

PLAN DE LA PRESENTATION

- ☆ Contexte
- ☆ Modélisation de la TG-CVI à couplage direct
- ☆ Modélisation du procédé par caléfaction
- ☆ Etude des fronts de densification
- ☆ Transferts en milieu poreux fibreux
- ☆ Conclusion et perspectives

COMPOSITES C/C : APPLICATIONS

SEL Sector Francis

Col et divergent Booster ARIANE V G. L. VIGNOLES et al. – TGCVI – Congrès annuel SFT, Perpignan, 24 Mai 2011

COMPOSITES C/C : APPLICATIONS

Freins F1 et aéronautique G. L. VIGNOLES et al. – TGCVI – Congrès annuel SFT, Perpignan, 24 Mai 2011

COMPOSITES C/C : APPLICATIONS

Systèmes de Protection Thermique pour la Rentrée Atmosphérique

Société Français de Thomas

COMPOSITES C/C : APPLICATIONS

COMPOSITES C/C : APPLICATIONS Creusets pour fours Czochralski

G. L. VIGNOLES et al. – TGCVI – Congrès annuel SFT, Perpignan, 24 Mai 2011

Fabrication des C/C: diverses voies

Le procédé CVI à Gradient Thermique TG-CVI : quelques dispositifs

Isobare, chauffage de la préforme par contact avec un élément chauffant : **« Rapid densification process »** (I. Golecki *et al.*) (Allied Signal) Isobare, chauffage inductif de la préforme par couplage direct ou chauffage micro-ondes: **RF-CVI** (Snecma Propulsion Solide) /**MW-CVI** (Economou et al.) Précurseur en ébullition autour de la préforme : **C4** (procédé par caléfaction) ou « **Kalamazoo** » (CEA/SPS, Textron) Avec flux forcé des gaz : **F-CVI** (Besmann, Starr *et al.*) (ORNL)

La TG-CVI : phénomènes

La TG-CVI : échelles

Echelles d'espace

⊢ <u>dépôt</u>	pore éléments structuraux de préforme procédé la préforme composants ancillaires dépôt fibre							
1 µm	10µm	100µm	1 mm mo	1 cm délisation phy mod	1 dm sico-chim dèle de co	1 r lique omportemen	n 10 optimisatior t	m

Echelles de temps

La TG-CVI : couplages

Etudes numériques : Deux variantes du procédé

G. L. VIGNOLES et al. – TGCVI – Congrès annuel SFT, Perpignan, 24 Mai 2011

Etude de cas : RF-CVI CVI avec chauffage radiofréquence

La TG-CVI : modélisation 1. Induction électromagnétique

La TG-CVI : modélisation 2. Chauffage par effet Joule

La TG-CVI : modélisation 4. Transferts de masse

Réaction chimique hétérogène homogénéisée en milieu poreux

 $v_c C(gaz) \rightarrow v_s S(solide) + v_x X(gaz)$

Bilan :

 $R_c = -\sigma_v$

Température calculée

Expression :

 $k_g(T) \cdot \frac{p_c}{\Re T}$ Pression À détern

Pression partielle de précurseur À déterminer ...

Surface interne = $f(\varepsilon)$

Flux des espèces = f(ɛ)
 G. L. VIGNOLES et al. – TGCVI – Congrès annuel SFT, Perpignan, 24 Mai 2011

La TG-CVI : modélisation 4. Transferts de masse (suite)

Flux d'espèces en milieu poreux : diffusion multicomposants + raréfié

Dusty-Gas Model (Mason et al., 1984)

Ecriture à deux espèces :

G

$$\begin{cases} \mathbf{J}_{1}^{t} = \left[-\frac{x_{1}D_{1}^{K}D_{2}^{K} + D_{1}^{K}D_{12}}{x_{1}D_{2}^{K} + D_{12} + x_{2}D_{1}^{K}} \frac{\nabla p_{1}}{\Re T} - \frac{x_{1}D_{1}^{K}D_{2}^{K}}{x_{1}D_{2}^{K} + D_{12} + x_{2}D_{1}^{K}} \frac{\nabla p_{2}}{\Re T} \right] - \frac{p_{1}}{\Re T} \frac{k}{\Re T} \nabla p \\ \mathbf{J}_{2}^{t} = \left[-\frac{x_{2}D_{1}^{K}D_{2}^{K}}{x_{1}D_{2}^{K} + D_{12} + x_{2}D_{1}^{K}} \frac{\nabla p_{1}}{\Re T} - \frac{x_{2}D_{1}^{K}D_{2}^{K} + D_{2}^{K}D_{12}}{x_{1}D_{2}^{K} + D_{12} + x_{2}D_{1}^{K}} \frac{\nabla p_{2}}{\Re T} \right] - \frac{p_{2}}{\Re T} \frac{k}{\mu^{*}} \nabla p \end{cases}$$

La TG-CVI : modélisation 5. Densification

Réaction chimique hétérogène de dépôt => réduction de porosité

$$-\frac{\partial \varepsilon}{\partial t} = \frac{M_s}{\rho_s} \frac{V_s}{V_c} R_c$$

Découplage en temps : les *autres* équations pourront être traitées en *pseudo-stationnaire*

G. L. VIGNOLES et al. – TGCVI – Congrès annuel SFT, Perpignan, 24 Mai 2011

Etude de cas : RF-CVI CVI avec chauffage radiofréquence

Stratégie de résolution

Etude de cas : RF-CVI

G. L. VIGNOLES et al. – TGCVI – Congrès annuel SFT, Perpignan, 24 Mai 2011

Etude de cas : RF-CVI

Etude de cas : RF-CVI

Validation du calcul thermique vis-à-vis des mesures expérimentales

Etude de cas : RF-CVI

Ajout de cales et introduction de l'écoulement des gaz vers le haut G. L. VIGNOLES et al. – TGCVI – Congrès annuel SFT, Perpignan, 24 Mai 2011

Etude de cas : RF-CVI

G. L. VIGNOLES et al. – TGCVI – Congrès annuel SFT, Perpignan, 24 Mai 2011

Évolution du champ de densité dans une section avec le temps

MODELISATION DIRECTE FOUR-PREFORME

Application au procédé à gradient de température par couplage direct (RF-CVI)

☆ Compréhension des mécanismes :

- une première phase de densification par l'intérieur
- la zone densifiée conduit mieux la chaleur => elle « tue » le gradient
- il apparaît une zone à densité non optimale !
- mise en place d'un **front de densification** => pourquoi ?
- ☆ Tendances expérimentales retrouvées

MODELISATION DU PROCEDE KALAMAZOO

Comparaison des champs de densité numériques et expérimentaux

Trois comportements - type

F. Lines et al., Congrès SF2M, Nancy 2003

Etude mathématique : Front d'infiltration

G. L. VIGNOLES et al. – TGCVI – Congrès annuel SFT, Perpignan, 24 Mai 2011

Etude locale des fronts de densification

Principe :

Lorsqu'un front existe, on peut le considérer « mince » par rapport à la pièce à densifier

Découplage entre :

- ☆ une étude « locale » du front
- \bigstar une étude de sa propagation

Production de modèles simplifiés, quasi-analytiques

Construction du modèle local: choix des variables

La réaction de dépôt dépend fondamentalement de trois facteurs :

 $R(x,t) = \sigma_{v}(\varepsilon)k(T)C^{\alpha}$ La surface interne variant avec la porosité, *ɛ* La température T à travers une loi d'Arrhenius

La concentration en gaz précurseur, C

Trois variables (au minimum) sont nécessaires pour décrire la zone de réaction.

G. L. VIGNOLES et al. – TGCVI – Congrès annuel SFT, Perpignan, 24 Mai 2011

Construction du modèle local : lois

On choisit des lois simplifiées pour les coefficients, représentant *l'influence du milieu poreux* :

$$\rho C_{p}(\varepsilon) = (1 - \varepsilon)\rho C_{p,0}$$

$$\lambda(\mathbf{\varepsilon}) = (1 - \mathbf{\varepsilon})\lambda_0$$

$$\mathbf{D}(\mathbf{\varepsilon}) = \mathbf{\varepsilon}^{m+1} \mathbf{D}_0$$

 $\sigma_{\rm v}(\epsilon) = A \epsilon^{1/n}$

Les modèles pour D et σ_v sont particulièrement importants pour la nature et le comportement du front surtout pour la partie $\varepsilon \implies 0$

Construction du modèle local

Recherche d'une solution « onde progressive »

C'est **une solution qui se propage à la vitesse** \tilde{v} , v>0, et qui est donc stationnaire dans les coordonnées $\tilde{x} = x$ -vt, $\tilde{t} = t$ (on omet les tildes).

Cette vitesse n'apparaît explicitement que dans l'équation de densification

Construction du modèle local

Le système stationnaire

L'équation de la chaleur a été intégrée.

Modèle de front 1D : étude mathématique

3 E.D.O. avec 6 conditions aux bords = problème sur-déterminé

N'a de solution que si les paramètres obéissent à certaines relations « **Problème aux valeurs propres** » Ou encore : « **Problème de tir** »

Production d'un critère d'existence du front

Modèle de front 1D : étude mathématique

Largeur du front :

$$x_f = L_{ref} \xi_f = \frac{\lambda_0 \mathcal{R} T_h^2}{E_a q} \xi_f \qquad \xi_f \gtrsim 1.15$$

Vitesse du front :

$$\mathfrak{v} = 0.3 \; \kappa A k(T_h) L_{ref} \qquad \kappa = \frac{C_c M_s}{\rho_s}$$

Flux critique :

$$q \gtrsim \frac{\lambda_0 \mathcal{R} T_h^2}{E_a} \sqrt{\frac{Ak(T_h)}{D_0}} \qquad \text{i.e. } \Phi < \mathbf{1}$$

ETUDE THEORIQUE DU FRONT DE DENSIFICATION

Zone froide :

$$\begin{cases} L_c = L_t - L_h - x_f, \\ q = \frac{\lambda_c (T_i - T_e)}{L_c}, \\ J_c = \frac{D_0 \varepsilon_c^{m+1} (C_e - C_c)}{L_c}, \\ C_e = P_{\text{tot}} / (\mathscr{R}T_e), \\ T_e = T_b + q/h, \end{cases}$$
Zone du front :

$$\begin{cases} J_c = (\kappa J_c) C_c A k(T_h) \lambda_0 T_h^2 \frac{E_a q}{E_a q} \\ \mathfrak{v} = \omega V_m C_c A k(T_h) \lambda_0 T_h^2 \frac{\mathscr{R}}{E_a q}, \\ x_f = \xi_f \lambda_0 T_h^2 \frac{\mathscr{R}}{E_a q}. \end{cases}$$

Zone chaude (t=0) : $T^{0} - T$

$$\begin{cases} L_h^0 = I_s, \\ L_c^0 = L_t - x_f^0, \\ q^0 = \frac{\lambda_c (T_i - T_e)}{L_t - x_f^0}, \\ J_c^0 = \frac{D_0 \varepsilon_c^{m+1} (C_e - C_c)}{L_t - x_f^0}, \end{cases}$$

Exploitation du modèle simplifié

Intégration explicite :

$$L_h^i = L_h^{i-1} + \mathfrak{v}^{i-1} \Delta t.$$

Mise à jour des quantités :

$$\begin{cases} T_{e}^{i} = T_{b} + q^{i}/h, \\ q^{i} = \lambda_{c} \frac{T_{i} - T_{e}^{i}}{L_{t} - x_{f}^{i} - L_{h}^{i}}, \\ x_{f}^{i} = \frac{\lambda_{0} \mathscr{R}(T_{h}^{i})^{2}}{E_{a}q^{i}} \cdot \xi_{f}, \\ T_{h}^{i} = T_{s} - \frac{l_{h}^{i}q^{i}}{\lambda_{h}}, \\ \int_{c}^{i} = \frac{\rho_{\text{tot}}/(\mathscr{R}T_{e}^{i}), \\ J_{c}^{i} = \frac{\lambda_{0} \mathscr{R}(T_{h}^{i})^{2}}{E_{a}q^{i}} V_{m}(C_{c}^{i})^{2} Ak(T_{h}^{i}) \cdot \tilde{J}_{c}, \\ C_{c}^{i} = C_{e}^{i} - \frac{J_{c}^{i}}{D_{0}\varepsilon_{c}^{m+1}} (l_{t} - x_{f}^{i} - l_{h}^{i}). \end{cases}$$

15-16 Juin 2.0L VIGNOL ES Let U.G.N & BESVEL al Cost griesaith He El SAPI 9. Ferry styman, 24 Mat 2011

ETUDE THEORIQUE DU FRONT DE DENSIFICATION

Exploitation du modèle simplifié

Modèle de front : étude de la stabilité transversale

Approximation en « front mince »

G. L. VIGNOLES et al. – TGCVI – Congrès annuel SFT, Perpignan, 24 Mai 2011

T(z=h)

х

 $z = \overline{h}(x)$

Ζ.

 $z \doteq h(x)$

Modèle de front : étude de la stabilité transversale

G. L. VIGNOLES et al. – TGCVI – Congrès annuel SFT, Perpignan, 24 Mai 2011

Modèle de front : étude de la stabilité transversale

Transferts en milieu poreux : approches numériques

G. L. VIGNOLES et al. – TGCVI – Congrès annuel SFT, Perpignan, 24 Mai 2011

ACQUISITION D'IMAGES

Géométrie de l'échantillon pour une acquisition à 2 résolutions

