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Résumé - En industrie chimique, de nombreuses applications reposent sur le passage d’un écoulement
turbulent à travers des assemblages non-structurés. L’exemple d’un tube chauffé rempli de catalyseurs
sphériques peut être pris comme un prototype pour comprendre les transferts thermiques dans de tels
systèmes. D’un point de vue statistique ce système peut être modélisé par un milieu poreux avec une
porosité constante au coeur mais présentant une forte variation près des parois. Nous proposons ici une
extension du modèle de turbulence macroscopique 〈k〉 − 〈ε〉 pour prendre en compte les phénomènes
induits par le gradient de porosité radial sur l’écoulement turbulent, la dispersion et le transport
thermique ainsi que les caractéristiques du volume représentatif approprié pour ce type de milieu.

Nomenclature

Cp specific heat of fluid at constant pressure,
J/Kg/K

d REV thickness in the radial direction, m
L REV size in the axial direction, m
l0 pore length scale, m
L0 macroscopic characteristic length scale, m
lREV REV characteristic length scale, m
k turbulent kinetic energy, m2/s2

K macroscopic kinetic energy, m2/s2

ni normal vertor component in the i direction
p pressure, Pa
rtube tube raidus, m
S solid surface, m2

T temperature of the homogeneous medium, K
Tf fluid temperature, K
Ts solid temperature, K
ui velocity component in the i direction, m/s
V representative elementary volume, m3

Greek Symbols
δ. spatial deviation
ε dissipation rate, m2/s3

φ porosity
ϕ general physical quantity
λf fluid conductivity, W/m/K
λs solid conductivity, W/m/K
λeff fluid effective conductivity, W/m/K
ν fluid kinematic viscosity, m2/s
νT effective kinematic viscosity in homogeneous

isotropic medium, m2/s
νTOT effective kinematic viscosity in homogeneous

anisotropic medium, m2/s
ρf fluid density, Kg/m3

σt turbulent Prandtl number
Operators
〈.〉 volume averaging operator
.̄ time averaging operator

1. Introduction

In chemical engineering, numerous process consist in turbulent flowing through structured
or unstructured bunch of particles. For instance, tubular reactors based on a cylindrical heated
tube randomly filled with catalyst particles in which flows a high Reynolds fluid (1000 to 10000
Re) is a typical industrial process. The understanding of physical mechanisms occurring in such
systems is essential for tubular reactors design and process optimisation. The main purpose of
this study is to better assess the near wall heat transfer. Recent developments in macroscopic
turbulence modeling in porous medium based namely on volume averaging methods and up



scaling approaches have significantly improved the understanding of heat[2, 1] and mass[3, 5]
transfer in structured and unstructured[16] isotropic medium. Nevertheless, physical mecha-
nisms occurring in the near wall area remain not well understood yet. It is needless to say that
near wall area is particularly interesting as it involves complex physical mechanisms such as
boundary layer effects, interaction between porous medium/boundary layer or high porosity
gradient which impact widely mass and heat transfer over this area. The main scope of this pa-
per is to capture the effect of the porosity gradient on turbulent flow. Hence, it is suggested here,
a theoretical formalism which intends to extend the existing high Reynolds turbulence models
for anisotropic porous medium.

2. Macroscopic Turbulence model in isotropic porous medium

2.1. Volume averaging concept [14, 15]

As far as turbulent flows are involved, the time averaging operator is applied to instanta-
neous flow governing equations in order to separate the evolution of mean flow quantities from
fluctuation quantities (RANS formulation).

ϕ = ϕ̄+ ϕ′ (1)

where ϕ and ϕ̄ = 1
∆t

∫ t+∆t

t
ϕdt are the instantaneous and time averaged quantities and ϕ′ the

time fluctuation around the mean quantity. Using the same reasoning, one can apply the volume
averaging procedure to obtain macroscopic flow governing equations through a porous medium.
The quantity is averaged over a volume which is large enough to be statistically meaningful to
represent the medium and at the same time small enough compared to the characteristic length
scale L0 of spatial variations of macroscopic quantities.

l30 � V � L3
0 (2)

where l0 is the characteristic length scale of microscopic quantities. Such a volume V is called
Representative Elementary Volume (REV). It is worthwhile noting that variations of volume av-
eraged quantities over REVs are smooth and represent the mean behaviour in the homogeneous
medium.

〈ϕ〉v = 1

V

∫
V

ϕdV (3)

where 〈ϕ〉v is the volume averaged quantity. Hence,

ϕ = 〈ϕ〉i + δϕ (4)

where 〈ϕ〉i is the intrinsic averaged value of the quantity for the fluid phase inside the represen-
tative elementary volume V and δϕ its spatial deviation. The volume average and the intrinsic
volume average for the fluid phase are both related by

〈ϕ〉v = φ〈ϕ〉i (5)

where φ is the porosity of the medium, (φ = VF/V , with VF the volume of fluid within the
REV).

It is also worth nothing that the volume average of derivatives is not equal to the derivatives
of volume average.

〈∇ϕ〉v = ∇〈ϕ〉v + 1

V

∫
Ai

nϕdS (6)



〈∇.ϕ〉v = ∇.〈ϕ〉v + 1

V

∫
Ai

n.ϕ dS (7)

To describe a turbulent flow through a porous (homogeneous) medium, one can apply both
time and volume averaging operators to an instantaneous flow quantity ϕ. Furthermore, it can
be showed that the application’s order of averaging operators is immaterial for a rigid medium,

〈ϕ̄〉 = 〈ϕ〉 (8)

Applying the double decomposition to a general flow quantity, one can obtain

ϕ = 〈ϕ̄〉+ 〈ϕ′〉+ δϕ̄+ δϕ′ (9)

and the scale separation’s assumption between microscopic and macroscopic quantities leads to

〈δϕ〉 = ϕ̄′ = 0 (10)

2.2. Macroscopic turbulence modeling in isotropic porous medium (φ0 = cte)

Applying the double averaging operator to the momentum and energy equation one can ob-
tain,

φ0[
∂

∂t
〈ūi〉i +

∂

∂xj
(〈ūj〉i〈ūi〉i)] = −φ0

∂

∂xi

〈p̄〉i

ρf
+ φ0ν

∂2

∂x2j
〈ūi〉i − φ0

∂

∂xj
[ 〈δujδui〉i︸ ︷︷ ︸
dispersive flux density

+ 〈u′ju′i〉i︸ ︷︷ ︸
turbulent flux density

] − 1

V ρf

∫
Ai

nipdS +
ν

V

∫
Ai

nj
∂ui
∂xj

dS︸ ︷︷ ︸
drag force

(11)

where the drag force at the solid surface is usually substituted by the Darcy-Forchheimer law[4,
6, 7, 8] and,

[(ρCp)fφ0 + (ρCp)f (1− φ0)]
∂

∂t
〈T̄ 〉i + (ρCp)f

∂

∂xi
(φ0〈ui〉i〈T̄ 〉i) =

∂

∂xi

[
(λfφ0 + λs(1− φ0))

∂

∂xi
〈T̄ 〉i + 1

V

∫
ni(λf T̄f − λsT̄s)ds︸ ︷︷ ︸

tortuosity

− φ0(ρCp)f [ 〈δuiδT 〉i︸ ︷︷ ︸
heat dispersion

+ 〈u′iT ′〉i︸ ︷︷ ︸
turbulent heat flux density

]
] (12)

where the tortuosity is usually negligible.

Although Nakayama et al.[8] proposed to apply the volume averaging operator to the mi-
croscopic TKE, Teruel et al. [9, 10, 11] have recently highlighted the dispersive kinetic energy
(DKE) leading hence to a new definition of the macroscopic turbulent kinetic energy,

〈K〉i = 〈k〉iRANS +
1

2
〈δūδū〉i (13)



While Pinson et al.[13] writing a transport equation for the dispersive part highlighted energy
transfer between TKE and DKE, Mathey[16] following Teruel et al. suggestions has success-
fully assessed mass and heat transfer in the isotropic part of an unstructured porous medium
expanding the usual Boussinesq approximation as

φ0[〈δujδui〉i + 〈u′ju′i〉i] = −〈νT 〉i[
∂φ0〈ui〉i

∂xj
+
∂φ0〈uj〉i

∂xi
] + φ0

2〈K〉i

3
δij (14)

with

ρf〈νT 〉i = ρfCµ
〈K〉i〈K〉i

〈ε〉i
(15)

and,

−(ρCp)f [〈δuiδT 〉i + 〈u′iT ′〉i] = λeff
∂

∂xi
〈T̄ 〉 (16)

with

λeff = (ρCp)f
〈νT 〉i

σt
= (ρCp)f

Cµ〈K〉i〈K〉i

σt〈ε〉i
(17)

3. Macroscopic Turbulence model in anisotropic porous medium

The scope of this section is to expand the results obtained above to a porous medium present-
ing an anisotropy in the radial direction such as in the vicinity of wall within tubular reactors.
When one considers the porosity gradient, new terms appear in Eq.11,

ν〈ūi〉i
∂2

∂x2j
φ+ [2ν

∂

∂xj
〈ūi〉i − 〈u′ju′i〉i − 〈δujδui〉i − 〈ūi〉i〈ūj〉i]

∂

∂xj
φ (18)

and in Eq.12,

(λf − λs)〈T̄i〉i
∂2

∂x2j
φ+ [2(λf − λs)

∂

∂xj
〈T̄ 〉i − 〈T ′u′j〉i − 〈δTδuj〉i − 〈ūj〉i〈T̄ 〉i]

∂

∂xj
φ (19)

which require modeling efforts. Neglecting the second order term, Eq.18 can be summed up as
ψ∇jφ with ψ the quantity carried away by ∇jφ. As the physical mechanism induced by the
porosity gradient is a spatial transfer, one can write it as a flux divergence,

ψ0
∂φ

∂xi
|x0 u

∂
[
ψ ∂φ

∂xi
|x0 d

]
∂xi

|x0 (20)

where d is the thickness of the REV. Thus, adding Eq.18 up to Eq.11, the effective viscosity is
extended as,

〈νTOT 〉iM = ν
[
1 +

2∇jφ

φ
C

(1)
diffd

]
︸ ︷︷ ︸
Molecular diffusion

+ 〈νT 〉i
[
1 +

∇jφ

φ
C

(1)
T d

]
︸ ︷︷ ︸

Turbulent diffusion

− ∇jφ

φ
rtubeC

(1)
cv 〈ūj〉id︸ ︷︷ ︸

Convection

(21)

where rtube is the tube radius and C(1)
diff , C(1)

T and C(1)
cv are model constants. Then, the effective

conductivity is written as,

λeff = (ρCp)f
〈νTOT 〉iM

σt
(22)



To be valid this approach set constraints on the REV. Indeed, the REV’s size in the porosity
gradient direction d has to be smaller than an interval ∆xj around a point x0 wherein the poros-
ity function φ(xj) can be substituted by its linear approximation φ(xj) u φ(x0)+∇jφ |x0 ∆xj .

However, approaching walls the porosity gradient becomes steep and the associated interval
∆xj |nearwall shrinks to pore scales, making the volume statistically inappropriate to represent
the medium. One can think to extend the other directions of the REV such as it covers statisti-
cally enough configurations to be representative of the considered medium. That is to say when
d shrinks, L is increased in size as to keep the volume V large enough so that the characteristic
length scale lREV = V 1/3 remains larger than the pore scale l0 (Figure 1). Hence, the constraints
induced on the REV can be written as,

d ≤Min(∆xj) and lREV >> l0 (23)

For usual flow conditions (Re ' 8000), mass (Figure 2a and Figure 2b) and heat (Figure 3a
and Figure 3b) REV-averaged fluxes are estimated from microscopic simulations. It is worth-
while nothing that fluxes carried out by porosity gradient would seem to damp mass and heat
transfer in the radial direction.

Figure 1 : Statistically meaningful REV for tubular reactor.
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Figure 2a : Radial profile of turbulent mass trans-
fer at Re ' 8000.
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Figure 2b : Radial profile of dispersive mass
transfer at Re ' 8000.
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Figure 3a : Radial profile of turbulent heat trans-
fer at Re ' 8000.
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Figure 3b : Radial profile of dispersive heat
transfer at Re ' 8000.

4. Conclusion

A new formalism is presented to include porosity gradient effect on turbulence modeling
in porous medium which is numerically assessed to be responsible for the damping of radial
mass and heat transfer especially in the vicinity of walls. Works are in progress to tune model
coefficients and to assess the radial anisotropy effect on the macroscopic kinetic energy 〈K〉
and the macroscopic dissipation rate 〈ε〉. Furthermore, all these developments will be used to
assess accurately the near wall heat transfer in realistic packed beds.

Références

[1] A. d’Hueppe, Heat transfer modeling at an interface between a porous medium and a free region,
PhD thesis ( Paris, 2011).
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[13] F. Pinson, O. Grégoire, O. Simonin, K-ε modeling of turbulence based on a two-scales analysis in
porous media, Int. J. Heat and Fluid Flow, 27 (2006) 955-966.

[14] M. J. S. de Lemos, Turbulence in Porous Media, Elsevier (2006).
[15] S. Whitaker, The Method of Volume Averaging, Kluwer Academic publishers (1999).
[16] F. Mathey, Macroscopic turbulent models for heat and mass transfer in catalyst reactors, AIP Conf.

Proc. 1453,121(2012).


