
 
 
 
 
Metti 5 Spring School  Roscoff – June 13-18, 2011 
 

 Lecture 3: Models and measurements – page 1 

Lecture 3: Models and measurements for thermal 
systems, types of inverse problems 

 
 
D. Maillet1, D. Petit2, J.-L Battaglia3 

 

1 LEMTA, Université de Lorraine & CNRS, Vandoeuvre-lès-Nancy, France 
  E-mail: denis.maillet@ensem.inpl-nancy.fr 
2 Institut P’, CNRS UPR 3346, Poitiers, France 

E-mail: daniel.petit@let.ensma.fr 
3 Laboratory I2M, Departement TREFLE, Université Bordeaux 1 & CNRS, ENSAM, 

Bordeaux, France 
E-mail: jean-luc.battaglia@trefle.u-bordeaux.fr 
 

Abstract. Models that can be used for later inversion, of measurements for example, are presented 
and classified. They fall in the white, grey or black box categories. The quantities they are based on 
are introduced and great care is given to the notation, in order to be able to understand the different 
causes of errors in the subsequent inversion output. The specific case of heat transfer is considered 
and the different types of inverse problems are presented. The notions of discretization of the 
observations and of parameterization of the functions that have to be retrieved through inversion are 
introduced. Reduction of a multidimensional heat transfer problem is presented by introduction of 
models of lower space dimensions: it allows some kind of regularization prior to any inversion. 
Lectures 9 and 10 will show how to get a good inversion, with the help of the points studied in the 
lectures in between. 

1. Introduction 
 

Modelling constitutes a very general activity in engineering. A system can be considered as 
modelled if its behaviour or its response to a given excitation can be predicted. So prediction 
is one of the natural characteristics of modelling. 
 
Another very important feature of a model (in heat transfer or in any other field), which is only 
a theoretical representation of the physical reality in the case of a material system, is its 
structure (we do not deal here with information systems). In heat transfer, the choice is quite 
large and the model structure should be selected according to the objective of the model-
builder.  
 
The model-builder can have in mind an optimal design problem, a parameter estimation 
problem using measurements, a control problem to define the best excitation shape for a 
given desired output, or a model reduction or a model identification problem, just to quote a 
few applications. 
 
The choice of the structure of a model in heat transfer depends on many things: 
  

• State variables and observed quantities  
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In a heat diffusion problem, temperature is the quantity that constitutes the state 
variable, in the thermodynamics sense. In order to calculate temperature and fluxes 
at any time t and at any point P, one has to know the initial temperature field (at time t 
= 0) at the local scale, as well as the history of the different thermal disturbances 
between times 0 to t.  

 

So, one has to define what is a local point P and a local scale. For instance, if heat 
transfer is intented to be studied at the very small scale in a metal, Fourier’s law, 
relating heat flux to temperature gradient, may no longer be valid. In such a case two 
temperatures (respectively for the electron gas and the lattice) are required to 
describe heat transfer at this scale [1, chapter 1]. Such a detailed state model will be 
necessary if observations or predictions are looked for at the nano scale or at the 
picosecond time scale. The upper thresholds of both scales depend on the 
considered material.  
 

We will consider, in the next sections, the case of physical systems where heat 
transfer takes place. So,  we will make two asumptions : 

 

- a temperature, as well as a temperature gradient, can be defined, which means 
that the medium under study can be given a continuous description, and  

 

- the Fourier law linking the local heat flux and the temperature gradient is valid. 
This asumption is justified for time and space scales that are not too small: 
typically, for times larger than 10-11 s and lengths larger than 10-8 m. This 
corresponds to what is called a mesoscopic description of a thermal system. 

 

However, even with such a system, special attention has to be taken for the definition 
of a local temperature for heterogeneous materials (porous media, composite 
materials, ...) that is all media where two phases are present at the local scale:  the 
concept of homogenization through macroscopic homogenization has to be 
considered. This topic, that leads to a space filtering, has to be used at the 
macroscopic scale [5]. 

  
• State definition 

 

The continuous state equations have then to be defined for the modeling problem at 
stake: it can be a partial differential equation, the heat equation (state = temperature), 
or an integro-differential equation, the radiative transfer equation (state = radiative 
intensity), or both coupled equations. Their solution, that is constituted by both 
temperature and intensity fields in the third case, should be calculated everywhere 
and any time past the initial time. It can also be a differential equation, or a system of 
differential equations for lumped systems where only space averaged quantities are 
used (an average temperature instead of local temperatures, heat flow rates instead 
of local heat fluxes).  
 

Everytime state equations, based on conservation equations are used, one deals with 
internal representation and it is possible to talk of models of the white box type. These 
conservation equations are associated with constitutive laws (Fourier’s, Fick’s, 
Ohm’s, Darcy’s or rheological laws, ...) corresponding to the considered quantity 
(heat, species, electrical charge, momentum in porous matrerial or in fluid 
mechanics).   
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• Quantities of the direct problem 
 

We focus here on the diffusion heat equation in a medium composed of one or 
several homogeneous materials, with its associated initial, boundary and interface 
equations. Its solution, the state variable, here the continuous temperature field 

P)( ,tT , has first to be found and the desired observed quantities, that is the 

(theoretical) output of the model at a given point P, P)()( ,tTtymo = ,  has to be 
calculated next. 
  
The quantities that are required for solving the direct problem are the structural 
parameters of the system (conductivities, volumetric heat capacities, heat exchange 
coefficients, emissivities of walls,...), the thermal excitation and the initial temperature 
field P)0( ,tT = . Let us note here that it is possible to make a physical reduction of a 
model based on the three dimensional (3D) transient heat equation to get simpler 
models of lower dimensionality. The thermal fin (1D) or the bulk temperature 
representation (0D) constitute such reduced models. This type of reduction may also 
reduce the number of parameters defining the excitations. 
 

• Numerical/analytical models 
 

There are many ways for solving the heat equation and finding a state model for the 
observations: analytical solutions provide the temperature field explicitely as a 
function of the structural parameters of the system, the excitation and the initial state. 
They can be constructed if the heat equation in each material and the associated 
conditions are all linear and the corresponding geometry simple. The other class of 
state models rely on numerical solution of the heat equation: one can quote the nodal, 
boundary element, finite elements and finite volumes methods, for example. State 
models rely on an internal representation of the system: the temperature field has to 
be found first and the observations are calculated next. 
 

• Internal/external representation 
 

The models based on state equations, which are described above, corespond to an 
internal representation of the system: they are of the white box type and their 
structural parameters (thermophysical or optical properties, geometrical quantities 
associated to the shape or material structure of the physical system) have an intrinsic 
character since their definition does not depend on the structure that is chosen for the 
model. 
  
External representations, that short circuit the state variable and link directly the 
observation(s) to the excitation(s), constitute another class of models.  
 

They can be of the grey box type if the structure of the corresponding model is 
imposed by the nature of the governing equations: if the relationship between 
observed quantities (output) and stimulations (input) is linear, for physical reasons, 
the structure of the model is imposed and its structural parameters are the coefficients 
of a matrix once the input discretized and the output parameterized (see below). If, 
furthermore, the physical structure of the material system does not vary neither with 
time nor with temperature, this linear relationship becomes a convolution product and 
a transfer function can be defined. In that last case the model can be represented 
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using the parametric approach presented in lecture L8 “Experimental modelling 
through identification of low order models” of this advanced Metti school.  
 

Another type of model of the grey box model is used in the case of thermal radiation 
in an enclosed cavity with opaque walls, where radiative fluxes depend on the 
diferences of the fourth powers of the wall temperatures. 
 

If no information whatsoever is available on the nature of the relationship between 
input and output, black box models, that link observations to inputs and ad’hoc 
parameters (the structure of the model) has to be found. Models of this nature can be 
neuronal networks (multidimensional abacus), stochastic models, ... 
 

• Parameterization for inverse problem solution 
 

Parameterization of the data of the direct problem constitutes another characteristic of 
the structure of a model: structural parameters, thermal excitations, and the initial 
temperature field are, in the very general case, functions of different explanatory 
variables: space, time, temperature. The conversion of functions into vectors of finite 
dimensions does not pose much problem in the direct problem (calculation of the 
observations, the model output, as a function of the input). It is no more the case 
when the inverse problem is considered. This point will be discussed in section 2.3.2 
and in lecture 9 of this school. One of the objectives of mathematical reduction 
methods is to construct a reduced model that will have a reduced number of structural 
parameters, starting from a detailed reference model, see [1, chapter 13] for details 
on model reduction, while physical reduction  also change the definitions of both 
output and excitations, see section 3.2.  

 
 

2. Physical system, model, direct and inverse problems 
 

2.1 Fourier’s law: a reminder 
 

We will consider now on, in the presentation of inverse problems in heat transfer and in the 
remaining part of this lecture, the generic case of heat diffusion in an isotropic or anitropic 
material that verifies the heat equation. This conservation law is based on Fourier's law, 
where the local heat flux is defined by : 
 

case)ic(anisotropwithgrad

or

case)(isotropic)(grad
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where operator ( )z/T,y/T,x/TT ∂∂∂∂∂∂)(grad  denotes the gradient of temperature 

and  k the thermal conductivity of the material.  A symmetric conductivity tensor k  has to be 
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used in many cases encountered in nature or in man-made objects (composite materials for 
example), because conductivity is no longer isotropic but orthotropic, or more generally, 
anisotropic. In the principal axes of this tensor, the Fourier’s law becomes: 
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The (continuous) material thermophysical properties (conductivity k or conductivity tensor 

k and total volumic heat denoted cρ here) may vary in space (heterogeneous case) and 
possibly with temperature (thermodependent properties of the material).  
 
Knowledge of this heat flux allows calculating the rate of heat flow Φ (W) that goes through 
any surface of area A: 
 

A.
A

dnq
rr

∫=Φ      (3.3) 

 
where n

r
 is the local outward normal pointing  (with respect to A)  unit vector. 

 
Thermal conductivity of materials can vary significantly with temperature. 
Thermal diffusivity is defined as the ratio of the thermal conductivity and the specific heat per 
unit volume: 
 

 
c

k
a

ρ
=  (3.4)   

 
2.2 Objective of a model 
 
The model-builder has a given objective : he tries to represent the real physical system by a 
model M, that will be used to simulate its behaviour. This model requires the knowledge of a 
given number of structural parameters, which form what is called  a “parameter vector” β . Its 

objective is to get identical responses of both system, )(ty , and model ),;( utymo β , under 

the excitation by an identical time-varying stimulus u (t ), see figure 1 which corresponds to 
the case of example 1 further down.  
 
If the control science terminology is used, this stimulus is called « input » and the response 
« output ». These two terms have no geometrical meaning here.  
 
In heat transfer, the stimulus is produced either by a source, that is for example a surfacic 
thermal power (absorption of a radiative incident flux by a solid wall for example) or an 
internal power (Joule effect produced by an electrical current, heat of reaction of a chemical 
reaction,…). It can also be an imposed temperature difference (temperature difference 
between the inside and outside air environments on both sides of a solid wall for example). 
 

Let us note that if steady state regime is considered, both stimulation u and measured y or  
model ymo responses do not vary with time. 
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Figure 1.  Real system and its representation by a model (case of a zero initial temperature field) 

 
2.3  Internal and external representations, parameterizing, state model and model 

structure 
 

2.3.1 Example 1 : mono input/mono output case 
 

Figure 2 shows a semi-infinite medium in the x direction, whose front face (x = 0) is 
stimulated by a heat flux u (W m-2) at initial time t = 0. The initial temperature distribution T0 
(x) may be non uniform. A temperature sensor is embedded at a dept xs inside the medium 
and delivers a signal y. So, starting at initial time, a transient one-dimensional temperature 
field T (x, t ) develops inside the medium. 
 

 
 

Figure 2.  Response of a temperature sensor embedded inside a semi-infinite medium  
 

This temperature field, also called « state » of the system, is the solution of the heat 
equation, a partial derivative equation here, as well as of its associated boundary and initial 
conditions. 
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These equations are called state equations of this thermal system. 
Different structural parameters appear in these equations: the medium heat conductivity k 
(W.m-1.K-1), its thermal diffusivity a = k/ρ c (m2.s-1), where ρ and c are its density (kg.m-3) and 
its  specific heat (J.kg-1.K-1). The theoretical signal of the sensor ymo (response of the model), 
caused by the medium stimulation u, is given by the output equation. 
 
 )()( t,xTty smo =  (3.5) 

 
The state equations give an internal representation of the direct problem that allows the 
calculation of the system response everywhere, for a known excitation, while the sensor 
response is given by the output equation. 
 
The state equations can be solved analytically here and calculation of the output can be 
directly implemented, because the system is causal, linear and invariant in time, see Ozisik 
[2]: 
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where )( t,x,xG s  is the Green’s function associated to relaxation, at location sx , of  the 

initial temperature field T0 (x) at location x, and Z (t) the transfer function of the system, while 
b = (kρc)1/2 is the thermal effusivity of the medium. 
 
Equation (3.6) shows that two effects overlap: the first term corresponds to relaxation of the 
initial temperature field (free solution that vanishes for long times) while its second term, a 
convolution product, corresponds to the response (“forced” solution) to the heat flux 
excitation. Transfer function Z, that links a temperature response to an excitation power is 
called a time impedance, the same way as in AC electrical circuits. This function, once 
convoluted with the flux excitation u, yields the forced component of the temperature signal 
of the model. This can be expressed by a simple product of the corresponding Laplace 
transforms: 
 

 ∫
∞

−==
0

d)(exp)()(with)()()( ttptfpfpupZpy forcedmo  (3.9) 
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If initial temperature T0 is uniform in the medium, the first term in )(tymo   in equation (3.6) 
becomes equal  to T0.  This last equation  constitutes an external representation of the direct 
problem. It bypasses the need for calculating state T (x, t) of the modelled system. 
 

The (theoretical) output of the model depends on three parameters : the two thermophysical 
properties  of the medium’s material, a et b, and on a  parameter that relates to the sensor, 
that is its location sx . These three parameters can be gathered in a specific parameter vector 

β  = [a  b  xs ]
T. This parameter vector β  contains the structural parameters of the problem: it 

does not change when input u (t) and/or initial state T0 (x) change, see figure 1. 
 

• Important point on notation 
Let us precise the notation that will be adopted now on:  
 

- a scalar, or a scalar function depending continuously on an other scalar or vector 
variable (time t or temperature T, or parameter column vector β  for example) will be 
noted in non-bold italic  characters (k, or T (t, x) for example), 
 

- a column vector (β , or u, or U, see eq. (3.13) further down) or a column vector 
function will be noted in bold lower or upper case italic characters, 
 

- a matrix, or a matrix function will be noted in bold upper case italic characters 
(matrix A or matrix function E, see equation (3.14) further down, except if this matrix 
function is a standard explicit function, such as the exponential of a matrix, noted exp 
(.) here.  

 

The previous structural parameters β , input u and initial state T0 can be assembled in a 
unique list (not a column vector made of scalar quantities here) of explanatory quantities  x = 
{β , u (t), T0 (x)} gathering all the data necessary for the calculation of output ymo.  
 

Result of this modelling is sketched in figure 3. 
 

 
 

Figure 3. Input/output model for a thermal system 
 
 

2.3.2 Parameterizing a function 
 
In the previous list x of explanatory quantities, one can find scalar parameters (diffusivity, 
lengths, …) corresponding to structural parameters, as well as a time function )(tu , here a 
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heat flux. Other functions can appear such a non uniform initial state (P)0T , or a non uniform 

structural  parameter (P)β  or a parameter depending on temperature )(Tβ . 
 
We suppose here that such a function is a time-depending input  x = )(tu . In order to be 
able to deal with this kind of function, in the simulation (direct) problem and also in the 
inverse problem (finding u from measured y’s, where this aspect becomes of prime 
importance), this function has to be parameterized by its projection on a selected basis of n 
chosen functions )(tf j : 

 )()(
1

param tfutu
n

j
jj∑

=

=   (3.10) 

The new function paramu , replaced now by a vector [ ] T
nuuu L21=u of finite size n, is 

an approximation of the original  u function, that can consequently be considered as a vector 
with an infinite number of components. This approximation, that we will call 
"parameterization" now on, generates an a priori error that depends both on the chosen 
basis and on its size.  
 

Figure 4 shows two possible choices, using a constant time step 1 −−=∆ jj ttt :  

• in case a) the ju  components are  the discrete values of the original function on the 

time grid and « hat » functions are selected as basis functions, see Figure 4a; 
• in case b) these components are averaged values of this function over one time step 

and « door » functions are selected for this basis, see Figure 4b.  
 

Choice for the basis is not unique and strongly depends on the problem at stake.  
So hat function parameterization of case a) corresponds to linear interpolation using a table 
of discrete values; this parameterization choice is appropriate if a temperature dependency 
has to be modelled, for thermal conductivity )(Tk  for example.  In that case time t has to be 

replaced by temperature T in the basis functions that become )(Tf j .  
 

In case b), a piecewise constant function basis has been chosen. It suits deconvolution 
inverse problems, such as a time-varying source estimation using an experimental 
temperature response. 
 

In both cases, each ju  component requires, for its calculation, knowledge of  function )(tu  

within the neighbourhood of time jt only. Use of such local bases is convenient because they 

directly derive from the time-space gridding. It is also possible to use projections on non local 
bases such as polynomials, exponentials, trigonometric functions…  
 
The choice for a type of parameterization is very large. Constraints can be a priori set for the 
functions of the basis: they can present various properties such as monotony, regularity 
(continuous function with continuous first and second derivatives), positivity, or they can be 
assigned fixed values on part of their time domain [ ]supinf tt . One can also think of B-splines 

bases , wavelets bases … 
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Figure 4. Parameterization of a function 
 
 

Remark 
 

Use of orthogonal function bases is possible. They correspond to functions )(tf j  such as: 
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 kjjk

t

t
j Nttftf

sup

inf

δ=∫ d)()(  (3.11) 

 
where  j kδ  is Kronecker symbol ( j kδ  = 0  if k ≠ j and j kδ  = 1 otherwise) and jN  the square 

of the norm of function jf .  

 
Door functions shown in Figure 4b are orthogonal, but it is not the case for hat functions 
shown in 4a. 
 
It is very interesting to choose the eigenfunctions of the heat equation (they can be found 
using the method of separation of variables [2]) for these )(tf j  functions. In that case, the 

components of the corresponding u vector become integral transforms, that is the different 
harmonics, of the original function [3]. This method is related to Singular Value 
Decomposition [4]. 
 
2.3.3  State-space representation for the heat equation 
 
The one-temperature heat equation can be written, for a thermal diffusion problem in an 
anisotropic medium as the following partial differential equation: 
 

( )
conditionsinitialandinterfaceboundary,

)(div

+
∂
∂=+

t
T

cqTk vol ρ grad 
                              (3.12) 

 
Here qvol  designates the volumic heat sources (W.m-3) but other sources, such as surface 

sources, may be present in the boundary or interface conditions. k  designates the 
conductivity tensor here. This partial differential equation system is of the evolution type and 
can be considered as a dynamical system. So, its solution, the temperature field P) ,(tT , that 

is continuous in time, constitutes the state of the system, that can be noted here )(P tT , that 
is, for a given time t, a vector in an infinite dimension space. 
 
This system that corresponds to a distributed parameter system can be discretized in space, 
using N nodes, the discretized state becoming a vector )(tT  in a N dimension space. The 
resulting state equation of this system takes the form of a lumped parameter system that 
corresponds to a system of first ordinary differential equations: 
 

 00 )(with)(
d
d

TTUTE
T === ttt,,
t

 (3.13) 

 
where vector [ ] T

p tututut )()()()( 21 L=U  corresponds to a local parameterization in 

space, but not in time, of the volumetric distributed source qvol (P, t) and of the other sources 
possibly present in the boundary or interface conditions. The number of different 
parameterized sources is called p here.  
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Let us note that this equation is written here in the very general case of a fully non linear 
system where temperature is the only state variable: conductivity or volumetric heat may 
depend on temperature or the associated interface/boundary conditions may not be linear 
(radiative surface heat losses for example). In that case, matrix E depends on temperature 

)(tT  in a non linear way while matrix B may possibly depend on temperature. In a similar 
way, stimulation vector U may also be temperature dependent. In that case, each of the p 
components uj of U is an implicit function of time, since it depends on the present and past 
states of the system, that is on T on the [0  t0] interval. 
 
We assume to be in the linear case (linear heat equation system and linear source) here on: 
 

matrices  constantandwith),( :,t BAUBTAUTE +=               (3.14) 
 
The different vectors and matrices present in the linear form of the state equation (3.13-3.14) 
are thus defined in figure 5. 
 

 
 

Figure 5. State and output equations of a linear dynamical  thermal system 
 

 
An analytical solution for the state vector T (t) of this state-space representation of a linear 
system, can be found formally using the exponential function of a matrix :  

τττ d)())(()(()(
0

00 UBATAT ∫ −+−=
t

t
t)ttt expexp           (3.15) 

 
In practice, and in the case of implementation of an inverse technique, all the N components 
of the state vector (temperatures at the different nodes of the model here) do not present the 
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same interest: only a subset, that is a number q ( Nq ≤ ) of its components are selected as 
model outputs. They can correspond to observations provided by q sensors for example. 
These outputs are numbered and called imoy ,  and they are put in an output vector moy  : 

 
 [ ]T

q,moi,mo,momo tyty...tyt )()()()( 1 L=Y  (3.16) 

 
Output vector moy  is linked to state vector T through an output matrix (or observation matrix) 

C, of q x N dimensions: the coefficients of this observation matrix are either 0’s or 1’s, 
according to the observed nodes: 
 
 )()( ttmo TCY =  (3.17) 
 
This equation is also called the output equation. 
 
The response of the system, that is the observed output, can be calculated thanks to 
equations (3.17) and (3.15) as:  
 

 τττ d)())(()(()(
0

00 UBACTACY ∫ −+−=
t

tmo t)ttt expexp  (3.18) 

 
One notices, in a very similar way as in the previous example (3.6), that this response is the 
sum of a term corresponding to the relaxation of initial state 0T , that is the free regime, and a 
convolution product term corresponding to response to stimulation U (t), the forced regime. 
The meaning of the notion of state appears clearly here: knowledge of the state of the 
system at a given time )( 0tT  as well as the history of the different sources for the ] ]tt0  

time interval allows calculating the current state )(tT of the material system. So, at a given 
time, the thermal state contains the whole past of the system. 
 
Remark 1 
 
Equation (3.12) can easily be generalized to the case of heat transport in a pure fluid: 
 

 

conditionsinitialandinterfaceboundary,

 -) ( ivd

+
∂
∂=+

t
T

cqTcTk volf ρρ gradgrad .v
 (3.19) 

 
In this equation, an additional term appears with respect to the pure diffusion case (3.12), the 
advection term. It is based on the volumetric heat of the fluid fc cρ ρ=  and on the fluid 

velocity v (solution of the Navier-Stokes and continuity equations) and on a conductivity 

tensor  k  that reduces simply to the thermal conductivity k of the fluid. 
 

In the case of heat dispersion in a porous medium, this velocity has to be replaced by a local 
Darcy velocity, temperature T becomes  an average “enthalpic” temperature at the local 

scale (for the one-temperature model), while k  becomes the thermal dispersion tensor, 
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whose coefficients depend on this local Darcy velocity. In this case, cρ , the volumetric heat 

in the transient storage term, differs from fcρ . This total volumetric heat cρ  results from a 

mixing law and represents the total volumetric heat of both fluid and solid phases, using the 
local volume fractions as weights [5]. 
 

Remark 2 
 
State of a thermal system is not always composed of the sole temperature T. Two different 
examples of a composite state are given next. 
 

If a physical or chemical transformation occurs inside the modelled material, a polymerisation 
of a thermoset resin for example, a heat source appears because of the heat of reaction. It 
usually depends on the degree of  advancement of the reaction, through a kinetic law. This 
degree of advancement constitutes the second state variable. In that case, the state 
equations are composed of the heat diffusion equation (3.12) completed with a coupled mass 
balance equation for each of the species present in the reacting system. 
 
Another example can be given for coupled conduction and radiation heat transfer in semi-
transparent media. The radiative intensity is the second state variable and the radiative 
transfer equation (an integro-differential of equation) will be associated with the heat diffusion 
equation in order to constitute the new state equations. 
 
Remark 3 
 
When a steady state Tss corresponding to an input vector Uss exists, equations (3.13) allows 
its calculation: it is written with t/ddT = 0, which yields in the fully linear case, see equations 
(3.13) and (3.14): 
 

 ssss,mossss UBACyUBAT 11 −− −=⇒−=  (3.20) 
 

2.3.4 Model terminology and structure 
 
All the equations and necessary conditions for calculating the output of the model constitutes 
the structure of the model, which can be written as a functional relationship, for a single 
output variable: 
 )( x,tymo η=     or     )( x,tymo η=  (3.21a, b)  
 

where x is either a list of  explanatory quantities, including functions, { }(P)) (P, 0T,tu,x β=  

(3.21a) or its vector version [ ] T
0TUβx =  (3.21b) , built with functions parameterized in 

space, and time (or in temperature, for non linear problem with thermal dependency of either 
input u or structural parameters jβ 's).  
 

When several output variables can be observed, one deals with an output vector (not a 
scalar moy  anymore) which requires the use of a vector function (.)η  whose arguments are 
time t and either the x list or its vector version x: 
 
 )( x,tmo ηy =      or      )( xηy ,tmo =  (3.22) (a, b) 
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A wider meaning can be given for vector U in this last definition of parameter vector x : this 
vector can represent, in a non linear case, a temperature dependent stimulus u (T) that has 
been parameterized. Let us note that a temperature dependent thermophysical 
property )(Tjβ , once parameterized, gives rise to constant coefficients for parameter vector 

β . Coefficients of vector β  can also stem from a space dependent property (P)jβ , that has 

been parameterized, in the case of a heterogenous medium. 
 

The “direct problem” consists in finding model output );( xtymo  at a given time t in the 

[ ]finaltt0  interval, for known data  { }(P)) (P, 0T,tu,x β= . Solution of this problem can allow 
further numerical simulations of the output behaviour. 
 

A model relies on a given structure, that is a functional relationship, noted η above, between 
the output variable (or explained or dependent variable) moy  (an observed temperature here) 
and the independent variable (time t for transient problems) and  a parameter vector x, 
whose components are the parameterized explanatory quantities. It is important to remind 
that aside the previous structure, parameters x of the model should be defined accordingly, 
see figure 6. They can either have a physical meaning if a state modelling is performed, or 
simply a mathematical meaning without clear physical interpretation if an identified 
modellization is implemented.  
 

 
 

Figure 6. Parameter vector and structure of a model 
 
 
One can notice that a model, in case of a single output,  can provide not only a scalar output 

moy  depending continuously on time t, but also a vector output moy . This output column 
vector  is associated with the same output variable, a local temperature for example, 
sampled at different times mt,,t,t L21  , or can result from a sampling of the explanatory 
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variable, that can be a space coordinate for a steady state problem. It can also gather in a 
single column vector, of length qm,  several output temperatures observed at different points 
Pi  (i = 1 to q), sampled for m different times tk. 
 
 
2.4 Direct and inverse problems 
 
2.4.1 Direct problem 
 
We have seen above, when the studied problem allows it, that the usual approach of the 
thermal science scientist consists in constructing a knowledge-based model, such as 
equations (3.18), in order to be able to simulate the behaviour of the physical system.  
 
This leads to a numerical or analytical solution of a partial differential equation in the case of 
a heat diffusion problem (or an integro-differential system of equations for radiation heat 
transfer in semi-transparent media, temperature and radiative intensity being the state 
variables) that represent the corresponding transfer of heat. Solution of these equations also 
requires the knowledge of the conditions at the boundaries (Dirichlet, Neumann, Fourier,…) 
or at the internal interfaces (for a medium composed of different materials) as well as the 
initial condition in the system. 
 
If an internal representation is adopted (white box model), several quantities of different 
nature have to be introduced in the state (3.13) and output equations )P()( imo ,tTty =  of the 
model, written for a single temperature sensor located at point Pi. If the output is observed at 
q such points for m times set into a time vector T

mttt ][ 21 L=t it becomes an output 

vector );( xtymo  that depends also on parameter vector x, where this vector is composed of 
: 
 

• the raw u (P, t) or parameterized )( tU  excitation; 
 
• vector structβ  of structural parameters, a and b in example 1 or coefficients of matrices 

A and B  in the linear state equations (3.13)-(3.14); 
 

• vector posβ  describing the position of the observation, sx  in example 1 and 

coefficients of matrix C in output equation(3.17); 
 

• the initial temperature field T0 (P)  or its parameterized version 0T . 

 
Input variables u (P, t) are controlled by the user: they are either power sources or  imposed 
temperature differences, inside or outside the system, that make temperature and output 
depart from a zero value in case of zero initial temperature T0 (P).  
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Figure 7.  Linear model and material system with temperature measurement. 
 
Structural parameters structβ  characterize the system. They can be : 
 

- geometrical quantities (shape and  dimensions of the system), 
- thermophysical properties : conductivities , volumetric heats, heat transfer 

coefficients, emissivities, contact or interface resistances,… 
 

The relationship between output variables, generally a subset of the state, and state 
variables, the temperature field, makes the previous position parameter vector posβ  appear 

in this output equation. 
 
A functional scheme corresponding to linear state and output heat equations is shown in the 
lower line of figure 7. 

 

This corresponds to the usual process of a model-user: for a known initial state )( 0tT , a 
known excitation U (t) and known structural parameters, the heat equation and the output 
equations are solved sequentially to calculate the theoretical response moy  of the sensors. 
This output corresponds to possible temperature measurements at the same locations 
(upper line in figure 7).  The direct problem can thus be solved. 
 
2.4.2 Inverse problem approach 
 

The preceding analysis shows that any variation in the data represented inside the x vector 
(including structural and position parameters structβ  and posβ ) will produce a variation of the 

moy  output. 



 
 
 
 
Metti 5 Spring School  Roscoff – June 13-18, 2011 
 

 Lecture 3: Models and measurements – page 18 

Conversely, any variation of this output moy  is necessarly caused by variation of some data 
inside x . 
The inverse approach is based on this principle. When knowledge of part of the variables 
that are necessary to solve the direct problem is lacking, data vector x of this problem can be 
split into two vectors the  following way : 
 

 







=

c

r

x

x
x  (3.23) 

 
where rx  now represents the (column) vector gathering the unknown part of the data that 

are sought (researched), and cx  its complementary part that contains known data. 
 
In that case, solving the direct problem constitutes an impossible task. Any process aimed at 
finding  rx  requires some additional information.  
 
Problems whose objective is to find a value for x , starting from additional information(s), are 
called inverse problems. 
 
Any inverse problem consists in making the model work in the « backwards » way : if outputs 
y as well as model structure η are known, part rx  of x will be sought, its complementary part 
being known, see figure 8. 
 

 
 

Figure 8. Direct problem/Inverse problem 
 

 
2.4.2  Inverse problems in heat transfer, case of inverse measurements problems 
 
2.4.2.1 Different types of inverse problems in heat transfer 
 
The nature of the previous additional information necessary for solving any inverse problem 
allows to bring out three main types of problems : 
 

• inverse measurement problems, where this information stems from output signal y of 
sensors;  
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• control problems, where the previous measurements are replaced by desired values 

of either the state )(P, tT   or output variables  y : data  or y are the targets. In this 
class of problem, the sought quantity is generally the stimulus )(P, tu , ort the initial 
state T0 (P) , but it can also be a structural parameter (a velocity or a flow rate in a 
forced convection cooling problem for example). In this class of problems, it is not 
always possible to reach the targets, for physical or mathematical reasons, and it may 
be necessary to specify a certain number of constraints on the sought solution. 

 
•  system identification  problems, that is model construction for simulating the 

behaviour of a system, see lecture 8 in this school. These can be classified into two 
categories: 

 
i) model reduction : y is the output of a detailed model )( detdet x;tη completely known 

and the structural parameters (part of redx ) of a reduced  model );( redred xtη of given 

structure redη are sought, both models sharing either identical or close stimulations 

) (P, tu  and initial state (P)0T , that are parts of detx  and redx . This can be written: 
 

 );();( redreddetdet xx tt ηη ≈  (3.24) 
 
 [ ] [ ] T

red
T

t 0redredredde0detdetdet andwhere TUβxTUβx ==   

 
with, for mathematical reduction : 

 

 
red0de0det0red0

detreddetred

) (P,) (P,

) (P,) (P,

TT

UU

=⇒=
=⇒=

ttTtT

tutu
 (3.25) 

 
or, for physical reduction: 
 

 
( )

( )det00red0det0red0

detreddetred

)(P,)(P,

)(P,)(P,

TT

UU

T

U

ftTtT

ftutu

=⇒≈
=⇒≈

 (3.26) 

 
In both cases, mathematical or physical model reduction, the structural parameters of 
the reduced model depend on the corresponding parameters of the detailed model: 
 
 ( )detred ββ αf=      for      α �= u  or  T0 (3.27) 
 
but this relationship, function fα , is explicit for  physical reduction (see section 3.2 

below), while it is not generally the case for mathematical reduction. 
 

 ii) experimental model identification: y, U and 0T  are measured, or supposed to be 
known, and the structural parameters (part of x) of a model );( xtη of given 

structure η , are known, U and 0T  being their complementary part in x. 
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Let us note that heat transfer modelling leads to models that can be either of the white box 
type, which means models based on first principles, eg. a model for a physical process from 
the Newton's equations, or of the grey box type (estimation of a transmittance function, by 
deconvolution from measured input and output, see lecture 8 in this advanced school), or 
even to models of the black box type, without any type of physical a priori on the model 
structure.  
 

The previous state-state model (3.18), based on a heat balance and on Fourier’s law defining 
heat flux, is of the white box type. The nature of the parameters in this class of models is 
perfectly known, which explains why  they are used for thermophysical property estimation.  
 

• Conversely, an identified model on an experimental basis, without a priori information 
on its structure, is also called a black box model: parameters of such a model have 
only a mathematical, but not physical, meaning. Such blax box models may for 
example derive from neural network modelling. In between, one can find  grey box or 
semi-physical models: the model, that is the structure/parameters couple is chosen 
according to a certain physical insight on what is happening inside the system, and 
these parameters are estimated on an experimental basis. 

 
2.4.2.2 Inverse measurement problems in heat transfer 
 

We will focus here on inverse measurement problems where model structure (the equations) 
η  is known  and where measurements )(ty  are available on the time interval [ ]finaltt0 . 
According to the nature of the explanatory variables xr that are sought, solution finding for 
inverse problems may differ. One can distinguish in particular: 
 

a) Inverse problems of structural parameters estimation: rr βx ≡   
System identification problems, of the black or grey box type, belong to this chategory: 
structural parameters (part of x) of a ad’hoc );( xtη  model are sought through experimental 
characterization. Thermophysical property estimation belongs to the white box category: 
intrinsic parameters, that is parameters that can be used for completely different 
simulation/experimental configurations, are sought through experimental characterization. In 
both types of problems, several experiments on the same setup, for the same sample, can 
be repeated in order to estimate the same unknown parameter(s).  
 

b) Inverse input  problems : )(P t,ux r ≡   
In heat transfer, this type of problem consists in finding the locations and values of the 
sources. Such a source, or excitation, is either a volumetric, surface, line or point heat source 
or simply a temperature difference imposed inside or at the boundaries of the system. It 
differs from the previous problem because the solutions sought are specific to each 
experiment made. 
 

c) Inverse initial state problem : (P)0Txr ≡   
This problem is very close to the inverse input problem, since each fought solution is relative 
to a single given experiment. 
 

d) Inverse shape reconstruction problems  
In the previous types of inverse problems, boundaries of the domain are usually fixed and 
known. In certain cases (problems with change of phase, in welding or in solidification 



 
 
 
 
Metti 5 Spring School  Roscoff – June 13-18, 2011 
 

 Lecture 3: Models and measurements – page 21 

applications, for example) shape of the domain (its boundary), or location of an interface 
between sub-domains (a change of phase moving front for example)  has to  be taken into 
account in the variables defining the direct problem. In the corrresponding inverse problem, 
the shape of this boundary has to be be first parameterized in order to be reconstructed 
through inversion. 
 
e) Inverse problems of optimal design/control  
A usual process aimed at reducing estimation errors, in a characterization process of type a), 
consists in coupling it to an optimal conception/control problem for the characterization 
experiment. 
This optimization allows the design and the sizing of the experimental setup as well as the 
procedure for the experiments that will bring additionnal information necessary for this 
characterization. 
This approach can provide a methodolodogy for a pertinent choice of inputs, locations of 
measurement points, and time observation windows, etc…Choice of these design quantities 
can be made in order to maximize a criterion based on the sensitivity of the output 
observations to the parameters that are sought.  
 
Heat transfer characterization problems (that are structural parameters estimation or system 
identification problems) are usually non linear, which means that optimization of any design 
has to be implemented on the prior assumption that the sought parameters are known, with 
an iterative approach once a first estimation has been found. This means that nominal values 
of these parameters are necessary for such a design.  
 
Remark 
 

Use of any sensor, that very often delivers an electrical output quantity (a tension V, for 
example) requires the construction of a relationship between the quantity one wants to 
measure, temperature T here, and this instrument output.  
 
It is therefore necessary to find, on the basis of the physical principle the sensor and the 
whole instrumental chain rely on, a model structure Vmo (T ; calibβ ) where temperature is now 

the explanatory variable and where vector calibβ  gathers all the parameters required for 
calculating the theoretical output temperature signal (thermoelectric power and cold junction 
temperature, in the case of a thermocouple sensor). Construction of the  Vmo model and 
estimating parameters present in calibβ  starting from simultaneous measurements of both  V 
and T (using a reference temperature sensor) constitutes a calibration  problem, that is, by 
nature, a  parameter estimation problem, that is a type a) inverse problem (see section 
above ) that has to be dealt with this way. 
 
2.4.2.3 Measurement and noise, biased models 
 
In inverse measurements problems, the additional information is brought by the measured 
output )(ty , that differs from the exact output )(ty exact .  
 

The difference )(tε  between a sensor measurement  y and the output of an ideal sensor 

)(ty exact  giving the true temperature at the sensor location can be introduced : 
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 )()()( ttyty exact ε+=  (3.28) 
 
The sensor giving )(ty exact  is ideal for two reasons:  
 

i) its presence does not affect the local temperature of the medium (non-intrusive 
detector) and  

 
ii) it provides the true value  of its own temperature. 

 
Equation (3.28) defines the measurement noise )(tε , that can be considered as a random 
variable caused by the imperfect character of both instrumentation and of digitization of the 
signal. This noise is present, but its deterministic value can not be reached in practice. 
This equation also shows that the measured signal is a random variable whose variance is 
the same as noise ε . 
 
The assumption of a pertinent, that is non biased, model is made in practice: 
 
 )()( exact

mo
exact ,tyty x=  (3.29) 

 
where exactx  is the true value of the explanatory variables.  
 
Verifying this assumption of consistency between model and measurements is crucial. 
Corresponding tools exist (study of the residuals, see lecture 4 in this advanced schoiol). 
 
Remark 
Equation (3.28) should be defined for discrete values )( ii tyy = , )( ii tεε =  and 

)( i
exactexact

i tyy =  corresponding to the sampling times it  of the measured signal, of the exact 

temperature and of the  noise respectively. 
 
 
3. Choice of a model for the inversion 
 
3.1 Challenges: objectives, structure, consistency, complexity and parcimony 
 
Before constructing  a model, the model-builder has to be clear about the way his model will 
be used, that is about the objective of such a modelling. The objectives depend of the 
application and can belong to one of the following categories that can be listed in a non 
limitative way: 
 

- estimation of thermophysical properties 
- heat source/flux estimation 
- initial temperature field estimation 
- defect detection  and non destructive testing 
- simulation of the system behaviour for better design or future state forecasting 
- model reduction for faster computation or use for heat source/flux estimation 
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- conception of a model for closed-loop (feedback) control 
- … 

 
So the type of model will not be the same for each application, because the required model 
precision will differ: defect detection in a composite slab using infrared thermography [6] 
does not require a model with the same temperature resolution  as in thermophysical 
property estimation, such as the flash method for liquid diffusivity estimation [7]. 
 
The accuracy of a model is determined by its consistency with the modelled physical 
situation, that is its ability to simulate closely the behaviour of the studied system. Internal 
representation, with the use of state-space models, should be generally favoured , because it 
provides a mathematical structure linked to the physics of the modelled problem « for free ». 
In addition, this type of representation allows to highlight the intrinsic parmeters of the 
system, that is its thermophysical properties or thermal resistances and impedances. 
 
The purpose of the model that is used for inverting measurements is not to reproduce or to 
mimic the whole temperature field : it should only provide an output that can be compared to 
the sensor output signal at the location where this one is embedded. Structure, that is scalar 
or vector function �η used above, is what defines a model. Its complexity should be adapted 
to the uncertainties associated with any description of a physical system: use of a model that 
is too much simplified (simple structure with a low number of structural parameters, such as 
a lumped parameter model, see next section) can introduce a systematic error, a bias, in its 
output variables, that could depart too much from model predictions and from the 
experimental observations to be used the inverse way. Conversely, choice of a too detailed 
model, with a high number of parameters: 
 

- tends to make implementation of the inversion algorithm involved, or to make it 
numerically impossible or very difficult; 

- may lead to unstable solutions for the inverse problem, because of noise amplification 
(in case of inversion of measurements) : the inverse problem becomes ill-posed. 

 
A demonstration of this effect can be obtained through a Singular Value Decomposition of 
the scaled sensitivity matrix, in a non linear parameter estimation case: it is given by a 
calculation of the quadratic mean square of the relative standard deviation of the estimated 
parameters, in lecture 4 of this school (equation 55). 
  
This dilemma pleads in favour of the use of parcimonious models for inverse use, that is 
models that provide a good balance between antagonist criteria of use of a minimum number 
of parameters on the one hand, and maximum agreement with reality (fidelity to 
measurements) on the other hand. 
 
Up-to-date capacities of numerical simulation tools as well as structure of the optimization 
and regularization algorithms, allow to solve inverse problems with more and more complex 
models, using mathematical model reduction techniques. These allow a very significant 
reduction of the size of the state vector (temperature at different nodes of the numerical grid 
here. So reduction of a model, followed by its implementation in an inverse procedure, can 
bring an efficient approach for the most difficult cases, such as 3D heat transfer with change 
of phase or advecto-diffusive transfers within flowing fluids for example [8]. We will focus 
next on a different type of reduction technique, physical model reduction. 
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3.2 Example 2: Physical model reduction 
 
In order to show that a thermal model can be reduced on a physical basis and that many 
models, of different complexity and resolution are available to simulate the same heat 
transfer situation (non-uniqueness of a model), we will consider heat transfer in a slab, 
whose characteristics are defined below: 
 

- homogeneous rectangular slab, thickness e, lengths xl and yl  in its plane 

- thermal diffusivity and conductivity a and k, volumetric heat  /c k aρ =  
 
This slab is stimulated by a surface power (absorption of solar radiation, for example) on its 
front face and temperature is measured at  q points by sensors either embedded in the 
material or located on the front or rear face of the slab, see figure 9. The slab is supposed to 
be insulated on its four (lateral) sides, and exchanges heat with the surrounding environment 
T∞ only on its rear face through a uniform  heat transfer coefficient h that represent its losses 
(convection and linearized radiative losses). Its initial temperature T0, at time t = 0, when 
heating starts, is supposed to be uniform. 
 
A model allowing to find the temperature response  ymo, i (t) of sensor number i (i = 1 to q) at 
time t, is sought. 
 

 
 

Figure 9. Model for temperature response of a slab heated on one of its faces. 
 
a) 3D Model 
 
Heat source u (x, y, t) (W.m-2) is supposed non uniform over the front face. Evolution with 
time of the temperature field can be described by a three-dimension transient model, see 
figure 10a: 
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 0a0 == ttTT  (3.31) 
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∂
∂− ∞ f0for λλ  (3.33) 

 
This system of eight equations constitutes  model Ma that will be called « detailed model », 
whose solution, noted aT T=  here, determines the response of each  sensor: 

 
 ),,,,,,),(;,,()( 0 a,ehTTt,y,xut,zyxTx,ty yxiiiaii,mo λη ll∞==  (3.34) 

 
In this equation, u, T0 and T∞ are input quantities of the model, independent from the 
structure of the material system (if they are all equal to zero, temperature stay to a zero level 
everywhere in the slab), while the other quantities are the structural parameters ββββ, either 
linked to geometry ( , , )x y el l , or to the thermophysical properties (k, a) of the slab material 

and to its coupling with the outside environment (h), or linked to the space location of the 
sensors  ( qoi,z,y,x iii t1for = ).  
 
A list x = { β , u, T0, T∞} can be introduced here. It gathers structural parameters β , inputs u 

and T∞ and initial state T0, of this dynamical system composed of  (3 q + 9) quantities. 
 
 
Dimensionless 3D model 
 
The number of quantities present in equations (3.30) and (3.33) can be reduced if they are 
written in a dimensionless form : dimensionless temperature TTTT ∆−= ∞ /)(*  appears, 

with ∞−=∆ TTT 0 , and it is the same for dimensionless time, Fourier number difftat τ/* = , 
and dimensionless heat transfer coefficient, Biot number λ/ehH = . In a similar way 
dimensionless observation locations exx ii /* = , eyy ii /* = , ezz ii /* =  and dimensions 

exx /*
ll =  and eyy /*

ll =  are introduced.  

 
Here aediff /2=τ  is the characteristic time, related to the the duration of thermal diffusion in 
the thickness of the slab. The resistance of the slab in the thickness direction, related to a 
unit area, λ/eR = , can be introduced. 
  
This new model *

aM  that corresponds to the same response of the sensors becomes:  
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 ∞+∆∆== THTt,y,xu,Rtzyx*T.Tx,t*y *
y

*
xdiff

*
i

*
i

*
ii,mo ),,,/)(,/,,,(*)( llτη  (3.35) 

 
where the new list *x , gathering the variables necessary for calculating the temperature 
response at a given time t, comprises one less parameters than the original x list (3.34): 
 

{ }∞∆= T,T,u,x ** β   with ))to1for) *
y

*
xdiff

*
i

*
i

*
i

* ,,H,R,,qi,z,y,x llτ=((=β        (3.36) 

 
b) 2D model in x and z directions 
 
Model Ma can be simplified : if one knows that stimulus  u does not vary much in direction y, 
or if the sensor whose response has to be simulated is not a point sensor but integrates the 
temperature signal in this direction, a y-direction average temperature field Tb can be rebuilt, 
with the definition of a new model Mb, see figure 9b: 
 

 ∫= y
ytzyxTtzxT a

y
b

l

l 0
d),,,(

1
),,(  (3.37) 

 
This  2D temperature field is produced by a source that varies in one single space direction, 
instead of two previously. This new source ),( txum  does not depend on y , and, as 
temperature, is the mean, in this direction, of the previous stimulus: 
 

 ∫=
y
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y

m

l

l 0
d

1
 (3.38) 

 
This mean temperature field verifies the following equations: 
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Once put in a dimensionless form, this Mb  model comprises (2 q + 7) independent  
variables : 
 

{ }∞∆= T,T,u,x mβ    with   ))t1for(( *
xdiff

*
i

*
i ,H,R,,qoi,z,x lτ==β      (3.42) 

 
Let us note now that, in order for this model to show really no bias for sensor i, this detector 
should not be a point sensor, but a line sensor.  
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Figure 9. « Physical » model reduction 
 
 
This is possible if the rear face ( 1=*

iz ) temperature field is measured by infrared 

thermography. In that case output  of model Mb at location ),( ii yx , is: 
 
 ),,()(, kiibkimod tezxTty ==  (3.44) 
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Its experimental counterpart can be scrutinized: one notes now ),( jmexp

k yxT  the 

temperature signal at time kt , for pixel ),( jm yx  of the infrared frame, where (m, j) 

designates a pixel located in the m th line and j th column. 
 
The output (y-averaged) temperatures of the model have to be compared with the 
corresponding experimental response )( ki ty  of the i th detector:  this can be obtained 
through simple addition: 

 ∑
=

==
in

j
i

jmexp
k

i
i yyxT

n
ty

1
k ),(

1
)(  (3.45) 

 
where ni is the number of pixels in the i th column (constant mx ). The reader should not be 
confused by the present notation in equation (3.45): )( kty i  is the experimental temperature 

signal of the i th detector, while iy  is its coordinate, in the y-direction). 
 
If the average temperature in the y direction is really measured by a line sensor,  there will be 
no model error in the estimation of ),( txum . However, the information on the variation of u in 
the y direction will be lost by this reduced modelling, which means that the description of u 
will be made with no resolution in this direction: people in charge of this estimation would 
have therefore to reduce also their initial objective, that is estimation of ),( txum  instead of 

),,( tyxu . 

 
c) 1D model in z direction 
 
Such an averaging can be pursued if one considers now the averaged value of the source 
over the whole front face area. The same type of averaging is made for the temperature field. 
This leads to model Mc , shown in figure 9c: 
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 0for0 == tTT  (3.49) 
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Once model Mc put in a dimensionless form, only (q + 6) independent variables remain in the 
x list: 
 
 { }∞∆= T,T,u,x mmβ     with     ))t1for H,R,,qoi,z diff

*
i τ=((=β  (3.51) 

 
This reduction in the number of variables is made at the expense of the space resolution for 
u, that is completely lost here since it is replaced by its space average umm . 
 
d) 2D Fin model in  x and y directions 
 
If the Biot number H = he/k  is much lower than unity, temperature variations in the z 
direction, corresponding to the slab thickness, can be considered as two-dimensional. The 
resulting 2D temperature field stems from an  integration, with respect to z,  of the 3D 
temperature field, see figure 9d: 
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This reduced model Md corresponds to a 2D fin whose temperature verifies the following 
equations :  
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 0at0 == tTT  (3.54) 
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List x is now composed of (2 q + 8) independent variables : 
 
 { }∞∆= T,T,u,x β  with ),,,),t1for(( *

y
*
xdiff

*
i

*
i ,HRqoi,y,x llτ==β  (3.56) 

 
This relatively high number of variables allows however to keep the initial spatial resolution of 
stimulus u.  
 
e) 1D fin model in x direction 
 
The 2D reduced model Mb can be used now to construct a 1D fin model, noted Me, with the 
same condition on the Biot number H, through an integration in the z direction (the same 
model Me can be obtained trough integration of model Md in y direction), see figure 9e: 
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List x of the independent variables of the model is composed of (q + 7) quantities: 
 
        { }∞∆= T,T,u,x mβ     with ))t1for H,R,,qoi,z diff

*
i τ=((=β  (3.61) 

 
f) 0D lumped model   
 
If the source is nearly uniform in space, with a low Biot number in direction z, or if the sensor 
provides the volume averaged temperature of the slab, one obtains a 0D Mf  model, also 
called lumped model or « small body » model. It corresponds to integration of  model Me in 
the x  direction, see figure 9f: 
 

 xtx,TtT
e

e
x

f d)(
1

)(
0∫=

l
 (3.62) 

This temperature field is produced by a point source whose intensity ( )mmu t  varies with time, 

with : 
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The heat equation becomes : 
 

 )t(uTTh
t
T

ec mm=−+ ∞ )(
d
dρ  (3.64) 

 
with:                         0at0 == tTT                       (3.65) 
 
The x list of this model is now composed of only 5 independent variables, including a 
convective resistance (based on a unit area) G = 1/h and a time constant 

Hhec diff // τρτ == : 
 
 { }∞∆= T,T,u,x mmβ     with )( G,τ=β    and   ∞−=∆ TTT 0   (3.66) 
 
An analytical solution can easily be found : 
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This model is a limit model, only valid if the Biot number, based on the largest of the three 
dimensions ,x yl l  or e, is much lower than unity. If not, it is a biased model, but its output Tf  

can always be compared to the average temperature of the  q sensors. This averaged 
experimental temperature brings an interesting information on the time variation of the 
average  absorbed power density on the front face, umm (t). 
 
g) 1D local model 
 
A last model, noted Mg  here, can be used. It is a 1D « local » temperature defined by: 
 
 ),,,)(;,(z),,( β∞∆== TTt,y,xutTtyxTy iiiciigi,mo  (3.67) 

 
with 
 )H,R,,z iiidiff

*
ii τ(=β  (3.68) 

 

 
 

Figure 10. 1D local model Mg 
 
It corresponds to the previous 1D model Mc , applied locally for each sensor. Its response 
depends on the sole excitation  ),,( tyxu ii  that prevails on the front face at the same  (x, y) 
location, see figure 10.  
 
This allows to consider a 3D problem as a set of independent 1D problems, each individual 
problem being associated to a specific sensor. Structural parameters belonging to vector ββββi  
differ for each sensor. This vector is composed of a diffusion characteristic time idiffτ , a 

resistance iR  and a Biot number iH , that have all local values corresponding to location of 
sensor i . These structural parameters are related to local thickness ei, local heat transfer 
coefficient hi, and local conductivity ki and diffusivity ai.  
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For the whole set of sensors, this model is composed of  (q + 6) independent variables if 
these sensors are embedded at the same depth in the slab and if the thermophysical 
parameters, h,  and the slab thickness do not varry in the x – y plane. 
 
This model is valid only if heat transfer is negligible in the directions of this same plane, that 
is if the slab is made of  a composite material that is homogenized but anisotropic : the 

principal directions of conductivity tensor k  shoud be those of the slab, with principal 
components  0== yx kk , kkz = . However, it is possible to use it with a reasonable bias for 

sensors facing front face locations where stimulus u does not vary much (low gradient in the 
plane of this face) and for low thickness and thermophysical local variations. This model is 
also very interesting in non destructive testing of composite slabs by infrared thermography 
[9]. 
 
Remarks 
 

- The six reduced models Mb to Mg are all derived from the detailed model  Ma and 
have lower dimensions than this original 3D model. They are also characterized by a 
lower number of structural parameters. 

 
- Structural parameters of the slab and of the sensors either disappear or are 

transfered from one model to a more reduced one along this progressive physical 
reduction process. So passing from model Me to model Mf  makes parameter *

xl , R 

and *
ix  disappear while parameters  H and diffτ  merge into a single parameter 

Hdiff /ττ = . This reduction of the parameters number is an irreversible one, which 

means that it is not possible to rebuild values of H and diffτ starting from the 

knowledge of τ  only.  
 

- One can also note that during this reduction process, relationships between former 
and new parameters are linear if the logarithms of these parameters are considered: 

)(ln)(ln)(ln Hdiff −= ττ . This gives an interesting relationship between reduced 
sensitivities (see also lecture 4 in this school). 

 
- In parallel with the reduction in the number of parameters, a reduction of the space 

dimension necessary for reproducing the sensors behaviour appears : from an initial  
)( t,y,xu  stimulus for models Ma and  Md , one gets a ( , )mu x t  stimulus for models 

Mb and Me to finally )(tumm  for models Mc and Mf  and  ),,()( tyxutu iii =  for model 
Mg. 

 
 
- All these models rely on specific physical assumptions and none of them corresponds 

to the  absolute reality, even model Ma : this one neglects  convecto-radiative losses 
on the front face and on the four sides of the slab, coefficient h is supposed uniform in 
the rear face plane and the same is true for the initial temperature inside the slab. 
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This example shows that the user has to make its own choice for the model, since several 
representations are generally possible. Accordingly a more reduced model conveys less 
information about the spatial distribution of the heat source. However, this inconvenient in 
direct modelling can become an asset when inversion, to reconstruct the source, takes place.  
 
4. Conclusion 
 
The aim of this lecture, located right after lecture 2, which deals with inversion related to 
generic linear models, was to introduce the notion of model associated with measurements in 
a physical system subjected to heat transfer. Whatever the situation, the model-builder has a 
given objective (thermophysical characterization, heat flux estimation, system identifiication, 
…) and is free to construct a model adapted both to his needs and to his constraints (lack of 
information, partial measurements, …). This model can be of the white, grey of black box 
type. It requires the definition of a large number of quantities (parameters or functions, input 
and observations, explanatory variables) that must be either discretized or parameterized.  
In a similar way and in parallel, measurements coming from sensors require the construction 
of a calibration law (a specific inverse problem) and introduce a noise that will be one of the 
causes (but not the only one) of the estimation errors. 
 
In order to prevent the ill-conditioning of the corresponding inverse problem, special care has 
to be given for both measurements (non intrusive) and to model. Models used for inversion 
differ from models used for simulation: they should have a minimum number of parameters 
(see the concept of number of degrees of parametric freedom in lecture 4 of this school), 
which means that parcimony is a plus and model reduction, for example on a physical basis,  
can bring more stability to the subsequent inversion. Interested readers can refer to 
references [1], 10] and [11] for more insight on this subject. 
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