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Résumé -  Cette étude porte sur le développement des écoulements convectifs dans un cylindre rotatif 

soumis à un flux de chaleur uniforme. Différents modes de convection peuvent apparaître lorsqu’on 

augmente les nombres de Grashof et de Reynolds. Les solutions numériques des équations de Navier-

Stokes et d’énergie obtenues pour une large gamme de nombre de Grashof montrent que la rotation 

peut fortement influencer l’apparition et le développement des modes unicellulaires, multicellulaires, 

stationnaires et oscillatoires. 

Nomenclature 

Gr     Grashof number 

H height of cavity, m 

Pr      Prandtl number  

Ro radius of cavity, m 

R        aspect ratio of cavity 

Re      Reynolds number        

 

 

T dimensionless temperature 

U       dimensionless circulation 

ω       dimensioless vorticity 
Ω       angular velocity, rad/s 
ψ       dimensionless stream function 
 

 

1. Introduction  

 

     Natural convection in a rotating cylinder heated from below has been investigated 

theoretically and experimentally by many authors, due to its importance in solving practical 

problems as well as in understanding the dynamics of nonlinear systems [1-6]. An overview 

of literature shows that most studies were concerned with fluids of either high or low Prandtl 

numbers, while the case of moderate-Prandtl-number fluids, such as gases in closed-ampoule 

vapor crystal-growth systems, has been addressed by only a few workers. We also note that 

most studies were focused on relatively short cylinders subject to prescribed temperatures at 

both ends. It is however well known that convection flows under fixed-flux heating conditions 

are quite different from those obtained under fixed-temperature heating [7]. Examples of 

fixed-flux heating are discussed in the papers of Chapman et al [8] and Cessi and Young [9] 

who noted that convection between poorly conducting boundaries, through which a fixed flux 

is imposed, has been recognized as an analytic avenue to study strongly nonlinear regimes as 

well as a problem of practical interest. This study is therefore devoted to the Benard 

convection of fluids with moderate Prandtl numbers contained in a tall vertical cylinder 

subject to a uniform heat flux at both ends. It should be noted that, in general, convection is 

three-dimensional, and fluid in Benard convection rises along a central core and descends at 

the boundary between a hexagonal cell and its neighbors. As the hexagon deviates rather little 

from the circle, axisymmetric convection in a cylinder may be considered as the simplest 3-D 

configuration. We therefore considered only axisymmetric modes in order to better 

understand the development of the multiple flow patterns under the competing effects of 

buoyancy and rotation. 

     In the following sections, the problem is described and formulated in terms of the four 

governing parameters, namely the aspect ratio, and the Grashof, Reynolds and Prandtl 



 

numbers. The solutions are presented for Grashof numbers varying from 0 to 6x10
6
 and 

Reynolds numbers from 0 to 6000, with a typical moderate Prandtl number of 0.71.  

2. Description of the problem    

We consider a vertical cylinder of radius Ro and height H, rotating about its axis with a 

constant angular velocityΩ . The cylinder is filled with an incompressible newtonian fluid of 
thermal conductivity k and kinematic viscosityν . The side of the cylinder is perfectly 
insulated while the top and bottom are subject to a uniform upward heat flux Q. All physical 

properties are constant except for the fluid density in the buoyancy term, which is expressed 

as a linear function of temperature: 

                                                         [ ])(1 oo TT −−= βρρ                                  (1) 

For axisymmetric flows, the problem may be formulated in terms of the circulation, stream 

function and vorticity defined as follows:   
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By choosing H for the length scale, H
2
/ν  for time, H/ν for velocity, 2)/( Hνρ  for 

pressure and T∆  for temperature, we then obtain the following set of governing equations for 

the problem under consideration: 
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subject to the boundary conditions : 
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where R=Ro /H  is the aspect ratio and νΩ= 2Re H  is  the Reynolds number. The parameters 

α
ν=Pr  and 

2

3

ν
β THg

Gr
∆=  are the Prandtl and Grashof numbers where g is the gravitational 

acceleration, α  and β  are the thermal diffusivity and expansion coefficient of the fluid. As 

no fixed temperature difference is imposed on the system, we here define 
k

QH
T =∆ which is 

the temperature difference induced by pure conduction under the effect of a heat flux Q. 
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     The governing system of equations (3-7) was solved by the control volume method with a 

staggered grid, using the central differences for spatial derivatives and backward differences 

for time derivatives. The numerical program has been extensively tested and validated with a 

previous study of Alloui et al [10], using grid sizes varying from 21x21 to 101x101 for 

various Rayleigh numbers and aspect ratios. For the cases presented below, we chose a grid of 

41x81 and a time step of 0.0001. A finer grid or time step did not further improve the 

accuracy of the results.  

3. Results and discussions  

We first consider a stationary cylinder with an aspect ratio R=0.25. Fig 1 shows the results 

for Re=0, Pr=0.71 and Gr=5x10
5
 which is just above the threshold for the onset of 

convection. At this value of Grashof number, there may arise two convection patterns: a 

unicellular flow (Fig. 1a) and a bicellular flow (Fig 1b) consisting of two symmetrical 

counter-rotating vortices which are slightly weaker than the unicellular flow. The occurrence 

of these flows depends on the initial conditions: The unicellular flow was obtained with a zero 

initial condition while the bicellular flow was obtained by starting with a bicellular solution 

obtained at a higher Rayleigh. When Gr is increased to 10
6
, we also obtained two flow modes 

as shown in Fig.2 with two different initial conditions, i.e a zero initial condition and a 

bicellular initial condition, respectively. While the unicellular mode is similar to the one 

obtained in the previous case, the bicellular pattern is no more symmetric, the upper cell being 

weaker and occupying about one third of the cavity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

    Fig. 3 shows the isotherms and flow patterns at Re=0, Gr=3x10
6
. This bicellular pattern is 

the only flow mode obtained at this value of Grashof number. Note again that, as in the last 

case, the weaker cell occupies only one third of the cavity. 

    As Gr is increased to 4x10
6
, the bicellular flow becomes oscillatory as shown in Fig. 4a, 

each cell periodically grows from a minimum to a maximum intensity in opposite phase with 

one another (i.e. the upper cell reaches its maximum size as the lower one is reduced to its 

minimum size). The periodic reversal of this oscillating bicellular flow can be seen from 

Fig.4b-c for the streamlines and isotherms patterns at five different times during a period of 

        

a : ψmin = -0.413         b : ψmin = -0.333 

          ψmax = 0                      ψmax = 0.330 

Fig 1: Streamlines and isotherms patterns 

 at Re = 0, Gr = 5x105 

      

a: ψmin = -0.671          b: ψmin = -0.631 

           ψmax = 0             ψmax = 0.513 

Fig 2: Streamlines and isotherms patterns  

                   at Re = 0, Gr = 106 



 

oscillation. As Gr is further increased, the flow patterns (not shown here) may break into 

rather complicate oscillating multicellular patterns.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     The effect of rotation is shown in Fig. 5 for Re=10
3
 and Gr=5x10

5
.  Comparing with Fig.2 

for Re=0, Gr=5x10
5
, we now obtain only one mode with a unicellular flow pattern. The 

stabilizing effect of rotation is reflected in the stream function which decreases from 0.413 to 

0.227 as Re is increased from 0 to 10
3
.  Fig. 6 shows the results obtained at Re=10

3
 and 

Gr=4x10
6
. The flow is now unicellular and steady with an intensity of about 1.081, in 

constrast to the stronger oscillating bicellular flow previously obtained at the same Grashof 

number in the absence of rotation. 

As the Reynolds number is increased to 6x10
3
, the stabilizing effect of rotation becomes 

remarkably stronger as can be seen in Figs 7 and 8 for Gr=5x10
5
 and 4x10

6
, respectively. At 

Gr=5x10
5
, convection is virtually suppressed as illustrated by the vanishing small stream 

function and horizontal isotherms in Fig.7. At Gr=4x10
6
, the unicellular flow observed when 

Re=10
3
 has disappeared, to be replaced by a side-by-side bicellular flow as shown in Fig.8. 

 

         

Fig.3: Streamlines and isotherms    

          at Re = 0, Gr = 3x10
6   

ψmin = -0.894524, ψmax = 1.20443 
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Fig.4a: Oscillations of maxmin ,ψψ  

         at Re = 0, Gr = 4x10
6
 

 

Fig.4b: Streamlines at Re = 0, Gr = 4x10
6
  

 

 

Fig.4c: Isotherms at Re = 0, Gr = 4x10
6
  

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The results obtained for Gr varying from 0 to 8x10
6
 and Re varying from 0 to 6x10

3
 are 

summarized in Figs 9 and 10. At a fixed Reynolds number Re=6000, the extremum values of 

the stream function obtained by increasing the Grashof number from 0 to 8x10
6 
are shown in 

Fig.9. In this range of Grashof number, we always obtain a side-by-side bicellular flow (as in 

Fig.8).  The bifurcation curve in this figure has been obtained by increasing Gr fron 0 to 

8x10
6
, and then decreasing Gr from this value back to 0. The results are exactly the same. We 

may therefore deduce that there is no multi-solution and no subcritical flow at this Reynolds 

number. For a fixed Grashof number Gr=3x10
6
, the maximum values of the stream function 

obtained by varying the Reynolds number from 0 to 4000 are shown in Fig.10. The curves 

shown in this figure has been obtained by increasing Re from 0 to 4000, and then decreasing 

Re from this value back to 0. The results obtained for Re between 1000 and 4000 are the same 

(unicellar) flows. However for Re below 1000, there is a hysteresis effect, such that the 

solutions we obtained when Re was decreased to 0 are not the same flows we have obtained 

when Re was increased from 0. It should be noted that this figure only shows the results for 

Re varying from 0 to 4000. For higher values of Re, there arises another type of solution, the 

side-by-side bicellular flow, which should deserve a further study. 
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Fig. 9:  Extremum stream function vs Gr     Fig. 10:  Maximum stream function vs Re  

             for Re = 6000           for Gr=3x10
6
 

 

    
Fig 5: Flow pattern at 

Re=1000, Gr= 5x105 

  (ψmin = -0.227) 

   
Fig 6: Flow pattern at 

 Re = 103, Gr = 4x106 

(ψmin = -1.081) 

    
Fig 7: Flow pattern at 

 Re = 6x103, Gr = 5x105 

(ψmin = -3.36x10-4, 
ψmax = 3.36x10-4) 

     
Fig 8: Flow pattern at 

Re = 6x103, Gr = 4x106 

(ψmin = -0.114, 
ψmax = 0.173) 



 

4. Conclusion 

We have considered the problem of Bénard convection in a tall rotating cylinder subject to 

a uniform heat flux. The numerical simulations of the flow and temperature fields have 

covered a range of Reynolds number from 0 to 6000 for a Grashof number varying from 0 to 

10
7
. It was found, within these ranges of parameters, that natural convection may arise in a 

rich variety of flow patterns: At low Reynolds numbers, they may grow into steady 

multicellular flows, and then become oscillatory under the destabilizing effect of the 

buoyancy force as the Grashof is increased. When the Reynolds numbers is beyond a certain 

value, the flows will develop into side-by-side bicellular patterns under the stabilizing effect 

of rotation. The interplay between the destabilizing effect of heating and the stabilizing effect 

of rotation is complex, as it is dependent on the two other parameters of the problem, namely 

the Prandtl number of the fluid and the aspect ratio of the cylinder. The results presented in 

this study are limited to an aspect ratio R=0.25 and a Prandtl number Pr=0.71. What may 

occur within a very-small-Prandtl-number fluid in a very-tall-rotating-cylinder should deserve 

a further study. 
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