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Inverse Problems - Part A:  Regularized Solutions1 
Yvon JARNY 
Laboratoire de Thermocinétique UMR CNRS 6607  
Ecole polytechnique de l’université de Nantes  
BP 50609 – 44306 NANTES Cedex 3 
 
Abstract 
 
 An important key feature of inverse problems, both theoretically and numerically, is their ill-
posedness. It is important to construct special algorithms for their solutions. The main differences 
which are inherent to the formulation and the resolution of the direct and inverse problems are 
presented and the general  linear inverse problem analysis (finite dimensional case) is detailed  
through the investigation of the Hadamard’s conditions.Basic regularization processes which leads to 
build quasi-solutions satisfying some compromise between the accuracy and the stability requirements 
are briefly presented and illustrated by numerical results. 
 
 
1.-Introduction 

 
Research in heat transfer commonly involves experimentation, including design of 

experiments and  mathematical modelling with associated numerical analysis and 
computation. Many problems in heat transfer can only be solved through the use of interactive 
computational-experimental procedures according to a specific methodology based on the 
resolution on Inverse Heat Transfer Problems (IHTP).  

 
An important key feature of inverse problems, both theoretically and numerically, is their 

ill-posedness. They do not fulfill Hadamard’s classical requirements of existence, uniqueness 
and stability, under data perturbations. Solutions of an inverse problem might not exists for all 
data, it might not be unique (which raises the practically relevant question of identifiability, 
i.e. the question if the data contain enough information to determine the unknown quantity), 
and it might be unstable with respect to data perturbations. The last aspect is of course 
especially important, since in real-world problems, measurements always contain noise 
(another source of noise being errors in numerical procedures), and approximation methods 
for solving inverse problems which are insensitive to noise as possible have to be constructed, 
so-called regularization methods. 

 
 Inverse problems in heat transfer have been the focus of a growing number of research 

efforts over the last 40 years [1]-[6]. These efforts led to a growing appetite in applications for  
posing and solving new inverse problems, which in turn stimulated new mathematical 
research e.g., on uniqueness questions and on developing stable and efficient numerical 
methods (regularization methods) for solving inverse problems [7]-[9].  

 
Because most of inverse problems are ill-posed or ill-conditionned, it is very important to 

construct special algorithms for their solutions. This lecture will be devoted to present and to 
illustrate the main differences which are inherent to the formulation and the resolution of the 
direct and inverse problems. In the first section three examples of basic  inverse heat transfer 
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problem are considered for a better understanding of the ill-posedness concept. In the second 
section, the analysis of the general  linear inverse problem (finite dimensional case) is detailed 
and the three Hadamard’s conditions are investigated.  The third section is devoted to the 
presentation of basic regularization processes which leads to build quasi-solutions satisfying 
some compromise between the accuracy and the stability requirements. Numerical results are 
given to illustrate the efficiency of the different regularizing processes. 
 
 
2-  Ill-Posed Problems 
 

Three basic examples of  inverse heat transfer problems are briefly discussed in order to 
illustrate their ill-posedness.  
 
2.1- Examples  of linear inverse problems 
 
2.1.1- Inverse initial state 1-D heat conduction problem 
 

Consider the linear 1-D heat-conduction process, and the inverse initial state problem 
which consists in the determination of the temperature field U(x) from the observation of the  
final state Y(x) : 
 
State equations 
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Let us introduce the function spaces )1,0(2LYU ==  with the following norm 
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Then the  inverse problem may be formulated under the generic form : 

 
Determine U∈U , such that Y=A(U) , from the given data Y∈Y  
Where A(.)  is the operator to be inversed 

 

 
The solution of the direct problem is given by the  method of separation of variables  
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The solution of the inverse problem  
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The operator A is linear, then the variation of the solution which  results of any output error 
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This result means that any arbitrarily small output error, may induce a great variation on the 
solution U. The stability condition is violated, this inverse initial state  heat conduction problem is ill-
posed. 
 

Numerical results : )1()( 2 xxxU −= ; Y(x) is computed at  tf =0.05 
 
% 1-D heat conduction  
clear 
nx=51;dx=1/(nx-1);x=0:dx:1; 
nmax=5;tf=0.05; 
u=x.*x.*(1-x); 
plot(x,u);grid on;hold on 
y=zeros(1,nx); 
for n=1:nmax 
fn=sqrt(2)*sin(n*pi.*x); 
c(n)=dx*u*fn'; 
tn=n*n*pi*pi*tf; 
y=y+c(n)*exp(-tn).*fn; 
end 
plot(x,y,'+') 

 
Figure 1 : Initial  (t=0) and Final (tf =0.05) temperature fields for a 1-D heat conduction process 
 
2.1.2- Inverse 1-D boundary heat source problem 
 

A semi-infinite heat conducting body is submitted to a boundary heat flux density U which 
is to be determined from the observed output Y  given by the temperature history at the sensor 
location xs, on the time interval (o,tf). The problem may be put under the generic form 
Y=A(U), U∈U , Y∈Y , by introducing the functional spaces ),0( ft2LYU == , together 
with the following norm 

YUU
......,)(

2/1

0

2 =⎥⎦
⎤

⎢⎣
⎡= ∫

ft
dttUU  



Metti 5 Spring School  Roscoff – June 13-18,2011 

Lecture 9: Inverse Problems and Regularized Solutions –page 4 

 
and the linear  operator A(.) is defined by the convolution integral 
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(5b) 

 
The question of stability of the inverse solution for this kind of integral equation will be 

discussed later, but now suppose for simplicity, that the observed output is perturbed by an 
additive noise )()()( tYtYtY δ+= , which is taken (for simplicity) under the simple periodic 
form fnn tnttY /2,cos.)( πωωεδ == . From the linear property of the operator, it comes 

YUA δδ =)( . A frequential analysis leads to the periodic solution 
 

)cos().2/exp(.)( Ψ+= taxbtU nncn ωωωεδ  (6) 

 
and consequently, it comes :  
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where the gain factor G is an increasing function of  both the sensor location and the 
frequency of the output error. 
 

This results means that  any arbitrarily small (periodic) output error, may induce a great 
(periodic) variation on the solution U. The stability condition is violated, this inverse 
boundary heat source  problem is ill-posed. In practice, a specific data processing has to be 
performed on the observed output, especially for avoiding the amplification of the high 
frequency components of the output. 
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% semi-infinite heat conduction
% reduced gain factor for the  
% IBHSP in the periodic case 
w=logspace(-2,1,10); 
g=w.*exp(w) 
plot(w,g) 

Figure 2- Gain factor for the inverse boundary heat source problem versus the frequency of the 
periodical error 
 

More generally, the unknown to be determined U belongs to a functional space, whose size 
is infinite. But a finite approximation is straightforward. The time interval (o,tf) is divided into 
n sub-intervals ] [ii tt ,1− , of length  tΔ . The linear convolution operator may be approximated 
by a matrix operator. This is not a practical way to solve the inverse problem, but this is to 
illustrate the ill-posedness of the problem.  
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The problem is re-formulated under  the generic form Y=A(U), U∈U , Y∈Y , by introducing the 
new vector spaces nRYU ==  : 
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(9b-c) 
 
(9d) 
 
 
(9e) 

 
The matrix A is square (n,n), the (approximated) solution of the inverse problem is then 

)(1 YAU −= . However, it must be noted that by decreasing the time step tΔ , or by increasing 
the value of n, the determinant of the matrix det(A)  goes to zero, hence the matrix becomes 
nearly singular, the numerical inversion process becomes ill-conditionned, and the unstable 
computed solution is very sensitive to the output error. There is some dilemma between  
accuracy and stability :  by increasing  n, the accuracy of the direct problem solution will 
increase but the stability of the inverse problem solution will decrease. 
 
2.1.3- Inverse 2-D boundary heat source problem 
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Let us consider the solution of the 2-D steady-state heat-conduction process, described by 

the following set of equations (10). Numerical results of the direct problem, are plotted on 
figure 3, they are computed with  the following input data : 
 

1

0

0.5,0 1

( ) (sin( ) 1), 0 1
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= < <

= − < <
 

 
Now suppose that the heat source boundary q  is unknown on 4Γ , and that the output Y  is 

observed on 3Γ . A 2-D inverse boundary heat source problem aims to the determination of 
the boundary heat flux q from the data Y. 
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Steady-state equation 
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Output equation 
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Figure 3a : Spatial domain of the 2-D IBHP  

 

Figure 3b Temperature field, solution of the 
direct problem equations 
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Figure 3c Iso-values of the direct problem solution 
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Figure 3d : Boundary conditions on 4Γ  
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Figure 3e: Observed Output  on 3Γ  
 

The inverse problem may be formulated according to an  internal lumped parameter model 
structure, obtained after the discretization of the spatial variable. It leads to the following state 
and output equations 

Γ1 

Γ2 

Γ4 

Γ3 
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[ ] [ ] [ ]1 4* wA T B T B q= +  

[ ]Y C T=  

(11a) 
 
(11b) 

 
where T  is the state (temperature) vector , [ ] 1

( ) n n
i i

q q y
=

= ∈R  is the heat source vector on 

4Γ ,  [ ] 1

1

n
w i i
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=

=  is the fixed temperature on 1Γ  ,  
1

( )
m m

j j
Y Y x

=
⎡ ⎤= ∈⎣ ⎦ R is the observed output 

vector and[ ] [ ] [ ]1 4, ,A B B ,[ ]C  are respectively  ( ) ( ) ( ) ( ), , , 1 , , , ,N N N n N n m N matrices. The 
size of the state vector, e.g. the number  N of nodes of the spatial grid, (without the nodes on 
the boundary 1Γ ) defines the size of the square matrix A . 
 Finally the linear operator  between the inputs (the heat source q  ,and the fixed temperature 

wT  ) and the observed output takes the form of a linear matrix equation: 
 

[ ][ ] [ ] [ ]1
1 4( * )wY C A B T B q−= +  (12) 

 
The sensitivity analysis  is an important step  for evaluating the ill-posedness of the 

inversion process.  It is based on the sensitivity equations 
 

[ ][ ] [ ] [ ]1
4Y C A B q X qδ δ δ−= =  

[ ] [ ][ ] [ ]1
4X C A B−=  

(13a) 
 
(13b) 

 

where the elements of sensitivity matrix  are , 1,.. ; 1,..,i
ij

j

YX i n j m
q

∂
= = =

∂
 

It is clear  in this example that the solution of the inverse problem will require the inversion 
of the matrix  [ ]X  whose size depends on two variables : 

- the size m of the observed output vector 
- the size n  of the unknown heat source vector 

 
Let us note that both the direct and the inverse problems are linear and  leads to the 

inversion of matrices, respectively [ ] [ ] and  XA , but  the size of which may be quite 

different. It may noted too that the construction  of  the matrix  [ ]X   results of the spatial 
discretization of the distributed model into a lumped model structure (matrices 
[ ] [ ] [ ]1 4, ,A B B ), but depends also on the sensors location (matrix [ ]C ). 
 

The analysis and the solution of this linear inverse problem is discussed in the next section. 
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2.2- The Hadamard conditions 
 

A generic formulation of the three above inverse problems may be summarized as follows, 
they  consist in solving the operator equation 
 

( )Y A U= U∈U , Y∈Y  (2.1) 
 
where YU, are  two metric spaces, U is the unknown to be determined, Y  the observed 
output. More generally, the operator YU →:A  (linear or not), is assumed to be given. The 
domain and the set of values of the operator are respectively noted YU ⊂⊂ )(,)( ARAD  
 

Definition - The problem is well-posed  in the sense of Hadamard, if 
 

a)  for any )(ARY ∈ , there is a solution U∈U , (existence condition) 
b) the solution is unique within U  (uniqueness condition) 
c) the solution depends continuously on Y  (stability condition) 

 
If  at least one of the three conditions is not satisfied, the problem is said to be ill-posed. 

Efficient algorithms  for solving the inverse problem cannot be developed without  getting 
more insight of these questions. 
 

The question of stability may be viewed as follows: which is the error Uδ generated by the 
output data error Yδ ? When the stability condition is satisfied, small errors 

Y
Yδ on the 

observed output, lead to small variations  
U

Uδ on the solution. Note that the norms
U

...  and 

Y
...  of the spaces YU, have to be introduced to study this stability condition, the ill-

posedness of the inverse problem may depend on the choice of these norms. 
 

Quasi-solution -  In practice the stability condition is essential, it leads to redefine the 
concept of solution for the inverse problems. The observed output are known approximately 
due to (additive or not) errors, then any element U∈U  which can predict, through the 
operator A,  the observed output Y∈Y  with the tolerance level ε  of the errors, is an 
admissible solution for the inverse problem. It is possible that the problem, has no exact 
solution  in the sense )(1 YAU −= , but it have several or an  infinite set of solutions which are 
acceptable within the tolerance  ε , e.g. which satisy the inequality: 

ε≤−
Y

YUA )(  (14) 

 
The elements  U∈U  which minimize  the criterion  

Y
YUA −)(   are called quasi-solutions 

or solutions in the least square sense. Note once more, that the definition of this criterion leads 
to use the norm 

Y
...  of the space Y. 

 
« Inverse methods » are specific in the sense that they aim to take into account the error ε  

on the observed output, in order to build a stable or “regularized” quasi-solution to the inverse 
problem. One way for building the quasi-solution, consists to consider a priori information, 
for example by introducing some a priori regularity constraints, or a priori  estimate. 



Metti 5 Spring School  Roscoff – June 13-18,2011 

Lecture 9: Inverse Problems and Regularized Solutions –page 10 

3.- Linear Inverse Problem Analysis 
 

The three conditions of Hadamard are investigated for the linear inverse problem in the 
finite dimensional case. The mathematical analysis  will show that the concept of quasi-
solution allows to satisfy the question of existence, but the uniqueness and stability conditions 
will remain unsatisfied. Then some regularization is needed to build a unique and stable 
quasi-solution. 
 
3.1- Singular Value Decomposition 
 

The linear inverse problem in the finite dimensional case consists in finding the vector 
nU ∈ R  solution of  the matrix equation 

 
.Y A U=  (15) 

where the output vector mY ∈ R  and the matrix A  are given  
 

When m = n, the matrix  A  is squared, if  the matrix is non singular and well  conditionned, 
there is a unique and stable solution. The determination of 1U A Y−= is done according to 
standard numerical methods which do not concern the “inverse techniques”discussed here. 
 

When  m n≠ , the matrix is rectangular and  the analysis of the Hadamard’s conditions is 
required. It is based on the singular value decomposition of the matrix A. 
 
Main results:  
 

1. The square matrices tAA  and tA A  are both symetric matrices and they have the same 
set of real non negative eigenvalues  

2. Let r  be the rank of these matrices, then inf( , )r m n≤  
3. There is a set { }1,.., rλ λ of r strictly positive real values, called singular values of A, 

4. There is a set { }1,.., nV V of n  vectors within nR   such that  
2 , 1,..,

0 , 1,..,
t i i

i
i

V i r
A AV

V i r n
λ⎧ =

= ⎨
= +⎩

 

5. There is a set { }1,.., mW W of m  vectors within mR   such that  
2 , 1,..,

0 , 1,..,
t i i

i
i

W i r
AA W

W i r m
λ⎧ =

= ⎨
= +⎩

 

 
Let V={ }1,.., nV V , W={ }1,.., mW W  and S  the rectangular matrix  such that  

, if 1,..,
0,  otherwise

i
ij

i j r
S

λ = =⎧
= ⎨

⎩
 

 
then V and W are orthogonal matrices, VVt=In and WtW=Im  are unitary matrices, 
and the singular decomposition of the matrix A  is   
 

tA S= W V  (16) 
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3.2- Existence and uniqueness conditions 
 

The new variables t mZ Y R= ∈W  and t nX U R= ∈V  are introduced. Tthen the linear 
inverse problem consists in finding the vector X  solution of the new uncoupled matrix 
equation  

[ ]Z S X=  (17) 

where the vector mZ ∈R  is given. 
 

Example of SVD decomposition : m=3, n=2 
 

A W S V 
     1     0 
    -1     2 
     0     1 

    0.1826   -0.8944   -0.4082 
   -0.9129         0       -0.4082 
   -0.3651   -0.4472    0.8165 

    2.4495         0 
         0    1.0000 
         0            0 

    0.4472   -0.8944 
   -0.8944   -0.4472 

 
Consequently, there are m  algebraic equations to determine the n components of the vector  

solution X : 

1,..,

, 1,..,
0 , 1,..,
i i i

j i
j r n

X Z i r
X Z i r m

λ

= +

= =⎧⎪
⎨ = = +
⎪⎩

∑  
(18a) 
 
(18b) 

 
The condition of existence is clearly  0, 1,..,iZ i r m= = + .  

More generally, tZ Y= W *, ni iZ W Y⇒ =
R

 and the subset of mR  generated by 

{ }* , 1,..m
iW i r∈ =R is called Im(A).  Then the existence condition to the solution of the inverse 

problem is characterized by the orthogonal property equations :  
 

*Im( ) , 0, 1,..,iY A W Y i r m∈ ⇔ = = +  (19) 

 
The uniqueness condition is  clearly r = n , which is possible only if m n≥  

 
 
3.3- Quasi-solutions 
 

The quasi-solutions are determined by introducing the least square criterion 
2( ) mJ A Yξ ξ= −
R

 and by considering the vectors arg min ( )
m

U J
ξ

ξ
∈

=
R

 which minimize this 

criterion. 
The differential of  J is 2 , m

t tdJ A A A Y dξ ξ= −
R

, then the optimality condition   

( ) 0,dJ U dξ= ∀  leads to the matrix equation 

or

t t

t t

A AU A Y
S SX S Z

=

=
 

(20a) 

(20b) 
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Consequently, there are now n  algebraic equations to determine the n  components of the 
vector solution X : 
 

2

1,.., 1,..,

, 1,..,
0 0 , 1,..,

i i i i

j i
j r n j r m

X Z i r
X Z i r n
λ λ

= + = +

⎧ = =⎪
⎨ = = +
⎪⎩

∑ ∑  
(21a) 
 
(21b) 

 
Thus, there is at least one quasi-solution, the existence condition is always satisfied. But, if 

r < n  (always true if m< n,  sometime true otherwise), there are an infinite set of quasi-
solutions : 

1,.. 1,..,

i
i i i

i r i r ni

ZX c
λ= = +

= +∑ ∑V V  
(22) 

where  { }, 1,..,ic i r n= + is a set of arbitrary  constant values. 
 

One way to satisfy the uniqueness condition, consists in  introducing some a priori estimate 
estX  of the unknown solution. Then the set of arbitrary constant { }, 1,..,ic i r n= +  is  

determined  to get the closest solution X*  , e.g. the set of constant are searched for  
minimizing the distance * estX X− . The optimal quasi-solution X* associated to the a priori 

estimate estX   satisfies the orthogonal properties *
,, 0, 1,..,i i est iX X i r n− = = +V , it is 

therefore : 
 

,
1,.. 1,..,

* i
i est i i

i r i r ni

ZX X
λ= = +

= +∑ ∑V V  
(23) 

 
The optimal quasi-solution X* associated to the a priori estimate estX = 0   is called the 

“minimal norm quasi-solution”. 
 

This mathematical analysis of the linear inverse problem .Y AU= , where A  is a 
rectangular matrix  (mxn),  provides two main results  

- If the observed output mY ∈ R  does not belong to the subset of mR  generated by 
{ }* , 1,..m

iW i r∈ =R , then Im( )Y A∉ , there is  no solution, but the resolution in the 
least square sense allows in any case to get at least one quasi-solution which 
minimizes the L-S criterion 2( ) mJ A Yξ ξ= −

R
.  

- Then by introducing an a priori estimate estX , it is possible to determine a unique  
quasi-solution.  

This approach allows to satisfy both the existence and uniqueness conditions of Hadamard. 
The question of stability remains to be analyzed. 

 
 

3.4- Stability condition and regularized solutions 
 
3.4.1- The squared matrix case m n=  
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The matrix  A is assumed to be non singular and the observed output  is corrupted by an 
additive noise : 

 
 exY Y Yδ= +  with mYδ ε≤

R
. 

 
The matrix Wt is orthogonal, then m mY Zδ δ ε= ≤

R R
.  

This error may affect all the components of Z. Suppose for simplicity that, the error corrupts 
only the component k, then : t

kZ Y Wδ δ ε= =W , or kZδ ε= ,  
The quasi-solution is  

1,..

i
i

i n i

ZX
λ=

= ∑ V  
 
(24) 

 

and Xδ  the error generated by kZδ ε= , is k
k

X Vεδ
λ

=  

e.g. the relative error variation is 
1n n

m m k

U X
Y Z

δ δ
δ δ λ

= =R R

R R

 
 
(25) 

 
This result means that an error ε  on the component nZ  creates a perturbation on the 

solution which is 1 nλ λ  times greater than the same error on the component 1Z . This ratio is 
called cond(A)  the condition number of the matrix A.  In practice, a large value for this ratio 
means that the solution will be very sensitive to the possible  data errors. 
 
 
3.4.2- The rectangular matrix case m n≠  

 
More generally, the matrix A  is rectangular ( x )m n , and the rank is  inf( , )r m n≤ .  The 
sensitivity of the quasi-solutions to output data errors is characterized by the condition 
number of the matrix equation (): 

t tS S X S Zδ δ⎡ ⎤ =⎣ ⎦  (26) 

 
 

Note that even in the favorable case where   and m n r n≥ = , the value of ( )tcond S S  is the 
ratio 2 2

1 r nλ λ = which is worst than cond(A), it means thar the last equation (26) is more badly 
conditionned than the original one (15)! To improve this ratio, the inversion process has to be 
“regularized”. 
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4.- Regularization processes and stability condition 
 
4.1- General ideas 
 

There are several ways to regularize the inversion process. e.g. to make the quasi-solution 
less sensitive to the data errors and satisfy the stability condition. All of them consists in 
adding some  a priori information. Two great approaches are briefly presented and illustrated: 
 

- One approach consists in  searching for a quasi-solution which satisfies some  a priori 
constraints : 

2

X
arg mincX Z SX

χ

=

∈
−  

 
(27) 

.  
Different possibilities are available for defining these constraints, the most usuals are  the 

truncation of the basis { }* , 1,..n
iV i r∈ =R or the parametrization of the solution  

- An other approach is based on the “penalization”  of the L-S criterion 
2( ) mJ S Zξ ξ= −
R

 
 

Both of these approaches will lead to regularized but biased solutions. Then it may be 
underlined once more, that the regularization process aims to find some compromise between 
the accuracy and the stability requirements.  
 
4.2- Regularization by truncation 
 

The idea  is to constrain the  quasi-solution  to belong to a sub-space χ ⊂ =V { }1,.., nV V  

where { }, 1,..n
iV i pχ = ∈ =R is obtained by truncation of the basis V.  The “regularizing 

parameter” is then  the order p < r  of the truncation for which the condition number 2 2
1 pλ λ  

will become “acceptable”.  
In practice, this truncation means that the components  of the output data  Y  corresponding 

to the vectors { }, 1,..m
iW i p r∈ = +R  will be eliminated in the inversion process, in order to 

avoid the amplification effect due to the smallest singular values. So the inversion process is 
performed on the modified output data 

i
1,..

, 1,..
0, 1,..

; with  Z , m

i
i

i i i
i p

Z i p
Z

i p m

Z Z Y
=

=⎧
= ⎨ = +⎩
= =∑ R

W W

%

%
 

(28a) 
(28b) 
 
(29) 

 
and the regularized solution is: 

1,..

, i
c i

i p i

Z W
X

λ=

= ∑ V  
 
(30) 

 
Consequently, the inversion of the modified data  instead of the original one will introduce 

a bias, e.g. a systematical error on the computed solution.  
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Numerical example : Consider the linear  model  equation  Y AU= ,  
 

where 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

10957
91068
5657
78710

A  

 
The exact observed output   ( without noise) is assumed to be  

tY 31332332= ; 60≈Y  
 
The exact solution 1U A Y−=  is   

1 1 1 1 1 tU A Y−= = ;  2U =  
 

Introduce the additive error data   
tY 1.01.01.01.0 −−=δ  ; 2.0== εδY  

 
Then the resulting error on U  is  
 tYA 1.25.36.132.81 −−== − δδβ ; 397.16=δβ  
and the amplification factor of the relative errors  is 

6.2460
1

=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

−

Y
Y

G
δ

β
δβ

 ! 

A spectral analysis  confirms that the matrix A  is nearly singular . 
 
 Let V and D  two matrices, where V  is orthogonal  ( tVV =−1 ), and D  is diagonal,  such that 

  or  tAV VD A VDV= =  
Note that here W V≡ . With MATLAB,  they are found to be 
 
[V,D]=eig(A) 
V = 
    0.5016   -0.3017   -0.6149    0.5286 
   -0.8304    0.0933   -0.3963    0.3803 
    0.2086    0.7603    0.2716    0.5520 
   -0.1237   -0.5676    0.6254    0.5209 

D = 
    0.0102      0          0         0 
         0    0.8431       0         0 
         0         0      3.8581      0 
         0         0            0   30.2887 

      
The ill-conditionness of the inversion operation is evaluated by the condition number of the 
matrix, it can be defined here by the ratio between the largest and the smallest eigenvalues 

39841.2
0102.0
2887.30)( eAcond ==  

that is  the same order of magnitude than the amplification factor. 
 

The regularized solutions pU  build  by truncation of the basis V and the modified data pY  
which results of the truncation are given in the following tables : the first column is the 
(exact) solution without noise on the  Y  data, the following columns are computed with the 
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perturbed data: the second column is the solution without regularization(p=0) ,  the solutions 
in the columns three to five are obtained by taking respectively the truncation order 1,2,3p =  
    
1.0000     
1.0000  
 1.0000  
 1.0000    

  8.0000 
-10.600   
  3.9000  
 -0.7000       

1.1209  
0.7897 
1.0397  
0.9965     

1.1090    
0.7934 
1.0698    
0.9740     

1.0496 
0.7551 
1.0960 
1.0344 

p 0 1 2 3 
Table 1a: Exact and regularized solutions pU , p=0,1,2,3 depending on the truncation order p  
 
32.0000 
23.0000 
33.0000    
31.0000    

32.1000  
22.9000 
33.1000   
31.1000    

32.0302  
23.0156  
33.0710  
31.1172    

32.0201    
23.0187   
33.0964  
31.0982    

31.7910 
22.8711 
33.1976 
31.3313 

p 0 1 2 3 
Table 1b: Exact and modified data pY , p=0,1,2,3 depending on the truncation order p 
 
The norm of the deviations p exactY Y− between the modified data which results of the 
truncation process and the original one without noise are found to be : 

p exactY Y− =    0.2000    0.1412    0.1403    0.4573 

and the norm of the deviations p exactU U−  between the regularized solution which results of 

the truncation and the exact solution are: p exactU U−  =   13.9592    0.2459    0.2452    0.2699 
They are plotted on the following figure versus (p+1): 
 

 
 
Figure 4 Influence of the truncation order p 
on the data Y and the regularized solution U 

 
 
 
At the truncation order p = 3, 
we observe that  
 

3 0p exact p exactY Y Y Y ε= =− > − =  
 
 then the regularized solution is too much 
biaised to be acceptable. 
 
Rregularized solutionscomputed  for p=1,2 
are quite acceptable 
 
Note that in practice, this approach is not 
available because the exact data are unknown 
Then some a priori  bound of the error 
estimate p exactU U−  has to be given to select 
the truncation order p 
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Example 1 (see section 2.1.1) The application of the regularization process by truncation of 
the basis  V, to the first example of the inverse initial state problem  is straightforward. By 
choosing a priori  the order  p  of truncation, the solution (eq.(4)) is  “naturally” regularized 
and becomes: 

2 2

1

, . , with  f
p

n tn
c n n

n n

YU e πϕ ϕ λ
λ

−

=

〈 〉
= =∑  

 
4.3- Regularization by parametrization 
 

The  quasi-solution  is constrained to belong to a sub-space  pχ = R ,  which is a priori  
given. By introducing  a set of  basis vectors { }, 1,..p

i i pω ∈ =R ,  the solution takes the 
parametrized form: 

1,..
i i

i p
θ θ ω

=

= ∑  

 
Example 3 (see section 2.1.3): application to the 2-D inverse heat source problem , eq.(12) 
 

[ ][ ] [ ] [ ]1
1 4( * )wY C A B T B q−= +  

 
The unknown heat flux vector [ ] 1

( ) n n
i i

q q y
=

= ∈ R  is constrained  to be determined under the 

parametrized form 
1

( ) ( )
p

j j
j

q y yθ ω
=

= ∑ . To choose the basis functions, a simple and usual 

approach consists in dividing the boundary [ ]4 0,1Γ =  into ( 1)p −  subintervals 

[ ]1, , 1,.. 1k ky y k p+ = − , and in constructing  a set of p linear piecewise functions (hat 

functions) such that : ( )j k jkyω δ= . Then the linear mapping between the subspace pχ = R and 

the original space nR  is defined by a matrix equation [ ]q M θ= , with 
( ), 1,.., ; 1,..,ij j iM y i n j pω= = = . More regular basis functions can be considered, like 

piecewise cubic polynomials (spline functions)… 
 

Now the numerical conditionning of the linear inverse problem is characterized by the 
condition number of the new sensitivity equation : 
 

[ ][ ] [ ][ ] [ ][ ]1
4Y C A B M X Mδ δθ δθ−= =  

 
The old sensitivity matrix [ ]X , eq.(13),  is replaced by the new one [ ][ ]X M . The previous 

conditionning which was equal to ( )tcond X X , becomes ( )t tcond M X XM . 
 

Numerical results  
Let us compare the numerical values of the condition number  for this inverse problem, 

( )tcond X X  and ( )t tcond M X XM , respectively before and after the regularization process 
by parametrization . The temperature field solution of the direct problem  is computed with a 

xn n spatial grid.  By taking m = n-1, the following values of the condition numbers are found: 
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n 5 8 11 16 21 26 

 
cond(X'*X) 9.2987e+004 5.0208e+009 2.3942e+014 1.1284e+019 4.7040e+020 8.1567e+020 

 

Table 2.a - ( )tcond X X before parametrization 
 
n 16 21 26 

p=5 yp=[0; 0.25; 0.5; 0.75; 1.0] 7.5950e+008 6.5797e+008 5.8852e+008 

p=4 yp=[0;0.3;0.6;1.0] 1.6898e+006 1.6087e+006 1.5596e+006 

Table 2b - ( )t tcond M X XM  after  parametrization 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

Figure 5 : Piecewise linear approximation ( p = 5) of the 
function to be estimated 

 

 

 

 

0( ) (sin( ) 1), 0 1
2
yq y q yπ

= − < <

 

 

This example shows the efficiency of this regularizing process: after parametrization of the 
function to be determined, the condition number of the inverse problem becomes independent 
of the mesh size of the spatial grid, then a good accuracy of the numerical solution of the 
direct problem can be reached without increasing the ill-conditionness of the inverse problem. 

Some a priori information on the regularity of the function to be estimated has to be 
introduced to decide of the order p of the parametrization. 
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4.4- Regularization by penalization 
 

The linear inverse problem .Y A U= was solved in the least square sense by searching 
arg min ( )

m
U J

ξ
ξ

∈
=

R
, with 2( ) mJ A Yξ ξ= −

R
, or equivalently after the SVD analysis of the 

matrix tA S= W V , by minimizing 2( ) mJ S Zξ ξ= −
R

 
 

The idea of the regularization process by “penalization”  consists in considering a new L-S 
criterion which includes the a priori estimate estX   and a positive parameter [ ]0,1μ ∈ , so-
called regularization parameter : 

2 2( ) (1 ) m nestJ S Z Xμ ξ μ ξ μ ξ= − − + −
R R

 (31) 

 
For each value of the parameter  μ , there is a unique solution * arg min ( )

m

X Jμ μ
ξ

ξ
∈

=
R

which 

minimizes the penalized L-S criterion . The value 0μ =  leads to the L-S quasi-solution 
discussed above which is independent of the a priori estimate, and the value 1μ =  gives the 
solution estX X=  which is independent of the output data. Thus the regularization parameter  
introduced to determine some compromise between the available data, will take into account 
the respective confidence of each data. 
 
 
The optimality condition  
 

( *) 2 (1 )( * ) ( * ), 0,
n

t t n
estJ X S S X S Z X Xμδ μ μ δξ δξ⎡ ⎤= − − + − = ∀ ∈⎣ ⎦ R

R  

 
gives the “regularized” quasi-solution 
 

1* (1 ) (1 )t t
estX S S I S Z Xμ μ μ μ μ

−
⎡ ⎤ ⎡ ⎤= − + − +⎣ ⎦ ⎣ ⎦  (32) 

 
The eigenvalues of the matrix (1 ) tS S Iμ μ⎡ ⎤− +⎣ ⎦  are equal to 2(1 ) , 1,..,i i nμ λ μ− + = , they 

are strictly positive for any positive values of μ . The components of  the “regularized” quasi-
solution are 

,*
2

(1 )
, 1,..,

(1 )
i i i est

i
i

Z X
X i n

μ λ μ
μ λ μ

− +
= =

− +
 

Changing Z  by Z Zδ+  gives 
 

,* *
2

(1 ) ( )
, 1,..,

(1 )
i i i i est

i i
i

Z Z X
X X i n

μ λ δ μ
δ

μ λ μ
− + +

+ = =
− +

 

 
thus it comes 

*
2

(1 ) , 1,..,
(1 )

i
i i

i

X Z i nμ λδ δ
μ λ μ
−

= =
− +
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and the continuity modulus given by 
 

*

2

(1 )( ) max max
(1 )

i i

i r i r
i i

X
Z

δ μ λρ μ
δ μ λ μ≤ ≤

−
= =

− +
 

 
(33) 

 
is a decreasing function the parameter μ , ] ]0,1μ∀ ∈  
 

The study of the influence of the regularization parameter on the condition number of the 
matrix (1 ) tS S Iμ μ⎡ ⎤− +⎣ ⎦  leads to similar results: 

2
1
2

(1 )( ) cond( (1 ) ) max
(1 )

t

j r
j

K S S I μ λ μμ μ μ
μ λ μ≤

− +⎡ ⎤= − + =⎣ ⎦ − +
 

 
(34) 

 
These results mean that the stability of the quasi-solution  obtained with the “penalization” 

method  will be improved  by increasing the regularization parameter.  
To answer the question of any practionner which want do know how to decide the value of 
the parameter μ , let us recall that the introduction of the  a priori  estimate  leads to biased 
solutions.  
 

Numerical example 
It can be observed first by computating the residual  

2* *( ) mJ X SX Zμ μ= −
R

 as a function of 

μ ,  that there is an optimal  value optμ   for which  the residual is minimum. 
Let us continue the numerical example studied in the previous section. We consider now the 
quasi-solution which minimizes the regularized LS criterion (eq. (31)): 
 

2 2( )J U Y AU Uμ ε μ= − +  
 

where the a prior estimate is equal to zero, 0estU =  and ,Y Y dY dYε ε= + =  
Note that here for simplicity (and without loss of generality), the scalar μ  is used instead of 

/(1 )μ μ−  
 
The vector solution ,Uμ ε  which minimizes ( )J Uμ  is [ ] 1

,U A I Yμ ε εμ −= + ;    
 

The exact solution being known, the error estimate dU  can be computed. For a fixed  noise 
level  ε , this error depends on the scalar μ : 
 

[ ] 1 1dU A I Y A Yεμ − −= + −  
 

With 2.0== εδY , the graphic representation of the norm dU  of the error estimate, 
versus the scalar μ , shows an optimal value. 
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 However in practice the exact solution (without noise 1U A Y−= ) is unknown and this  method 
is not practicable to determine the best value of μ . 
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Figure 6 : Optimal value of the regularizing parameter 
 
 
The L-curve method 
 

The correct choice of the regularization parameter is a nontrivial problem for which 
numerous solutions have been proposed. The L-curve method (due to Hansen ,1992) despite 
limitations has become a popular means of choosing a suitable value. One variant form of the 
method  consists in a graphical analysis of a log-log plot : 

 

x( μ )= 
2*

mSX Zμ −
R

 versus y( μ )=
2*

nestX Xμ −
R

 (35a) – (35b) 

 
computed for different values of the parameter μ . The curve y(x) shows an almost vertical 
part for very small values of μ , while it is almost horizontal for larger values. The L-curve 
selection criterion consists of locating the Kμ  value which maximises the curvature, that is 
the L-curve corner which separates two regions : for Kμ μ< , the solution is under-regularized, 
while for Kμ μ> , it is over-regularized. 
 
 
Numerical results 
 
Let us continue the previous example. The L-curve is plotted for different values of the 
regularization parameter : 0.001 10μ< <  (logarithmically equally spaced values). For each 
value, the regularized solution ,X ε μ  is obtained according to the above equation (32) : 

1

,
t tX D D I D Z

Z WY
ε μ

ε

μ
−

⎡ ⎤= +⎣ ⎦
=
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with the a priori estimate 0estX = . The L-curve corner where the curvature of the log-log plot 
is maximised is readily visible. It does not correspond to one specific value of the regularizing 
parameter but  to some interval between 0.1  and  1.0μ μ= =  
 
 
 
 
 
 
 
 
 

 
 
 
 
Figure7: The L-curve 

   
μ  2

,AU Yε μ ε−  
2

,Uε μ  
The under-regularized region 
    0.0010    0.0159    5.5950 
    0.0016    0.0171    4.6548 
    0.0025    0.0179    4.2460 
    0.0040    0.0184    4.0737 
    0.0063    0.0188    4.0025 
    0.0100    0.0190    3.9735 
    0.0158    0.0191    3.9617 
    0.0251    0.0192    3.9569 
    0.0398    0.0193    3.9548 
    0.0631    0.0193    3.9537 
the corner region 
    0.1000    0.0194    3.9529 
    0.1585    0.0195    3.9521 
    0.2512    0.0197    3.9509 
    0.3981    0.0203    3.9493 
    0.6310    0.0216    3.9468 
    1.0000    0.0246    3.9431 
the over-regularized region 
    1.5849    0.0320    3.9374 
    2.5119    0.0499    3.9286 
    3.9811    0.0939    3.9150 
    6.3096    0.2014    3.8941 
   10.0000    0.4634    3.8619 
 
Table 3: The three parts of the L-curve 
versus the parameter μ  

 
 
Determination of the optimal value- Numerical results 
 

For linear inverse problems, the penalized criterion, eq.(31),  which is minimized to build 
the regularized solution is quadratic, then it possible to determine the optimal value of the 
regularization parameter. 
 

Introduce the new variables YVZ t= , tX V U= ,  then using the properties of the matrix V :  
IVV t =  and  1=V , the LS criterion can be re-written as  

 
22 XDXZS μμ +−=  
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and  the minimum X*  of μS is reached for  

ZDXIDD tt =+ *)( μ  

The components are 
μλ

λ
+

= 2*
i

ii
i

ZX  

where 4,1, =iiλ  are the eigenvalues of the matrix A 
 
One way to determine the regularizing parameter μ , for such quadratic case,  consists in  
choosing the value for which the LS-residual will be equal to the noise level (discrepancy 
principle) 

22 ε=− DXZ  (36) 

 
or μ  solution of the algebraic equation 
 

0)( 2
2

2

2

=−⎥
⎦

⎤
⎢
⎣

⎡
+

−= ∑ ε
μλ

λμϕ
i i

ii
i

ZZ    

or    0)( 2
2

2 =−⎥
⎦

⎤
⎢
⎣

⎡
+

= ∑ ε
μλ

μμϕ
i i

iZ  

Numerical Solution computed with MATLAB 
% optimal value of the 
%regularizing parameter mu 
[V,D]=eig(A) 
 
Z=V'*(Y+dY); 
ndy=norm(Y+dY) ; 
muopt=fzero('tikho',1) 
 
for i=1:4 
X(i)=D(i,i)*Z(i)/(D(i,i)*D(i,i) 
+muopt); 
end 
 
% regularized solution 
U=V*X' 

function y=tikho(mu) 
 
global D Z ndy 
 
s=0; 
n=size(Z); 
for i=1:n 
s=s+((mu*Z(i))/(D(i,i)*D(i,i)+mu))^2; 
end 
y=s-ndy*ndy; 

 
Zero found in the interval: [0.54745, 1.4525]. 
muopt =    1.4065 
Uopt =   [ 1.1096     0.8013     1.0849     0.9391 ] 
 

Note that for this example, the rule 
2

2
opt

Z DX μ ε− =  adopted for determining the optimal 

value leads to a value located just after the L-curve corner, close to the over-regularized 
region. 
 

 



Metti 5 Spring School  Roscoff – June 13-18,2011 

Lecture 9: Inverse Problems and Regularized Solutions –page 24 

4.5-The discrepancy principle and the conjugate gradient algorithm 
 

For large scale linear inverse problems, or non linear problems, direct computation of the 
SVD can become non efficient or impracticable. In any case, the conjugate gradient method 
[1], [7] is well known to be among the most effective to compute regularized solution 
according to the discrepancy principle [6].  
 

The method is based : 
a) on the iterative computation of the gradient  ( )nJ U∇ of the the L-S criterion, at each 
iteration n : 

2
( )

( ) 2 , 0,1,..

n n

n t n

J U Y AU

J U A Y AU n

ε

ε

= −

⎡ ⎤∇ = − − =⎣ ⎦
 

 
b) in order to determine a new approximation of the solution : 

1

1

2 20 1

( )

0; ( ) ( )

n n n n

n n n n

n n n

U U d
d J U d

J U J U

γ

β

β β

+

−

−

= +

= −∇ +

= = ∇ ∇

 

where nγ  =
0

( )argmin n nJ U d
γ

γ
>

+  is obtained by minimizing a scalar function, 

 
c) and to use the regularizing discrepancy principle as a stopping rule : 

2
( )nf nfJ U Y AUε ε= − ≈ ,  

       where Yδ ε=2

Y
 is a measurement error computed in the Y space 

 
Then, the last iteration index  nf  is the regularization parameter in this method. Note that 
some a priori information on the noise level Yδ ε=2

Y
 of the output data has to be 

considered. 
 
Example-  
 
The conjugate gradient algorithm is used for the determination of the quasi-solution of the 
inverse boundary heat source problem, example 2, section 2.1.2. It aims to determine the 
function U  over the time interval 0, ft⎡ ⎤⎣ ⎦ , from the observed output  data   Yε  and the 
knowledge of the impulse function   f ,  eq(5).  It is based on the computation of the gradient 
of the LS-criterion.  

 
 

The output Yε  is computed first, as the solution of the direct problem, with the input   U 
shown on the following plot. Additive noise will be consider later. 
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According to the method developed above, the determination of the quasi-solution of the 
inverse problem is based  on the introduction of the LS-criterion  2

2( )J A Yξ ξ= −
L

 which 
here takes the form: 
 

[ ] 2

2 2

0

1 1( ) ( ; ) ( ) ( )
2 2

ft
J U Y t U Y t dt Y U Yε ε= − = −∫ L
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Figure 8 : Input and output variables for the semi-infinite heat conducting body 

 
Let us denote : 

( ) *Y U f U=  the convolution  integral of the functions  f  and  U, and  

∫= ft
dttutu

0
)()(, ψψ  the inner  product  of the functions ψ  and U 

 
The optimality condition which   characterizes the quasi-solution   

2
* arg min ( )U J

ξ
ξ

∈
=

L
 is  

2( *), 0,dJ J U U Uδ δ= ∇ = ∀
L

 
where ( *)J U∇  is the gradient of J  with respect to U. 
 
 
Developping the differential of the the LS-criterion gives : 
 

2( ) , *dJ Y U Y f Uε δ= −
L

 
 

To transform this last equation under the form above which involves the gradient, we denote 
( ( ) )Y U Yεψ = − , and we start from the definition of the convolution integral: 

 

0 0
, * ( ) ( ) ( )ft t

f U t f t x U x dxdtψ δ ψ δ= −∫ ∫  

 
Using the property of the  function f : 
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0)(0 =−⇒<−⇒> xtfxttx  
the last double integral becomes 

0 0
, * ( ) ( ) ( )f ft t

f U U x t f t x dtdxψ δ δ ψ= −∫ ∫  

then the gradient of J  is the function 

0
( ) ( ) ( ) , 0ft

fJ x t f t x dt x tψ∇ = − < <∫  

( ) ( ) ( ) , 0ft

fx
J x t f t x dt x tψ∇ = − < <∫  

 
or, finally by noting x the mute variable instead of t 

( ) ( ) ( ) , 0ft

ft
J t x f x t dx t tψ∇ = − < <∫  

 

[ ]( ; ) ( ; ) ( ) ( ) , 0ft

ft
J t U Y x U Y x f x t dx t tε∇ = − − < <∫  

Then the gradient can be computed, and the conjugate gradient algorithm can be performed. 
 
Numerical results 
 
To compute ( ; )Y t u  and ( ; )J t U∇ , the time variable is discretized  

nf
t

ttkt f
k =ΔΔ= ,  

where nf  is the number of time steps, 
 and  the integrals equation are put in the standard algebraic forms 
 

1

1

( ) , 1,..,

( ) 1,..,

k

k k k i i
i

nf

k k i k i
i k

Y Y t f U k nf

J J t f k nfψ

−
=

−
= +

= = =

∇ = ∇ = =

∑

∑
 

with 

nfnt
tt

tnftff
nn

nn ,..,1,)1exp(1)()( =Δ−=Δ==  

The solution is computed over the time interval [ ]5,0 =ft , with  1.0=Δt  and nf = 50 . An 

normally distributed noise is added to get  the output  data Yε  . Two numerical experiments 

are performed with different noise level.  

 

For both cases, the initial guess is taken equal to zero : (0) 0, 1..iU i nf= = , and the 

discrepancy principle is adopted to stop  the iterative conjugate gradient algorithm which 

produces the following results shown on Figures 9 and 10. 
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12.222 == Yδε . 

Figure 9a : Exact input and computed solution 

after 5 iterations 
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Figure 9b : Output data  and computed output 

after 5 iterations 
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30.5322 == Yδε  

Figure 10a : Exact input and computed solution 

after 4 iterations 
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Figure 10b : Output data  and computed output 

after 4 iterations 

 

This example shows how the computation of the gradient of the LS criterion allows to 
construct the numerical solution of an inverse input problem formulated with an integral 
equation. Due to the linearity of the modelling equations, the criterion is quadratic, and the 
iterative conjugate gradient algorithm is very well adapted. The discrepancy principle is an 
efficient way to avoid the amplification of the data  errors, and it is easy to implement. 
 

This algorithm is widely used for solving more complex inverse heat transfer problems. 
Several examples with computational MATLAB codes can be found in the reference [7]. 
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5.-Conclusion 
  

A key feature of inverse problems is their ill-posedness. They do not fulfil Hadamard’s 
classical requirements of existence, uniqueness and stability. Construction of quasi-solutions 
by minimizing an output least square criterion is a general approach for solving. 
 

 Some mathematical aspects of the resolution of linear inverse problems in the finite 
dimensional case, were given to analyse and to overcome their ill-posed characteristics. Basic 
algebra results led to efficient algorithms for the computation of regularized solutions. They 
are based on the singular value decomposition (SVD analysis) of the linear operator. 
 

To make the quasi-solutions less sensitive to the data errors and satisfy the stability 
condition,  e.g. to regularize the inversion process,  some  adding a priori information has to 
be considered. Two basic approaches were briefly presented and illustrated: one consists in  
searching for  quasi-solutions which satisfy some  a priori constraints, another one is based 
on the “penalization”  of the L-S criterion. Finally the conjugate gradient algorithm to be  
known among the most effective method to compute regularized solution according to the 
discrepancy principle, was illustrated by solving the numerical solution of an inverse input 
problem formulated with an integral equation.  

 
Other standard regularizing methods have not been discussed in this short lecture, most of 

them can be found in the Inverse Engineering Handbook [7]. 
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Appendix – Conjugate Gradient Algorithm for solving the linear inverse heat source 
problem 
 
% Semi-infinite body 
% Inverse input problem 
% Integral Equation model 
% Conjugate gradient algorithm 
clear 
dt=0.1;nf=50; 
% the discretized heat flux 
for n=1:nf 
   axet(n)=dt*n; 
  if n<11 
      q(n)=n; 
  elseif  n<31 
    q(n)=20-n; 
 elseif n<41 
     q(n)=-40+n; 
   else 
      q(n)=0; 
   end 
end 
qexact=q; 
 
% the output measurement 
% with additive noise 
for n=1:nf 
   s=0; 
   for i=1:n-1 
     s=s+impulse(n-i)*q(i); 
   end 
   Y(n)=s; 
end 
A=0.2; 
noise=A*randn(size(Y));Y=Y+noise; 
eps=norm(noise)^2 
 
% conjugate gradient algorithm 
 
q(1:nf)=0;ls=1e9;iter=1; 
 
while ls>eps 
   iter 
   % compute the LS-criterion 
   for n=1:nf 
      s=0; 
      for i=1:n-1 
         s=s+impulse(n-i)*q(i); 
      end 
      T(n)=s;psi(n)=Y(n)-T(n); 
   end 
   ls=0.5*norm(psi)^2 
   lsw(iter)=ls; 

   % compute the gradient 
   for n=1:nf 
      s=0; 
      for i=n+1:nf 
         s=s+impulse(i-n)*psi(i); 
      end 
      g(n)=s; 
   end 
   ng=norm(g)^2; 
   if iter==1 
      w=-g; 
   else 
      w=-g+ng/ng1*w1; 
   end 
   %compute the descent length 
   % quadratic case 
   for n=1:nf 
      s=0; 
      for i=1:n-1 
         s=s+impulse(n-i)*w(i); 
      end 
      dT(n)=s; 
   end 
    
   ro=(g*w')/(norm(dT)^2); 
   q=q+ro*w; 
   g1=g;w1=w;ng1=ng; 
   iter=iter+1 
    
end 
plot(lsw) 
figure 
plot(axet,qexact,'g',axet,q,'r') 
figure 
plot(axet,Y,'g',axet,T,'r') 
 
function y=impulse(n) 
% temperature response  
% to the heat flux impulse  
% the semi-infinite heat conduction 
dt=0.1; 
if n<1 
      y=0; 
else 
  tt=1/(n*dt); y=sqrt(tt)*exp(-tt); 
end 

 




