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Résumé – Une nouvelle méthode de résolution de l'équation de transfert radiatif dans un milieu semi 
transparent sphérique est développée. Cette approche est basée sur l'association de la méthode des 
ordonnées  discrètes et   une projection sur une base des polynômes ultrasphériques. Cette projection 
est utilisée pour l'approximation du terme de dérivée angulaire. Nous avons appliqué la nouvelle 
approche à un problème de transfert couplé conduction –rayonnement. Les résultats obtenus sont en 
bon accord avec ceux de la bibliographie. 
   

1. Introduction  

In practical engineering problems, simultaneous conduction and radiation in participating 
media appears in many applications such as combusting systems, furnaces and reactor nuclear 
theory. Many of these systems can be considered as spherical enclosure. A number of studies 
interested in resolving the radiative transfer equation in such media have been conducted. 
These works included various numerical techniques: integral transformation techniques [1], 
spherical harmonics method [2], Galerkin method [3]. In this paper, simultaneous conduction 
and radiation in one-dimensional absorbing, emitting and isotropically scattering gray hollow 
sphere with gray surfaces is investigated. We introduce a new technique for improving the 
performance of the discrete ordinates method. The novelty of this technique lies in the use of 
ultraspherical polynomials approximations [4] to represent the angular derivative term of the 
discretized 1-D radiative transfer equation. The set of resulting differential equations is solved 
using the boundary value problem with finite difference algorithm [5].  

2. Analysis 
 We consider one-dimensional steady-state simultaneous conduction and radiation in gray 

absorbing emitting and isotropically scattering hollow sphere. The limiting surfaces are 
assumed to be gray, opaque, diffusely emitting, diffusely reflecting and the physical 
properties are constant. The energy equation is taken 
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with boundary conditions, 
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Where T  is the temperature, k  the thermal conductivity and rq  the radiation flux. 

The dimensionless formulation of the problem defined by Eqs. (1) can be written as :  
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The divergence of dimensionless heat flux vector in Eq. (2) can be expressed as 
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and the dimensionless incident radiation is defined as 
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Substituting Eq. (3) into Eq. (2), we obtain 
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Where 2τ  is the optical thickness and  ω  the single scattering albedo. n is the refractive 
index, σ  the Stefan Boltzmann constant and crN  the conduction radiation parameter. 

The dimensionless radiation flux *
rq  and the dimensionless incident radiation *G  must be 

determined from the solution of the radiative transfer equation (RTE), in spherical medium, 
given by 
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with the diffuse boundary conditions 
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Where μ  is the cosine of the angle between the direction of the radiation intensity ψ and the 
positive *r  axis. ε  is the surface emissivity. The subscripts 1 and 2 refer to the boundaries at 

*
1R*r =  and *

2R*r =  respectively. The discrete form of the radiative transfer equation is 
obtained by evaluating Eq. (15) at each of the discrete directions and replacing the integral by 
numerical quadrature to give 
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Where subscripts m and m' refer to discrete directions, M is the total number of these 
directions. The discrete ordinate representation of the boundary conditions, Eqs. (9a)-(9b) is 
given by 
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The discrete form of the term involving the angular derivation in Eq. (10) is generally 
expressed using a finite differencing scheme [6]. We develop in the following an alternative 
method for the angular derivative term. 

3. Ultraspherical λ
NP method 

In this section we develop a new approach to evaluate the angular derivative term given by 
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The nth ultraspherical moment of the ADT, denoted by ),r(D μ , can be defined as follows 
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where λ
nP is the ultraspherical polynomial of order n and variableλ . Legendre polynomial 

( nP ), Chebyshev polynomials of first and second kind ( nT , nU ) are special cases of ultra 
spherical or Gegenbauer polynomials. The integral In Eq. (9) could be simplified using 
integration by parts as follows 
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Using the equation defining the derivative of ultraspherical polynomials given by 
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then, Eq. (10) may be written as 
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In order to obtain the ADT, the integral equation given by Eq. (12) is replaced by the discrete 
form 
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Where ( )[ ]
m

2
m 1/D μμψμμ =−∂∂= , mw are the quadrature weights associated with the 

directions mμ and M is the total number of discrete directions. For one-dimensional spherical 
problem using discrete ordinates method or NS method, the value of M is equal to the order of 

NS approximation. Now the angular derivative terms mD are obtained following the procedure 
described by Sghaier et al. [7]  
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and 1A−  is the inverse of the matrix A which is given by ( )
Mm1
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ultraspherical-Vandermonde matrix. The new representation of Eq. (8), for a finite number of 
discrete ordinates may be written as 
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Finally the dimensionless conductive heat flux cQ , the radiation heat flux *
rq  and total heat 

flux TQ  are determined from the following relations 
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Equations (7), (19) and (11a, 11b) provide the complete mathematical formulation for the 
conduction-radiation problem in a one dimensional spherical medium. A numerical technique, 
namely the boundary value problem with finite difference (BVPFD) [5] is used to solve this 
problem. The new technique called DOMPN −λ method with N=12 is adopted for different 
pre-selected values ofλ . Each value ofλ  leads to a different approximation. The weights and 
quadrature points are those of the corresponding Gaussian quadratures. 

 
 
 



 

4. Results and Discussion 
 

Method DOM 

[8] 

DOMTN − [8] 

0=λ  

DOMPN −  

5.0=λ  

DOMU N −

1=λ  

DOMP 2
N −  

2=λ  

Galerkin 

[3] 

)r(Q *
1c  2.2978 2.3022 2.2986 2.2985 2.2985 2.3223 

)r(Q *
2c  0.6464 0.6457 0.6464 0.6464 0.6464 0.6426 

)r(Q *
1T  6.0258 5.9862 5.9945 5.9945 5.9946 5.9433 

)r(Q *
2T  1.5064 1.4966 1.4987 1.4986 1.4987 1.4858 

Table 1: Values of the dimensionless conductive heat flux  and total heat flux at the boundaries for 
different approximations. 
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Figure 1 : The effect of the conduction –radiation parameter on the dimensionless temperature profile 

 

In table 1 numerical values of the dimensionless conductive heat flux and total heat flux at 
the boundaries for different approximations are presented. Results obtained by the standard 
discrete ordinates method denoted by DOM in the table and from new formulation by λ

NP  –
DOM method are compared with the results of Jia et al [3], which are obtained by Galerkin 
method. We present results for 5.0,1 ,2 ,5.0R/R 221221 ===== Θεετ . It can be 
observed from table 1 that all λ

NP  –DOM results are consistent in themselves equiconvergent 
and in good agreement with the comparable data. 



 

An analysis of simultaneous conduction and radiation in one dimensional, absorbing, emitting 
and isotropically scattering hollow spherical medium is investigated. The angular derivative 
term appearing in this geometry is approximated by making use of a new approach called 

DOMPN −λ approximation. This method leads to an accurate expression for the angular 
derivative term. The set of resulting differential equations is solved using the boundary value 
problem with finite difference algorithm. The solution accuracy of DOMPN −λ method has 
been verified by comparison with benchmark approximate solutions. 

The effects of the conduction radiation parameter crN on the dimensionless temperature 
distribution are studied in Fig. 1 using DOMU N − approximation. Calculations are carried 
out for  5.0 ;  22 == ωτ ; 5.0 ;5.0R/R 221 == Θ and 121 == εε . As crN decreases, radiation 
plays more significant role than conduction. Therefore, as crN  decreases, a steeper 
temperature gradient is formed at both boundaries as shown in Fig. 1. Let us note that this 
new formulation does not present any new difficulty as compared to classical formulation. 
The matrix A depends only on the chosen quadrature and on some values of Gegenbauer 
polynomials; its inversion is to be carried out once only.  

5. Conclusion 

 An analysis of simultaneous conduction and radiation in one dimensional, absorbing, 
emitting and isotropically scattering hollow spherical medium is investigated. The angular 
derivative term appearing in this geometry is approximated by making use of a new approach 
called DOMPN −λ approximation. This method leads to an accurate expression for the angular 
derivative term. The set of resulting differential equations is solved using the boundary value 
problem with finite difference algorithm. The solution accuracy of DOMPN −λ method has 
been verified by comparison with benchmark approximate solutions. 
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