité k

$$\bar{\theta}_{out} = f\left(\frac{q_0}{b}, \frac{e^2}{a}, \frac{h}{b}, \frac{b_{\infty}}{b}, t_c\right) \quad \text{ou bien} \quad \bar{\theta}_{out} = f\left(\frac{q_0e}{k}, \frac{e^2}{a}, \frac{he}{k}, \frac{b_{\infty}e}{k}, t_c\right) \quad \text{ou autre...}$$

Soient 4 groupes de paramètres + une donnée sur la forme temporelle, supposée connue

Ecriture en transmittance : le thermogramme arrière est relié au thermogramme en face avant

$$\bar{\theta}_{out} = \bar{W}_{out} (p) \bar{\theta}_{in}(p)$$
 avec $\bar{W}_{out}(p) = f(A, B, \bar{Z}_{\infty out})$

Ne dépend explicitement d'aucune donnée sur la source ni les pertes en face avant, donc moins de paramètres. La donnée supposée connue est le thermogramme en face avant.

Exemple : dans la même situation, si on a pu mesurer la température en face avant

$$\bar{\theta}_{out} = f\left(\frac{e^2}{a}, \frac{b_{\infty}}{b}, \bar{\theta}_{in}(p)\right)$$
 oubien $\bar{\theta}_{out} = f\left(\frac{e^2}{a}, \frac{b_{\infty}e}{k}, \bar{\theta}_{in}(p)\right)$ ou autre...

Soient 2 groupes de paramètres et le thermogramme face avant, supposé connu (mesure)

Fonctions de Transfert et Produits de convolution

L'impédance $\overline{Z}_{out-in}(p)$ peut être vue comme la réponse en face arrière à une source $\overline{q_0}(p) = 1$ en face avant, c'est-à-dire un Dirac temporel de flux

Impédance $\overline{Z}_{out-in}(p)$ = fonction de transfert en flux de la face arrière Impédance $Z_{out-in}(t) = L^{-1}{\overline{Z}_{out-in}(p)}$ = réponse impulsionnelle en flux de la face arrière

De plus, au produit simple dans l'espace transformé de Laplace correspond le produit de convolution (noté⊗) dans l'espace original temporel, donc :

$$\begin{split} \bar{\theta}_{out} &= \bar{Z}_{out-in}(\mathbf{p}) \overline{q_0}(p) \iff \Delta T_{out}(t) = Z_{out-in}(t) \otimes q_0(t) \\ &= \int_{\tau=0}^t Z_{out-in}(t) \, q_0(t-\tau) d\tau = \int_{\tau=0}^t Z_{out-in}(t-\tau) \, q_0(t) d\tau \end{split}$$

La transmittance \overline{W}_{out} (p) peut être vue comme la réponse en face arrière à un échauffement $\overline{\theta}_{in}(p)=1$ en face avant, c'est-à-dire un Dirac temporel d'échauffement

Transmittance $\overline{W}_{out}(p)$ = fonction de transfert en échauffement de la face arrière Transmittance $W_{out}(t) = L^{-1}{\overline{W}_{out}(p)}$ = réponse impulsionnelle en échauffement de la face arrière

$$\bar{\theta}_{out}(p) = \bar{W}_{out}(p)\bar{\theta}_{in}(p) \qquad \Leftrightarrow \qquad \Delta T_{out}(t) = W_{out}(t) \otimes \Delta T_{in}(t)$$

Convolution de signaux discrets – Application en transmittance

$$\Delta T_{out}(t) = W_{out}(t) \otimes \Delta T_{in} = \Delta T_{in} \otimes W_{out}(t)$$
$$= \int_{\tau=0}^{t} W_{out}(t) \Delta T_{in}(t-\tau) d\tau = \int_{\tau=0}^{t} W_{out}(t-\tau) \Delta T_{in}(t) d\tau$$

En appliquant cette convolution sur les *m* valeurs temporelle discrètes de $W_{out-in}(t)$ et $\Delta T_{in}(t)$ $k = 1 \text{ à } m, \qquad t_k = k\Delta t$

 $\Delta T_{in,k} = \Delta T_{in}(t_k), \text{ composante du vecteur thermogramme avant } \Delta T_{in} = \left(\Delta T_{in,1} \dots \Delta T_{in,m}\right)^t$ $W_i = W_{out}(t_k), \text{ composantes du vecteur transmittance } W = (W_1 \dots W_m)^t$ $\Delta T_{out,k} = \Delta T_{out}(t_k), \text{ composante du thermogramme arrière } \Delta T_{out} = \left(\Delta T_{out,1} \dots \Delta T_{out,m}\right)^t$

$$\Delta T_{out,k} \approx \Delta t \sum_{i=1}^{m} W_i \Delta T_{in,k-i+1} = \Delta t \sum_{i=1}^{m} W_{k-i+1} \Delta T_{in,k-i+1}$$

Ou en écriture matricielle à l'aide de matrices de Toeplitz M:

$$\Delta T_{out}(x) = M(W(x)) \Delta T_{in} \Delta t = M(\Delta T_{in}) W(x) \Delta t$$

Écriture matricielle de la convolution entre le thermogramme avant et la transmittance

Modèle direct fonction des paramètres x du matériau et du thermogramme face avant

$$M(v) = \begin{bmatrix} v_1 & 0 & \dots & \dots & 0 \\ v_2 & v_1 & \dots & \dots & \vdots \\ v_3 & v_2 & \dots & \dots & \vdots \\ \vdots & \vdots & \dots & \dots & \vdots \\ \vdots & \vdots & \dots & \dots & 0 \\ v_m & v_{m-1} & \dots & \dots & v_1 \end{bmatrix} = M_v$$

 $\forall \mathbf{v} = (v_1 \dots v_m)^t \quad , v_k = v(t_k)$

<u>B – Le matériau mousse et l'expérience instationnaire</u>

Nom mousse	Taille pores	Inclinaison des pores	Epaisseur mousse (entre semelles)	Epaisseur externe	Epaisseur semelles (supposées identiques)	Porosité (morpho)
	D_pore	α	e_mousse	e_totale	e_semelle	3
	mm	degrés	mm	mm	mm	
MR1SR (*)	14	0	103.4	109.3	2.95	0.845
MR2SR	10	10	95.4	100	2.3	0.825
MR3SR	14	10	95.5	100	2.25	0.85
MR4SR	10	0	102.7	107.9	2.6	0.84

(*) : <u>M</u>ousse <u>R</u>egulière <u>i</u> <u>S</u>ans <u>R</u>ésine

L'espace non métallique sera rempli d'air ou de résine. Résultats présentés en air ici.

Valeurs nominales des différents paramètres utiles

Hypothèse pour le calcul de conductivité : les phases (alu et air) ou (alu et résine) sont en //)

MR1 gros 14mm droit 109.3 3 0.845 2.39E+06 1.161 1004 1.17E+03 3.71E+05 103.4 34.1 706 MR3 gros incliné 100 2.3 0.85 2.39E+06 1.161 1004 1.17E+03 3.59E+05 95.5 33.0 706 MR4 petit droit 107.9 2.6 0.84 2.39E+06 1.161 1004 1.17E+03 3.83E+05 102.7 35.2 706	ondres mon	taille Dores	inclinaison	Hannah	ébajse	Dorosite L movement	(Rho.Cp) metal Minute les controlles (mm)	rho fillinge 3	Co Muido Che Inno.	(Aho* ^{cd 2} 0° (1/1/8K) (Aho* Co) Auido	1/0 1/00020 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	e mouse	Conduction Control Conduction	Effusion theory and a strain theory	wite is old in the mouse in the mouse in the mouse is a solution of the mouse is a solutis a solution	
MR3 gros incliné 100 2.3 0.85 2.39E+06 1.161 1004 1.17E+03 3.59E+05 95.5 33.0 706 MR4 petit droit 107.9 2.6 0.84 2.39E+06 1.161 1004 1.17E+03 3.83E+05 102.7 35.2 706	MR1	gros 14mm	droit	109.3	3	0.845	2.39E+06	1.161	1004	1.17E+03	3.71E+05	103.4	34.1	706		
MR4 petit droit 107.9 2.6 0.84 2.39E+06 1.161 1004 1.17E+03 3.83E+05 102.7 35.2 706	MR3	gros	incliné	100	2.3	0.85	2.39E+06	1.161	1004	1.17E+03	3.59E+05	95.5	33.0	706		
	MR4	petit	droit	107.9	2.6	0.84	2.39E+06	1.161	1004	1.17E+03	3.83E+05	102.7	35.2	706		
MR2 petit 10mm incliné 100 2.3 0.825 2.39E+06 1.161 1004 1.17E+03 4.19E+05 95.4 38.5 706	MR2	petit 10mm	incliné	100	2.3	0.825	2.39E+06	1.161	1004	1.17E+03	4.19E+05	95.4	38.5	706		

Avec AIR

MR1	gros 14mm	droit	109.3	3	0.845	2.39E+06	1800	1180	2.12E+06	2.16E+06	103.4	34.9	706
MR3	gros	incliné	100	2.3	0.85	2.39E+06	1800	1180	2.12E+06	2.16E+06	95.5	33.8	706
MR4	petit	droit	107.9	2.6	0.84	2.39E+06	1800	1180	2.12E+06	2.17E+06	102.7	36.0	706
MR2	petit 10mm	incliné	100	2.3	0.825	2.39E+06	1800	1180	2.12E+06	2.17E+06	95.4	39.3	706

Avec RESINE

Si le modèle de conductivités parallèles est le bon (phases (alu et air) ou (alu et résine) en //)

Si le modèle de conductivité parallèle est le bon (phases (alu et air) ou (alu et résine) en //)

Conductivité // et Capacité de la mousse remplie d'air sont des fractions quasi égales des conductivités et capacités de l'alu massif : la diffusivité de la mousse d'alu devrait être proche de celles de l'alu massif

L'expérience instationnaire : Chauffage Créneau

- Mousse horizontale, chauffée sur sa face supérieure (face 'avant') par une semelle chaufffante (résistance plane en sandwich entre deux plaques de cuivre, délivre environ 500W/m² sur chaque face)
- Chauffage pendant un temps donné de l'ordre du temps de diffusion entre les deux semelles (environ 250 s pour les mousses en air). Durée totale 500s.
- Pertes effusives en face inférieure (face 'arrière')
- Isolation latérale (isolant fibreux)

Graisse conductrice entre échantillon et isolant arrière

Semelle chauffante en cuivre instrumentée

Isolation latérale (enlevée en partie pour la photo)

Signaux typiques obtenus sur mousses remplies d'air (chauffe 250s)

Faible bruit de mesure enregistré avant l'expérience d'écart type $\sigma_{bruit} = 0,0045^{\circ}C \text{ sur les deux thermogrammes}$

Mesure des échauffements avec 4 chiffres significatifs (millième incertain)

- Echauffement avant maximum de l'ordre de 4°C et arrière de 2°C
- > Vecteur des mesures à m composantes (m=500 typiquement), pas de temps Δ t=0.5s

 $\boldsymbol{y} = [y_1 \dots y_i \dots y_m]^t$: thermogramme arrière

Quel modèle pour prévoir l'échauffement arrière conséquence de l'échauffement avant?

<u>C – Modèle et stratégie d'estimation</u>

Analyse des sensibilités réduites $S^*(t, x_{nom})$ pour les valeurs nominales de x

(Dérivées calculées numériquement par accroissement fini autour de x_{nom})

Par rapport au cas 'impédance ', il y a ici un bruit sur ces sensibilités puisque le modèle utilisé pour les calculer est lui-même calculé par convolution avec le thermogramme avant, bruité :

 $y_{mo}(x) = M(W(x)) \Delta T_{in} \Delta t$

Analyse des sensibilités réduites $S^*(t, x_{nom})$ pour les valeurs nominales de x

- Thermogramme arrière modèle plus rapide que le thermogramme mesuré : sousestimation du temps diffusif x_{1,nom} par surestimation de la diffusivité via la conductivité du modèle parallèle
- > Modèle surtout sensible au temps diffusif $x_{1,nom}$
- > Sensibilité plus faible à $x_{2,nom}$ mais indépendante de celle à $x_{1,nom}$
- > Sensibilité faible au ratio des capacités $x_{3,nom}$ et très corrélée à celle de $x_{1,nom}$

Démarche d'estimation

Paramètres 'directs' $x_r = (x_1, x_2)^t$ $\longrightarrow x = (x_r, x_c)^t$ $x_c = x_{3,nom}$: Paramètres 'variables' Blocage de x_3 à $x_{3,nom}$: Paramètre 'fixe'

$$S = [S_r; S_c] = \begin{bmatrix} S_1(t_1, x) & \dots & S_2(t_1, x) \\ \vdots & \dots & \vdots \\ S_1(t_m, x) & \dots & S_2(t_m, x) \end{bmatrix} \begin{vmatrix} S_3(t_1, x) \\ \vdots \\ S_3(t_m, x) \end{vmatrix}$$

Matrice des sensibilités (m×n) séparée en 2 matrices

Estimation itérative des valeurs optimales $\hat{\chi}_{1,opt}$ et $\hat{\chi}_{2,opt}$ minimisant le critère $\,J_{_{MCO}}(\,\hat{x}\,)$ (Moindres Carrés Ordinaires) entre mesures et modèle (Méthode de Gauss-Newton)

$$\hat{\boldsymbol{x}}_{opt} = (\hat{\boldsymbol{x}}_{1,opt}, \hat{\boldsymbol{x}}_{2,opt})^{\mathrm{t}} = arg[min(J_{MCO}(\hat{\boldsymbol{x}})] \quad \text{avec} \quad J_{MCO}(\hat{\boldsymbol{x}}) = [\boldsymbol{y} - \boldsymbol{y}_{mo}(\hat{\boldsymbol{x}})]^{\mathrm{t}} [\boldsymbol{y} - \boldsymbol{y}_{mo}(\hat{\boldsymbol{x}})]$$

Calcul de la matrice de covariance des estimations : amplification du bruit de mesure présent sur les deux thermogrammes (bruit standard i.i.d. de variance σ_{bruit})

$$cov(\hat{\boldsymbol{x}}_{opt}) = \left[\left(\boldsymbol{S}^{t} \boldsymbol{S} \right)^{-1} + \left(\boldsymbol{S}^{t} \boldsymbol{S} \right)^{-1} \boldsymbol{S}^{t} \cdot \boldsymbol{M}_{W} \boldsymbol{M}_{W}^{t} \cdot \boldsymbol{S} \left(\boldsymbol{S}^{t} \boldsymbol{S} \right)^{-1} \right] \sigma_{bruit}^{2}$$

Amplification 'classique' du bruit sur le thermogramme arrière

Amplification supplémentaire du bruit sur le thermogramme avant avec leguel est convoluée la transmittance W

où
$$M_W = M(W)$$

(Transmittance W en
matrice de Toeplitz)

(Cf Maillet et al, IJHMT 62 (2013) 230-241)

Démarche d'estimation, suite

Calcul du biais $b_r = (b_{r1}, b_{r2})^t$ sur chaque estimation engendré par un possible biais sur b_c sur le paramètre fixé $\mathbf{x}_c = x_{3,nom}$. Hypothèse : ce biais se calcule classiquement

$$b_r = -\left[\boldsymbol{S}_r^{\,t}\boldsymbol{S}_r\right]^{-1}\boldsymbol{S}_r^{\,t}\boldsymbol{S}_c b_c$$

 \succ Calcul majorant de l'incertitude totale associée à l'estimation du paramètre $\hat{x}_{i,opt}$ i=1,2

$$\Delta x_i = \sigma_i + |b_{ri}|$$

Composante aléatoire σ_i = racine carré de l'élément i de la diagonale de $cov(\hat{x}_{opt})$

Composante déterministe = élément i du biais b_r

- Calcul de divers paramètres déduits à partir
 - \blacktriangleright des paramètres **'directs' estimés** \hat{x}_{ont}
 - > du paramètre 'directs' fixé $x_c = x_3$
 - \succ d'éventuels paramètres **'externes'** x_{ext} (par exemple l'épaisseur de la mousse) et calculs des incertitudes associées

Résumé : Les différents type de paramètres (ici modèle à 3 paramètres directs)

Paramètres 'directs' (apparaissent explicitement dans le modèle)	Paramètres 'externes' (inutiles à l'estimation mais utiles pour déduire d'autres paramètres)	(grill	Paramètres 'directs' et e des exposa ainsi que let	des 'e des 'e nts pou ur erreu	its' de xterne ar les co ar en %	es s' alculer)	
			externe	es	(directs	5
$x_1 = \frac{e^2}{2}$ (estimé)	e±∆e (fixé)	déduits	e	b_{∞}	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃
	$b_{\infty} \pm \Delta b_{\infty}$ (fixé)	а	2		-1		
$x_2 = \frac{b_{\infty}}{\rho C_p e}$ (estimé)		$ ho C_p$	-1	1		-1	
$(\rho C_p e)_{\text{semelle}}$		k	1	1	-1	-1	
$x_3 = \frac{\beta emette}{\rho C_p e} $ (jixe)		b		1	-1/2	-1	
		$(\rho C_p e)_s$		1		-1	1

Exemple :

$$a_{mousse} = e_{mousse}^2 x_1^{-1}$$

 $\Delta a_{mousse} = (\%) = \sqrt{\left(2 \times \frac{\Delta e}{e}(\%)\right)^2 + \left(1 \times \frac{\Delta x_1}{x_1}(\%)\right)^2}$

Amplification du biais sur les paramètres directs fixés

<u>D - Résultats – Expérience préliminaire : caratérisation des pertes effusives à l'arrière :</u> mesure de l'effusivité b_{∞} du matériau (paramètre 'externe' dans la stratégie d'estimation)

Résultats – Exemple d'estimation sur la mousse MR4 (petits pores droits)

- Le temps diffusif estimé est finalement effectivement beaucoup plus élevé que sa valeur nominale (rapport 309%)
- Incertitude finale de 10% sur k et ρC_p de la mousse. La conductivité est 3 fois plus basse que prévue, la capacité volumique est conforme aux valeurs nominales prévues

Gros pores

Petits pores

600

600

600

600

<u>Remarque sur la comparaison des deux erreurs (amplification du bruit de mesure et du biais sur x_3)</u>

C'est à cause de ces produits scalaires entre les coefficients de sensibilité des paramètres estimés avec celui du paramètre fixé : proche de 0 si vecteurs S_r et S_c indépendants et maximum si vecteurs quasi colinéaires. lci S_1 et $S_c = S_3$ sont quasi-colinéaires : le biais sur x_3 se fera fortement sentir sur l'estimation de x_1 \rightarrow Lorsque l'on n'estime pas un paramètre car il est fortement corrélé à un autre, l'influence de cette corrélation se fera sentir dans l'amplification du biais sur le paramètre fixé au cours de l'estimation

Diffusivités *a* identifiées, mousses avec air

- Pas de corrélation nette avec la structure : taille de pores et inclinaison ne permettent pas de classer les diffusivités
- Pour les gros pores, l'inclinaison améliore la diffusivité de 18%, pour les petits c'est l'inverse, elle chute de 17%
- Pour les pores droits, la diffusivité la meilleure est obtenue pour les petits pores (+11%)
- > Tendance croissante avec la porosité, léger 'accident' pour la mousse à gros pores droits

- Capacités assez proches, plus élevée surtout pour la mousse à petits pores inclinés
- > Pour les gros pores, l'inclinaison améliore la capacité de 7%, pour les petits de 10%
- Pour les pores droits, la capacité la meilleure est obtenue pour les petits pores (+8%)
- Tendance décroissante avec la porosité, léger 'accident' pour la mousse à gros pores inclinés

Conductivités apparentes k identifiées, mousses avec air

> Pas de tendance nette, conductivités voisines, toutes inférieures de 25 à 30% aux valeurs nominales

Pour les gros pores, l'inclinaison améliore la conductivité de 25%, pour les petits elle chute de 9%

- > Pour les pores droits, la conductivité la meilleure est obtenue pour les petits pores (+21%)
- > Très légère tendance croissante avec la porosité avec un 'accident' pour la mousse à gros pores droits

Résumé : Identification en transmittance appliquée à une expérience avec pertes effusives en face arrière sur un tricouche à semelles capacitives ($\Delta T = T - T_{ini}$)

E – Peut-on identifier le flux entrant en face avant?

Pour aller plus loin, puisque l'on dispose

- des thermogrammes sur les deux faces de l'échantillon
- et maintenant d'informations sur le matériau (transmittance)

Est-ce suffisant pour accéder aux flux, notamment $\varphi_{in}(t)$ entrant en face avant?

$$1/\bar{Z}_{out}(p) = \frac{1}{\rho Ce} \left\{ ch(\sqrt{x_1 p}) [x_2\sqrt{p} + 2x_3 p] + sh(\sqrt{x_1 p}) [\sqrt{x_1 x_3}^2 p^{3/2} + \sqrt{x_1 x_2} x_3 p + \sqrt{p}/\sqrt{x_1}] \right\}$$

qui s'exprime donc en fonction

- des mêmes paramètres $\mathbf{x} = (x_1, x_2, x_3)^t$ que la transmittance $x_1 = \frac{e^2}{a}$, $x_2 = \frac{b_{\infty}}{\rho C_p e}$, $x_3 = \frac{(\rho C_p e)_s}{\rho C_p e}$
- mais aussi du paramètre 'seul' ρCe -

Donc $\bar{\theta}_{in}(p, x) = f(p, x) \frac{\bar{\varphi}_{in}(p)}{\rho ce}$ où f(x, p) est entièrement définie par $(x_1, x_2, x_3)^t$ identifié précédemment autrement dit, $\bar{\theta}_{in}(p, x)$ est la convolution de f(x) avec la grandeur $\frac{\bar{\varphi}_{in}(p)}{\rho Ce}$

NB: $f(\mathbf{x}) = \rho C e \overline{Z}_{in}(p, \mathbf{x})$ est l'impédance d'entrée \overline{Z}_{in} à une constante près (donc une 'quasi-impédance')

En écrivant la convolution en notations 'Toeplitz', on a donc

Le calcul de $\frac{\varphi_{in(t)}}{\rho Ce}$ par déconvolution consiste alors à calculer

$$\Delta T_{in}(t, x) = M(f(x)) \frac{\varphi_{in(t)}}{\rho C e} \Delta t$$
$$\frac{\varphi_{in(t)}}{\rho C e} = \frac{1}{\Delta t} M(f(x))^{-1} \Delta T_{in}(t, x)$$

L'opération d'inversion de M(f(x)) rend le problème instable en amplifiant le bruit de mesure, une régularisation de type Tikhonov d'ordre 0 peut être appliquée pour limiter cet effet en agissant sur le paramètre régularisant γ :

$$\frac{\varphi_{in(t)}}{\rho Ce} = \frac{1}{\Delta t} \left[M(f(x))^t M(f(x)) + \gamma I_n \right]^{-1} M(f(x))^t \Delta T_{in}(t,x)$$

Enfin pour atteindre $\varphi_{in(t)}$ il faut connaître ρCe ce qui est possible à partir d'un des paramètres identifiés de la transmittance

$$x_2 = \frac{b_{\infty}}{\rho C_p e}$$

seulement si on connait le paramètre externe b_{∞} , qui qualifie les pertes en face arrière. C'est le cas ici.

Thermogrammes en faces avant et arrière + transmittance ne suffisent pas à connaitre le flux entrant : il faut connaitre le coefficient de pertes (au sens large, h ou b_{∞}) à l'arrière

Grâce à la déconvolution du thermogramme avant et à la mesure de b_{∞} on retrouve bien un flux entrant de type crénau ici

<u>F - Résumé</u>: ce que l'on peut obtenir avec deux thermogrammes (méthode 'transmittance'). Parallèle avec le cas stationnaire (donc avec des pertes convectives en face arrière) dans le cas basique d'un échantillon monocouche ($\Delta T = T - T_{fluide} = T - T_{ini}$)

		Dans le cas instationnaire
Données	Dans le cas stationnaire φ_{in} AT_{in} AT_{out} 0 $R_{th} = \frac{e}{k}$ $R_{conv} = \frac{1}{h}$ on accède à:	$\overline{\varphi}_{in}$ $\overline{\varphi}_{in}$ $\begin{bmatrix} A & B \\ C & D \end{bmatrix}$ $\overline{\theta}_{out} \frac{1/h}{h}$ $\overline{W}_{out}(p, x) = \frac{1}{A + Bh}$ $f(x) = \frac{k}{e} \overline{Z}_{in}(p, x)$ on accède à:
$\Delta T_{in}(t)$, $\Delta T_{out}(t)$	 Une grandeur 'matériau/pertes' Bi = \frac{he}{k} = \frac{\Delta T_{in} - \Delta T_{out}}{\Delta T_{out}} Une grandeur 'flux/matériau', i. e. Le flux entrant, à une constante 'matériau' près \varphi_{in} \frac{e}{k} = \Delta T_{in} - \Delta T_{out} 	 Deux grandeurs de la transmittance W_{out} (par estimation de paramètres avec modèle convolutif) Une grandeur 'matériau' x₁ = e²/a Une grandeur 'matériau/pertes' x₂ = he/k Une grandeur 'flux/matériau', i. e. Le flux entrant, à une constante 'matériau' près (par déconvolution du thermogramme avant connaissant la quasi-impédance f(x₁, x₂)) $\frac{\varphi_{in(t)e}}{k} = \frac{1}{\Delta t} M(f(x))^{-1} \Delta T_{in}(t, x)$
$\Delta T_{in}(t)$, $\Delta T_{out}(t)$, Donnée 'pertes' : h	 Même grandeurs Nouvelle grandeur 'matériau' : ^e/_k = ^{Bi}/_h Nouvelle grandeur 'flux' : \$\varphi_{in} = \frac{\Delta T_{in} - \Delta T_{out}}{e/k}\$ 	 Même grandeurs Nouvelle grandeur 'matériau' : ^e/_k = ^{Bi}/_h Nouvelle grandeur 'flux' : $\varphi_{in(t)} = \frac{1}{\Delta t} M(f(x))^{-1} \Delta T_{in}(t,x) \frac{1}{e/k}$

Journée SFT – Caractérisation 2 T – 13 Juin 2013

Conclusion

- Expérience instationnaire dimensionnée pour les mousses métalliques à forte porosité
 - Chauffage créneau par plan chaud en face avant
 - > Pertes effusives en face arrière (milieu semi-infini d'effusivité b_{∞})
 - Mesure en face avant et arrière pour convolution avec la transmittance
- ➢ 2 Paramètres de la transmittance identifiables simultanément : temps diffusif (e^2/a) et un paramètre (b_{∞} / ρCe) dépendant des pertes arrières et de la capacité de la mousse
- Intérêts des pertes effusives par rapport aux pertes convectives :
 - en caractérisant au préalable b_{∞} (plan chaud), on peut déduire la capacité de la mousse puis sa conductivité
 - On peut également calculer l'impédance de l'échantillon et calculer le flux entrant en face avant par déconvolution du thermogramme par cette impédance
- Mousses analysées : Alu remplies d'air
 - Semblent correctement 'homogéneisables'
 - Pas d'influence nette de la structure sur les propriétés, conductivités assez proches avec ces différences :
 - Pour les gros pores, l'inclinaison améliore la conductivité de 25%, pour les petits elle chute de 9%
 - Pour les pores droits, la conductivité la meilleure est obtenue pour les petits pores (+21%)
- > Les conductivités identifiées sont toujours << conductivités nominales prévues par le modèle parallèle

Annexe : application de la méthode 'transmittance avec pertes effusives' à des échantillons de sable compacté utilisé en fonderie

rhoCp (J/m3K)	Diffusivité (m²/s)	Conductivité (W/mK)	Effusivité (Ws^(1/2)/
480294	3.31E-07	0.159017	276.36

rhoCp (J/m3K)

1.29E+06

Sable 'Omega-sphère'

LD Sable 1 expé #2, Modele-TE-k-rhoC : comparaison mesure-modèle en face arrière

Sable 'traditionnel'

