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1. Introduction 
 
We present and illustrate the roadmap for a linear parameter estimation problem, when the 
structure of the model is known ('white box case'). The Ordinary Least Square case is first 
considered to introduce all the useful tools. We focus then on optimal ways to implement the 
best estimation through the study of the sensitivity matrix and other matrices depending on it. 
 
 
2. The roadmap for solving a linear parameter estimation problem : the 
Ordinary Least Square case 
 

2.1. Generate data 

Suppose that we have realised an experiment that provides m measurements )( ii tyy =  for 
i=1,…,m at m discrete values of time t (the 'independent' variable). These measurements are 
the components of the vector (m × 1) of experimental measurements t

1 ]   [ mi yyy KK=y .  

Times of measurements are regularly spaced between mint  and maxt  and are the components 

of the time vector (m × 1) t
i ttt ][ maxmin KK=t  with dtitt mini )1( −+= , for i = 1,…,m. Let iε  the 

(unknown) error associated to the measurement iy  (i = 1,…,m), then the measurement 

errors vector (m × 1) is [ ]t

1   mi εεε KK=ε . Some assumptions have to be done on these 
measurement errors. They are detailed in Table 1 (see also Beck et al., 1977).  
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Number Assumption Explanation 
1 Additive errors εyy += perfect  

2 Unbiased model )( exact
moperfect xy=y  

3 Zero mean errors 0][ =εE  

4 Constant variance 2
εσε =][Var  

5 Uncorrelated errors 0=][cov jiεε  for ji ≠  

6 Normal probability distribution  

7 
Known parameters of the probability density 
distribution of errors 

 

8 No error in the Sij S is not a random matrix 
9 No prior information regarding the parameters   

Table 1 : Statistical assumptions regarding the mea surement errors 

The first assumption for the measurement errors is that they are purely additive :  

εyy += perfect  (2. 1) 

Here perfecty  represents the vector (m × 1) of (unknown) errorless measurements2. Moreover, 

measurement errors are assumed to be the realizations of a random variable with a 
Gaussian distribution with zero mean, that is 0=][E ε  (errors unbiased), [.]E  being the 
expected value operator (representing the mean of a large number of realizations of the 
random variable).  

The covariance matrix (m × m) [ ] [ ]tt E])[E])([E(E)(cov εεεεεεεψ =−−==  of error 

measurements contains on its main diagonal the variance 2
iεσ  of each measurement that is 

supposed to stay constant for each time it , i=1,…,m. This variance may be known or not. 

Finally, measurement errors are assumed uncorrelated (error at time it  independent of error 

at time jt  ( 0][ =jiE εε  for ji ≠ ) then ψ  is a diagonal matrix : 

( ) Iεψ 2222)( εεεε σσσσ === ,,,,diagcov LL  (2. 2) 

These data can come from a real experiment or can have been numerically created (in order 
to test the parameter estimation method), using a mathematical model and adding a 

                       
2 The objective of  'direct' modelisation is to give the best approximation of  perfecty  
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numerical random noise verifying the preceding assumptions. Now the model and its 
parameters will be presented.  

2.2. Build a model of the measured signal, define the parameters and first contact with the 
sensitivities 

The objective of such a model is to give a mathematical expression, noted )η(t,tymo xx =),(  

of the perfect measurements (t)yperfect  mentioned above. This model is a function of the 

independent variable (time) and of n parameters composing the parameters vector  (n × 1) 
noted [ ]t

1 nxx K=x . The model vector (m × 1) is then given by 

[ ]t
11  ),t(y),t(y),t(y),( mm,moii,mo,mo xxxxty mo KK= , where [ ]t

1  mi ttt KK=t is a column 

vector composed of the m times of measurements ti. For this example, we choose to analyse 
the classical two parameters estimation problem consisting in estimating simultaneously the 
slope and the intercept of a straight line; then the model is given, in a scalar writing, by : 

21 xtx),t(ymo +=x  (2. 3) 

 
The model is linear with respect to its two parameters 1x  and 2x  because  
 

)',(.),(.)',(

)()()()',( '
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 (2. 4) 

 
Important remark : the following model : 
 

)(),( 21 terfxtxtymo +=x  (2. 5) 

is also linear with respect to its two parameters 1x and 2x , even if its time behavior is not 
linear. On the contrary, the following model : 
 

)exp(),( 21 txtxtymo −+=x  (2. 6) 

 
is linear with respect to 1x  but non linear with respect to 2x  and is consequently non linear 
with respect to x . 
 
Writing the m model values (2. 3) for the m time values    ... 1 mtt , the m resulting equations  
can be written in a matrix way as follows : 
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or, in a more compact form: 

xSy mo =  (2. 8) 

The matrix S (m × n) is called the sensitivity matrix. Column k contains the m times values of 
the sensitivity coefficient of the model with respect to the parameter kx , given by : 

kj for ,

),(
),(

≠
∂

∂=
jxtk

mo
k x

ty
tS

x
x  , k=1,…,n (2. 9) 

 
Equation (2. 8) is only valid for a linear model. However, the sensivity coefficient (2.9a) can 
be defined for the discrete time values itt = (i=1,…,m) to form a sensitivity matrix S defined 
for any linear or non linear model as: 
 

[ ]t

mo )()( xyxS x∇=  or, more simply, in a symbolic way 
x

xy
xS

d
)(d

)( mo=  (2. 10) 

Important remark : if the model is linear with respect to its parameters (as in the cases (2. 3) 
and (2. 5)), then the sensitivity coefficients do not depend on parameters : )(),( tStS kk =x , 

and the sensitivity matrix )(xS does not depend on x.  

For the model (2. 3), we have ttS =)(1  and 1)(2 =tS  then 
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A sensitivity coefficient is a measure of the “influence” of parameter kx  on the response of 

the model ),( xty mo . If all the sensitivity coefficients are of “high” magnitude and 
“independent”, the simultaneous estimation of the parameters composing x  will be possible. 
The meaning of “high” and “independent” will be developed later. 

2.3. Choose the objective function 
 

Assuming that the model has the right form (or “right structure”, given par the resolution of 
the “right” partial differential equations describing the “right” physical phenomena) and is 
calculated with the right values of parameters exactx , then perfect

exact yxy mo =)(  and (2. 1) 

becomes 
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εxyy += )( exact
mo  (2. 12) 

Since the m measurement errors composing ε  are not known, the problem of finding the 
values of the n components of exactx  given m measurements verifying (2. 12) is 
underdetermined (m equations with n+m unknowns : n parameters kx  (k=1,…,n) and m 

noise values iε  (i = 1,…,m)). The problem consists in using the m measurements for 
estimating the n unknown parameters, with nm ≥ . Then the new problem to solve is a 
minimization problem. For a given value x of the parameter vector, a residual vector r (m × 1) 
is built in order to calculate the difference between measurement vector y  (m × 1) and the 
corresponding model output )(xy mo  (m x 1), each component of r being associated with one 
of the m instants of time where a measurement is available. 

[ ] t
mmmomiimoimomo tyytyytyy  ),(),(),()()( ,,11,1 xxxxyyxr −−−=−= KK  (2. 13) 

 
This present definition of the residual vector )(xr  is an extension of the concept of residual 

vector which is usually defined as )ˆ(xr ,  where x̂ corresponds to the minimum of the square 
of the norm of )(xr , see equation (2.14) further on. 

Then the norm of this residual vector )(xr  is calculated, it is a scalar value that will be 

minimized with respect to the different components of parameter x in order to estimate an 
'opimal' value for it. One have to choose the way of computing the norm of the residuals 

)(xr . Without any a priori information on the parameters and given the above assumptions 

for measurements errors, the chosen norm is the Euclidian norm (or L2 norm) given by 

2/1

2

1

)()( 






= ∑
=

xxr
m

i
ir  (2. 14) 

In fact the objective function that will be minimized is the square of thist Euclidian norm, it is 
called the 'Ordinary Least Squares' objective function3 :  

22 )()()( xyyxrx moOLSJ −==  (2.14) 

In the particular case of a linear model, xSxy =)(mo  and this OLS sum becomes : 

                       
3 it is here the more efficient, i.e. that will provide the estimation with the minimal variance 
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With a matrix writing, (2.15) is equivalent to : 

[ ] [ ])()()(  xyyxyyx mo

t

moOLSJ −−=  (2.16) 

The solution of this minimization will be called OLSx̂  here. The hat ( ∧ ) superscript designates 
an estimator of the corresponding quantity, that is a random variable deriving here from the 
random vector variable ε  (the measurement noise) and the subscript 'OLS' designates the 
specific minimized norm used here, the Ordinary Least Squares sum OLSJ defined in equation 
(2.14). If the model is linear, this OLS estimator does not require the use of any iterative 
algorithm and is given in a simple explicit form: 

[ ]))(( xx OLSOLS Jminargˆ =  (2.17) 

 
So, the original questions was:  

"what are the exact values exactx  of parameter vector x for the model )(xy mo  when 

m corresponding noisy measurements εxyy += )( exact
mo  are available ?" 

 
The answer is : 

"one possible approximation of exactx  is the estimator OLSx̂ , which minimizes the 
Ordinary Least Squares 'objective' function (sometimes also called 'criterion') 

)(xOLSJ  defined as the sum of the squares of the differences between the m model 
output and the corresponding measurements”.  

 
Or, in simpler words:  

"the natural numerical approximation of the parameters present in exactx  is the one 
that enables the model to be the closest to the whole set of measurements". This 
Ordinary Least Squares method was first found by Carl Friedrich Gauss in 1795 and 
later published by Adrien-Marie Legendre in 1805. 

  
The natural question that arises next is: "how far is this OLSx̂ estimation from the exact value 

exactx  and what can be done to reduce their difference ?” These questions will be discussed 
now within the linear assumption where an explicit expression for OLSx̂  will be given. 
Readers interested by non linear estimation can refer to lecture 4 of this series. 
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2.4. Solve the parameter estimation problem : minimize the objective function 

The OLS estimator OLSx̂  is defined as the value of parameter vector x which minimizes the 

scalar function )(xOLSJ . So, it has to verify : 

0)ˆ( =∇ OLSOLSxJ x  with 
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  (2.18) 

[ ][ ] [ ])()(2)( xyyxyyx mo

t

moxOLSxJ −−∇=∇  (2.19) 

 
Knowing that 

[ ] t

mox
t )(xyS ∇=  and Sxxy =)(mo  (2.20) 

 
(2.19) becomes 
 

[ ]xSySx −−=∇ t
OLSxJ 2)(  (2.21) 

 
Then 

OLSx̂  is solution of  

 
[ ] ySxSS tt =  (2. 22) 

 
The n equations composing the linear system (2. 22) are called the 'normal equations'. The 
solution is straightforward if the (n × n) matrix SSt  is not singular, it is then possible to 
compute its inverse and to obtain : 
 

[ ] ySSSx tt
OLSˆ

1−
=  (2.23) 

 

The (n × m) matrix [ ] tt SSS
1−

 is called the Moore-Penrose matrix, or the pseudo-inverse of 

S. Obviously, a necessary condition for SSt  to be non singular is that the sensitivity 
coefficients are independent, and have a non zero norm. This condition also requires that the 
number of measurements m be equal or greater than the number of parameters n to be 
estimated.  
 
Equation (2.22) gives an explicit expression for the ordinary least square estimator OLSx̂  of x 

for any linear model xSxy =)(mo  as a function of measurements y defined in equation 

(2.11). Since y is a random vector (because of noise ε ), such is also the case for OLSx̂ . 
However, equation (2.22) has also another statistical meaning: once measurements are 
available, a realization of y (that is numerical values for its components) becomes available, 
and this equation provides the corresponding OLS estimation of x. 
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2.5. Evaluate the confidence in estimations (variance and bias of estimator) 

2.5.1. First approach with stochastic simulations (Monte Carlo method) 

 

Before computing the statistical properties of the OLS estimator (expected value and 
covariance matrix), we present a graphical approach that helps to understand the meaning of 
such properties. This approach is possible in the case when two parameters are estimated 
because each estimation )ˆ,ˆ(ˆ

2,1, OLSOLSOLS xx=x  can be plotted as a point in a 2D coordinates 

axes graduated in ),( 21 xx . The idea is then to simulate K=100 experiments with K different 
realizations of the random noise vector ε  with the same statistical properties (see Table 1) 
to produce K samples of measurements vectors y according to (2. 12). The conditions of 
each simulated experiment that is called 'the reference case' are indicated in Table 2. Figure 
1 shows one of the simulated experiment (circles) and one of the corresponding estimated 
model calculated with the OLS estimation )ˆ,ˆ(ˆ

2,1, OLSOLSOLS xx=x  (red line). 

 
exactx1  5 
exactx2  2 

Model structure ),( xtymo  21 xtx +  , eq (2. 3) 

Number of measurements m 20 
Start of time range tmin 0.5 
Time step dt 0.1 
Noise standard deviation εσ  0.5 

Table 2 : conditions of the K=100 simulated 'refere nce' experiments 
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t (h)

The ‘top model’ line

The ‘OLS’ line...

The ‘magic’ line

 
Figure 1 : one of the K=100 experiments of the 'ref erence case', the corresponding exact model 

and the corresponding OLS model  

The K=100 OLS estimations )ˆ,ˆ(ˆ
2,1, OLSOLSOLS xx=x  are then plotted in a scatter graph 

graduated in ),( 21 xx  in Figure 2 . Because of a different random realization of noise for each 

of the 100 experiments, each corresponding OLS estimations )ˆ,ˆ(ˆ
2,1, OLSOLSOLS xx=x  is 

different, showing immediately the consequence of noise measurement on the dispersion of 
estimations.   

In that figure, the position (square) of the exact value )2,5( 21 === exactexactexact xxx  and the 
position (star) of the mean value of the K estimations 

)0192)(9944)(( 21 .x̂mean,.x̂meanˆ OLS,OLS,mean ===x  (the center of the scatter,  are very 

close to  their exact values). 

Another interesting way of looking at the estimation results is to plot them in a scatter graph 
with normalized coordinates indicating the distance of each estimation from the center of the 
scatter in %, see Figure 3  : 

 
( ) 1111 100 ,mean,meani,,OLSi,,OLS x̂/x̂x̂e −=  (2.24) 

( ) 2222 100 ,mean,meani,,OLSi,,OLS x̂/x̂x̂e −=  (2.25) 

If we consider that exactmean xx ≈ˆ  the quantities (2.24) and (2.25) are the relative estimation 

errors for  exactx1  and exactx2 . This plot enables to quantify, in %, the dispersion of the 
estimations of each parameter around its mean value. That is often what is wanted to be 
minimized. 
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Figure 2  : dispersion of the 100 estimations 
around their central value (star) that is very 

near the exact value (square)  

Figure 3  : errors of estimations in % of the 
mean value of the scatter  

 
 
At this point, after having quantified the central value meanx̂

 
of the K=100 

OLSx̂ estimations and after having evaluated the dispersion of the majority of 
estimations around their central values (which indicate the confidence we associate 
to them), we can sum up the result of the estimation problem in the following way :  
 

" exactx1  is equal to %200.2ˆ
1, ±=meanx  and 

 exactx2  is equal to %409.4ˆ
2, ±=meanx " 

 
But in reality, we never realize 100 experiments with 100 estimations )ˆ,ˆ(ˆ

2,1, OLSOLSOLS xx=x  in 

order to calculate the mean value ))ˆ(),ˆ((ˆ
21 xmeanxmeanmean =x . We generally do one single 

experiment, and obtain only one of the 100 points of Figure 2  and Figure 3 .  
 
We must keep in mind that this point can be one of the points 'far' from the exact value !  
 
Whatever the realized experiment among these 100, what we want to do is to associate a 
'confidence region' to the particular estimation )ˆ,ˆ(ˆ

2,1, OLSOLSOLS xx=x  (or a 'confidence interval' 

for each parameter) that has about the same dimension than the scatter we have just 
obtained with these 100 simulated experiments. That is the objective of the following section. 

2.5.2. Calculation of statistical properties of the OLS estimator 
 

Here we become more general and we consider the case when not all the n parameters are 
estimated but only r, the (n-r) remaining parameters are supposed to be known and they are 
fixed during the estimation of the r unknown parameters. Estimated parameters are noted 
with subscript r and fixed parameters are noted with subscript c. We must consider that the 
fixed parameters have not been fixed to their exact value, and at the end of estimation of the 
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r parameters, we have to evaluate the bias made on estimations because of the error on the 
(n-r) parameters that are supposed to be known (n-r). 

We can split (2. 8) into 

ccrr xSxSy mo +=  (2.26) 

Matrix rS  (n × r) is the sensitivity matrix to the parameters to be estimated. It is part of the 

“complete” sensitivity matrix S , relative to all the parameters (to be estimated  rx  (r × 1) and 

fixed cx  ((n-r) × 1)) : 
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Matrix cS  (n × r) is the sensitivity matrix to estimated parameters. It is a part of the 

“complete” sensitivity matrix S , relative to all the parameters (estimated  rx  (r × 1) and fixed 

cx  ((n-r) × 1)) : 

The OLS solution (2.23) becomes   

[ ] )(
1

cc
t
rr

t
rOLSˆ xSySSSx −=

−
 (2.28) 

Let )~(ˆ
, cOLSr xx   be the estimated parameters for a value of fixed parameters cx~  different from 

their exact value exact
cx . Let re  be the vector (r × 1) of error estimation (the difference 

between estimated and exact values of exact
rx ) and let ce  be the deterministic error (the bias) 

for the values of the fixed parameters: 

exact
rcOLSrr xxxe −= )~(ˆ

,  (2.29) 
exact
ccc xxe −= ~  (2.30) 

One can write, with [ ] t
rr

t
rr SSSA

1−=  the Moore-Penrose matrix 

)~()~(ˆ
, ccrcOLSr xSyAxx −=  (2.31) 

Equation (2. 12) can be developed: 



 
 
 
 
Metti 5 Spring School  Roscoff – June 13-18, 2011 
 

 Lecture 2: Basics for parameter estimation – page 12 

εxSxSεxyy ++=+= exact
cc

exact
rr

exact
mo )(  (2. 32) 

Combining  (2. 32) and (2.31), the estimation error of (2.29) may then be approached by : 

21, )~(ˆ
rrccrr

exact
rcOLSrr eeeSAεAxxxe +=−=−=  (2.33) 

The first term εAe rr =1  is the random contribution to the total error; it represents the error 
due to measurement errors ε  whose covariance matrix Ψ  is given by (2. 2). The second 
term ccrr eSAe −=2  is the non-random (deterministic) contribution to the total error vector due 

to the deterministic error on the fixed parameters ce . The expected value of 1re  is 

0][][ 1 == εAe EE rr  (2.34) 

meaning that no systematic bias is introduced by the random measurement errors.  

Remark : this explains that the mean meanx̂  of the 100 scattered estimations in Figure 2  is 

very close to the exact value exactx . 

The covariance matrix of 1re  is given by 

[ ] 21

1111 εσ−
===== r

t
r

t
rr

t
r

t
r

t
rrr ][E][E)cov( SSψAAAεεAeeeC  (2.35) 

Matrix [ ] 1−
r

t
r SS  may thus be seen as a matrix that “amplifies” the measurement errors. The 

expected value of 2re  is  

[ ] [ ] 0
1

2 ≠=−= −

cc
t
rr

t
rccrrE eSSSSeSAe  (2.36) 

This expected value is different from zero, which means that estimation OLS,rx̂  is biased, if 

the error ec of the parameters supposed to be known is different from zero itself. This means 
that in the preceding stochastic simulation, the scatter of 100 estimations would not have 
been centred on exact

rx . This bias is computed using the corresponding sensitivity 

coefficients matrix cS . The covariance matrix ((n-r)×(n-r)) of 2re  error is 0)cov( 22 == reC  

because ce  is not a random error. Finally, the total bias associated to the estimation 

)~(ˆ , cOLSr xx  is due to the biased value of cx~  and its value is given by  

[ ] cc
t
rr

t
rccrrr EE eSSSSeSAee

1

2 ][][
−=−==  (2.37) 
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The matrix [ ] c
t
rr

t
r SSSS

1−
 (r × (n-r)) may thus be seen as the “amplification” of bias on fixed 

parameters ce . For a fixed value of cx~ , the covariance matrix rC  of estimations errors is  

1111 )cov(][]])[])([[()cov( CeeeeeeeeC ===−−== r
t
rr

t
rrrrrr EEEE  (2.38) 

The coefficients of the covariance matrix are : 
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Its main diagonal elements are the individual variances of the errors associated to each 
component of the estimated vector OLSr ,x̂  . Its off diagonal coefficients are the covariances 

of the crossed errors. Expression (2.35) shows that knowledge of the variance of the 
measurement errors 2

εσ  is needed in order to compute the covariance matrix of the 

estimation errors. If 2
εσ  is not measured before the experiment, an estimation of it may be 

obtained at the end of estimation thanks to the minimum value of the objective function: 

2

1

))(())( cOLS

m

i
icOLS,rOLS

~ˆr~(ˆJ xxxx ∑
=

= .    

 
In fact, this estimation is based on the fact that, at the end of the estimation, the only 
difference that subsists between measurements and model (if its structure and its 
parameters are correct) must be the measurement errors. Of course, exact parameters can 
not be exactly obtained, and the remaining differences between measurements and model 
are the cause of non zero residuals given by (2. 13). If estimated parameters are not too far 
from exact parameters, residuals must have some statistical properties close to those of 
measurement errors. That is why a non biased estimation of 2

εσ  for the estimation of r 
parameters from the use of m measurements is thus given by  
 

rn

J cOLSrOLS

−
=

))~(ˆ(
ˆ ,2 xx

εσ  (2.40) 

 
This estimation is only valid for errorless values of the parameters that are supposed to be 
known, that is for exact

cc
~ xx =  , for an i.i.d. (independent and identically distributed) noise ε   

 which corresponds to assumptions 1 to 5 and 8 to 9 in Table 1. 

 

2.5.3. The correlation matrix  
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The variance 2
iσ  of the estimation error associated to )(ˆ , iOLSrx  can not be arbitrarily low 

independently of 2
jσ  ( ij ≠ ) if 0),cov( ≠rjri ee  because ),cov( rjriji ee≥σσ  (Schwarz 

relationship) : irx ,ˆ  and jrx ,ˆ  are said correlated. The correlation level between estimations 

irx ,ˆ  and jrx ,ˆ  is thus measured by the quantity 

jjriir

ijr

jjriir

ijr

ji

rjri
ij

PP

P

CC

Cee

,,

,

,,

,),cov(
===

σσ
ρ ,  i, j =1,…,r (2.41) 

that lies between -1 and 1. These coefficients compose the CORV  matrix (r×r). One considers 

that the estimations are highly correlated when 9.0≥ijρ  (Beck et al., 1977). This quantity is 

independent of the magnitude of measurement errors. In the example of Figure 3 , 
99.012 =ρ  indicates that the accuracy for the estimation of the slope ( 1x ) is highly linked to 

the accuracy for the estimation of the intercept. If the variance on the slope is low, then the 
variance on the intercept will be high. This is why the scatter of the 100 estimations is 
contained inside a 'narrow'  and 'inclined' ellipse. The ideal conditions would be that the 
accuracy for the estimation of all parameters be independent of each other. That gives an 
idea for a criterion to respect when designing an experiment for estimating several 
parameters. 

2.5.4. The confidence region and interval for OLS with standard assumptions  

In that case, with the additional assumption 6 (see Table 1) of a Gaussian noise, one can 
show that the confidence region in the plane )ˆ,ˆ( 21 xx  of the Figure  2 for a given confidence 
level of α  is an ellipse (for n=2 parameters, see Figure 4 ). Its equation in δx coordinates 
centered on OLSx̂  is : 

22
1

2

2

)2(

..

εα σχ∆
∆

−=

=δxSSδx tt

 (2.42) 

)2(2
1 αχ −  is computed by the function chi2inv(alpha,2) in MATLAB® if we search for the 

confidence region at a level 95% ( 95.0=α ). 2
εσ  is the variance of noise measurements. It is 

worth noting that the length of half axes 1ρ  and 2ρ  in the principal directions of the ellipse 
are given by  

22

11

/

/

λ∆ρ

λ∆ρ

=

=
 (2.43) 

1λ  and 2λ  are the eigenvalues of SS t . The product of that two eigenvalues is equal to the 

determinant of SSt
. Finally, it is shown that the area of the confidence region inside the 

ellipse is given by  
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21

22
1

22
1

21
)2(

)det(

)2(
..

λλ
σπχσπχρρπ εαεα −− ===

SS t
A  (2.44) 

OLSx ,1ˆ

OLSx ,2ˆ

1x

2x
2xδ

'
2xδ

'
1xδ

1xδ
95.0=α

 
Figure 4 : elliptical confidence region associated to the estimation of two parameters (with 

standard assumptions on measurement noise), at a co nfidence level αααα=0.95. 

Then, the product of eigenvalues of SS t  gives information on the area of the confidence 
region, while the individual eigenvalues give information on the lengths of each principal 
direction of the ellipse: a 'long' ellipse in a direction corresponds to a low eigenvalue. The 
experiment that will maximize 21)det( λλ=SS t  in order to minimize the confidence region is 
called a ‘D-optimal’ experiment. 

In the case of estimation of r = n parameters, the matrix C (eq 2.39) contains on its main 
diagonal the n variances associated to each component of the estimated vector OLSx̂ . The 

square root of the ith diagonal component of C  is then the standard deviation associated to 
the estimation OLSix ,ˆ  and can be expressed in %. Then, the half width of confidence interval 

α−1
iCI , at a level of confidence of )%1(100 α− , associated to the estimation OLSix ,ˆ  is now 

given by : 

iii CrntCI ×−= −
− )(2/1

1
α

α , i=1,…,n (2. 45) 

 
The quantity  )(2/1 rnt −−α  is the t-statistic for n-r degrees of freedom at the confidence level 
of )%1(100 α− . For example, for m=20 measurement, if n=2 parameters are estimated, and 
if the 95% confidence is wanted, then 05.0=α  and 1.2)220(975.0 =−t . For a high number of 
measurements (>200), the t-statistic tends to the Gaussian statistic and we have 

96.1975.0 →t . Finally the result of the estimation process of the unknown exact parameter 
exact
ix can be presented in the following way:  
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‘ exact
ix has 95% chance of being in the interval [ ]95.0

,
95.0

, ˆ       ˆ iOLSiiOLSi CIxCIx +− ’ 

or :  ‘ 95.0
,ˆ iOLSi

exact
i CIxx ±=  with 95% chance’ 

2.5.5. The residuals analysis 

When estimation is achieved, the graphical analysis of the residuals given by eq. (2.13) can 
enable to detect some inconsistencies in the result. The difference between measurements 
and model response with optimal parameters must ‘look like’ the measurement noise, or in 
other words: ‘the right model with the right parameters must explain the measurements 
except its random part’. For a noise with standard assumptions (independent and identically 
distributed, see end of section 2.5.2), the statistical properties of the residuals must be close 
to the measurement error properties (zero mean and variance 2

εσ ). If residuals are signed, 

the problem may be due to an error in the statistical assumptions regarding the 
measurements or in the structure or parameters of the direct model. 

OK, see if the 
variances are not 
too large

Not OK : there may 
be a problem in the 
model or in the 
measurements

Uncorrelated residuals

Signed residuals
 

Figure 5 : graphical analysis of residuals at the e nd of the estimation  

 
3. Indicators for a successful estimation 
 
It has been shown that the matrix SS t , also called the information matrix, is fundamental in 
the process of parameter estimation : 
 

- it has to be inverted to achieve the OLS estimation according to (2.23) 
- it also has to be inverted to compute the covariance matrix according to (2.35) 

associated to the OLS estimation. The diagonal terms of this matrix contain the 
variances of each estimation, and its off diagonal terms enable to compute the 
correlation matrix. The inverse of SS t  play the role of "noise amplifier", 

- the eigenvalues of SS t  enable the calculation of the lengths of the half 
principal axes of the elliptical confidence region, 

- the determinant of SS t  enables the calculation of the area of the elliptical 
confidence region. 
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The difficulty is clear: SS t  has to be non-singular to be inverted and SS t  has to be not 
'quasi-singular' in order to limit the noise amplification. This notion of non-singular character 
of the information matrix SS t  makes sense only if all the parameters xj have the same 

physical units. Otherwise, one should study matrix ** SS t where *S  is the reduced sensitivity 
matrix, see section 3.1 and 3.3.  
 
Then we have to find some indicators to evaluate the singularity and the quasi-singularity of 

SS t . The first indication can be simply graphical. Singularity exists if a sensitivity coefficient 
Si(t) is purely proportional to another one Si (t); in that case the rank of SS t  is lower than n, 
and its determinant is zero. More difficult is to find a linear combination of more than two 
sensitivity coefficients for which the consequences would be the same. The quasi-singularity 
would happen if sensitivity coefficients are 'similar' for all values of the independent variable 
(time here). This case happens most of the time: SS t  has full rank but its determinant is low 
and its condition number built with the ratio of its extreme eigenvalues: 
 

)(

)(
)(

min

max

SS
SS

SS
t

t
tcond

λ
λ=  (2.46) 

takes high values. 
 
‘Visual’ and ‘quantitative’ criteria will now be illustrated. We introduce first the reduced 

sensitivity matrix *S , that enables to compare the sensitivity coefficient between themselves 
and to compute a covariance matrix associated to relative estimations (and then to compute 
directly relative standard deviation associated to each parameter) 

3.1. The reduced sensitivity matrix *S  

It is given by  
)(xSS diag* =  

with 
















=

nx

x

diag

00

00

00

)(
1

Ox  

(2.47) 

 
 

(2.48) 

It is built with the reduced sensitivity coefficients that are defined as 

 

kj for ,

* ),(
),(),(

≠∂
∂

==
jxtk

mo
kkkk x

ty
xtSxtS

x
xx

kj for ,

),(
≠∂

∂
=

jxt

k

k

mo

x
x

ty x
 

(2.49) 

Equation (2.49) shows that the reduced sensitivity *
kS  represents the absolute variation of 

model ),( xty mo∂  due to a relative variation of parameter kk xx /∂ . These reduced sensitivity 
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coefficients have then the same unit as both model output moy  and standard deviation εσ  of 

the measurement noise. If their magnitude is less than the magnitude of the standard 
deviation εσ  of the measurement noise εσ , it means that the influence of the considered 

parameter on the model response will not be measurable with a correct accuracy. 
Consequently, the estimation of this parameter through the use of experimental 
measurements, if possible, will be highly inaccurate. Rapid information may then be given by 
comparing the magnitude of each reduced sensitivity coefficient to the magnitude of the 
measurement noise, with respect to the independent variable (here time). 

In the preceding example, we have then (with n=2 parameters):  
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S  (2.50) 

Let us notice that all the coefficients defining x have to be chosen in order to calculate (and 
compare) the reduced sensitivity coefficients: contrary to the sensitivity coefficients of a linear 
model, they do depend on the value of the parameter vector x. That is why they are  usually 
calculated using a nominal value for this vector, that is a value that is a priori expected to be 
close to its exact value in a parameter estimation problem. 

3.1.1. Graphical analysis of reduced sensitivity coefficients 

As said before, when nominal values of parameters have been chosen, it could be very 
instructive to plot all the reduced sensitivity coefficients composing each column of *S on 
the same graph in order to ‘visually’ detect some future bad conditioning of matrices 

** SS
t

and SS t . This may be caused by (see Beck et al., 1977): 

- one or more columns of *S have coefficients with low absolute values compared to 
the other ones and compared to the noise level εσ , indicating poor sensitivities of 

the model to some parameters, 

- two or more column are close to be linearly dependent, indicating correlations 
between some parameters that will prevent their simultaneous identification. The 
simplest detectable dependence is the proportionality between two coefficients (see 
Figure 6  and Figure 7  for favorable and unfavorable situations) 
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Figure 6 : some situations 
where reduced sensitivity 
coefficients S *

k and S *
j are 

linearly independent  

 

Figure 7 : some situations 
where reduced sensitivity 
coefficients S *

k and S *
j (and 

sometimes S *
p) are linearly 

dependent, implying a bad 
conditioning of the 
information matrix 

** SS
t

making it difficult, or 
impossible, to inverse it. 
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Complementary analysis of the scaled (or reduced) sensitivity matrix can also be found in 
section 3.3.2 of Lecture 4 of this series.  

3.1.2. The relative covariance matrix, and relative confidence intervals 

The relative covariance matrix (size n×n for estimation of n parameters) is built in the same 
way than the absolute covariance matrix (see equations (2.35) and (2.39)) but the 
amplification matrix (inverse of information matrix) is now built with the reduced sensitivity 
matrix S* instead of S : 
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 (2.51a) 

Then, the C* contains on its main diagonal the n relative variances associated to each 
component of the estimated vector OLSx̂ . The square root of the ith diagonal component of 

*C  is then the relative standard deviation (dimensionless) associated to the estimation OLSix ,ˆ  

and can be expressed in %. 

OLSi

i
ii x

C
,

*

ˆ
(%)

σ= , i=1,…,n (2.51b) 

Last, the half width of relative confidence interval (%)1 α−
iCI , at a level of confidence of 

)%1(100 α− , associated to the estimation OLSix ,ˆ  (and that was evaluated with 100 stochastic 

simulations in part 2.5.1.) is now given by : 

 
*

2/1
1 )((%) iii CrntCI ×−= −

−
α

α , i=1,…,n (2. 52) 

 
Finally the result of the estimation process of the unknown exact parameter exact

ix can be 
presented as the following, with the relative confidence interval :  
 

‘ exact
ix has 95% chance of being in the interval [ ](%)ˆ       (%)ˆ 95.0

,
95.0

, iOLSiiOLSi CIxCIx +− ’ 

or :  ‘ (%)ˆ 95.0
, iOLSi

exact
i CIxx ±=  with 95% chance’ 
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The elliptical relative confidence region corresponding to the scattering of estimations of 

Figure 3  can also be computed with the relative information matrix ** SS
t

, the resulting 

equation expressed in the reduced coordinates *δx is : 

1*

2****

)ˆ(.

..
−=

=

OLS

tt

diag xδxδx

δxSSδx ∆
 (2.53) 

‘Absolute’ and ‘relative’ ellipses are plotted respectively on Figure 9  and Figure 9  to show 
that they correctly predict the extent of the 100 estimations cloud. 
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Figure 8 : 100 estimations cloud and 95% 
absolute confidence elliptical region around 

the cloud mean  

Figure 9 : 100 estimations cloud and 95% 
relative  confidence elliptical region  

 

3.2. Illustration, with a simple example, of different situations that modify the quality of 
estimation  

Here are illustrated, with the example described by Table 2 , the influence of some 
experimental parameters on the quality of estimation. This quality is visualized by the extent 
of the confidence region and some of the quantitative indicators presented above are also 
observed. 

3.2.1. Influence of noise standard deviation εσ  

In Figure 10  the extension of the confidence region is shown, with respect to the standard 
deviation of noise measurement εσ , without changing its orientation. This is conform to eq. 

(2.44) giving the ellipse area proportional to the square of εσ . 

3.2.2. Influence of number of measurements m (in the same time range) 

In Figure 11  the extension of the confidence region is shown, with respect to the number of 
measurements m, without changing its orientation. This is conform to eq. (2.44) giving the 
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ellipse area inversely proportional to the square root of )det( SS t , this area being inversely 
proportional to m. Then halving the noise level is better than doubling the number of 
measurements. 

 

 

 

4 4.5 5 5.5 6 6.5
0

0.5

1

1.5

2

2.5

3

3.5

noise halfed

noise doubled

)(ˆ2 Kx

)/(ˆ1 hKx  

)(ˆ2 Kx

)/(ˆ1 hKx
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0
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1

1.5
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2.5

3

3.5

m doubled

m halfed

tmin and tmax fixed (dt adapted)

Figure 10 : Confidence ellipse extent as a 
function of noise level: in green (reference 

case) K5.0=εσ . 

Figure 11 : Confidence ellipse extent as a 
function of the number of measurements m: in 

green (reference case) m=20.  

3.2.3. Influence of time range (for m=20 measurements) 

The last tested experimental parameter is the time range, with a constant number of 
measurements (m = 20), see Figure 12. The results are presented in Figure 13 and Table 
3. 
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Figure 12 : three time range are tested, 
giving three clouds of estimations on 

Figure 13  

Figure 13 : three clouds of estimations 
(corresponding to the three time ranges for 

the experiments) and relative 95% confidence 
ellipse  

Figure 13  shows that when experiments are done at ‘high’ time values, the confidence 
ellipse is growing, especially along the x2 axis : the estimation of x2 (intercept of the model 
x1t+x2) is more and more inaccurate when the measurements are realized at high time 
values (far from t=0). This is confirmed by the reduced sensitivity plots on Figure 14  and 
Figure 15  (see comments in legends). 

 
Table 3 : results of estimations for three different time ranges,withm=20 measurements 
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Figure 14 : first time range (between 0.5h 

and 2.5h). Reduced sensitivity are of same 
order of magnitude, sensitivity to x 1 is 

better than x 2 and is increasing with time  

Figure 15 : third time range (between 15h and 
17.5h). Reduced sensitivity to x 1 is far better 
than sensitivity to x 2 that appears now very 

close to zero comparing to S *
1 

 
 
Last, the Table 4  shows multiple indicators confirming that increasing the beginning of the 
time range for the estimation of x1 and x2 is degrading the conditioning and then the quality of 
estimation. 

 
Table 4 : indicators values for the three experimen ts. In the first column, the arrows indicate if 

the indicator should be high (arrow up) or low (arr ow down) to improve the conditioning.  

 

3.3. Singular Value Decomposition of a matrix and condition number 
 

3.3.1 Singular Value Decomposition of a rectangular matrix 
 
Any rectangular matrix (called K here) with real coefficients and dimension (m, n) with 

nm ≥ , can be written under the form : 
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tVWUK = ,  that is  
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 (2.54) 

 

 
This expression is sometimes called "lean" singular decomposition or "economical" SVD and 
involves  
 
- U , an orthogonal matrix of dimensions (m, n) : its column vectors (the left singular vectors 
of K) have a unit norm and are orthogonal by pairs : n

t IUU = , where nI  is the identity 
matrix of dimension n. Its columns are composed of the first n eigenvectors Uk, ordered 
according to decreasing values of the eigenvalues of matrix  tKK . Let us note that, in the 

general case, m
t IUU ≠ . 

 
- V , a square orthogonal matrix of dimensions (n, n), : n

tt IVVVV == . Its column vectors 
(the right singular vectors of K), are the n eigenvectors Vk, ordered according to decreasing 

eigenvalues, of matrix  KK t ; 
 
- W , a square diagonal matrix of dimensions (n x n), that contains the n so-called singular 
values of matrix K , ordered according to decreasing values : nwww ≥≥≥ L21 . The 
singular values of matrix K  are defined as the square roots of the eigenvalues of matrix 

KK t . If matrix K  is square and positive-definite, the eigenvalues and the singular values of 
K are the same. 
 
Another SVD form called "Full Singular Value Decomposition" is available for matrix K. In this 
equivalent definition, both matrices U and W are changed: the matrix replacing U is now 
square (size m x m) and the matrix replacing W is now diagonal but non square (size m x n). 
In the case nm ≥ , this can be written: 
 

[ ] )()(dimand;with
x)(

0000 m - nxmcomp
nnm
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===

−
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WUUUVWUK 0  

(2.55a) 
 

or: 
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 (2.55b) 

 
Matrix compU is composed of the (m - n) left singular column vectors not present in  U. So, the 

concatenated matrix 0U verifies now: 
 

m
t

compcomp
ttt IUUUUUUUU =+== 0000      (2.56) 

 
This singular value decomposition (2.55b) can be implemented for any matrix K ,  with real 
value coefficients, for nm ≥ . Let us note that if , a decomposition of similar type exists too. 
 

3.3.2 Interest of the Singular Value Decomposition in linear parameter estimation 
 
We have seen above that if all the n parameters in a parameter vector x are looked for for a 
linear model xSxy   )( =mo , where m noised measurements εxSy +=   are available, and 

if noised ε  is i.i.d., that is mIε 2)(cov εσ= , its OLS estimator can be written: 
 

( ) ( ) 121
)(covand)(Ewith

−−
=== SSxεSSSx t

OLS
tt

OLS ˆyˆ εσ0  (2.57) 
 
The potential difficulty in its estimation may stem from the possible ill-conditioning of the 
square information matrix SS t  whose inversion make the standard deviations of its different 

parameters jx̂ become very large with respect to their exact value, see equation (2.35). So, 

a normalized critetion can be constructed in order to  assess the quality of the estimation of 
the n parameters.  
This can be made through normalization of all the parameters xj present in parameter vector 
x by a a nominal value xnom, j  (which, in parameter estimation results from a prior knowledge 
of the order of magnitude of the corresponding parameter) to get a reduced parameter vector 

redx  without any physical unit:  
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So the output of the linear model can be expressed in terms of the reduced sensitivity matrix 

S* and of the reduced parameter redx : 
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nom
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nomnommo RSSxSxRRSxSy ==== − since1   (2.59) 

 
OLS estimation of this reduced parameter vector becomes, using equation (2.23): 
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 (2.60) 

 
And its covariance can be easily derived: 
 

( ) 12)(cov
−

= *t*redˆ SSx εσ      (2.61) 
 
It is the same relationship as (2.51a). Since all the components of the reduced sensitivity 

matrix have the same unit as signal y, and because redx  is dimensionless, it is possible to 
consider *S  as a linear application from a vector space of dimension n into a vector space of 
dimension m. That was not possible for the original parameter column-vector x, which did not 
belong to a true mathematical vector space, because its coefficients had not the same units. 
 

So, it is now possible to write the lean SVD of  *S , which uses the notion of Euclidian norm 
of different true vectors, see equation (2.54): 
 

t* VWUS =       (2.62) 

 
It is now possible to calculate the amplification coefficient of the relative error kr, see equation 
(1.7) in  Lecture 1 of the same series: 
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Using the properties of matrices U and V described in section 3.3.1, as well as equation 
(2.60), one can show: 
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  (2.64) 

 
One can recognize in the right-hand term of the last inequality (2.64) the product of norms of 
two matrices. The second matrix is simply the SVD form of the reduced sensitivity matrix 

*S while the first one is just the pseudo inverse of *S , which is noted +*S  here. 
 
Let’s remind that the norm of any matrix K (which has not to be square) is defined by: 
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where )(1 Kw  is the largest singular value of K. This  singular value is simply the square root 

of the largest (positive) value of the reduced information matrix )(1
*t* SSλ , see equation 

(2.46). One can show that: 
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So, it can be shown, using (2.63), (2.64) and (2.66) that the maximum value of the 
amplification coefficient of the relative error kr, that is the criterion that assesses the ill-posed 
character of the OLS parameter estimation problem is equal to the condition number, noted      
cond (.)  here, of the reduced sensitivity matrix: 

)(

)(
)(cond)( 1

*
n

*
*

r w

w
k

S
S

Sε =≤      (2.63) 

 
So, this condition number, defined here with the Euclidian L2 norm, is the pertinent criterion 
that can be used to measure the degree of ill-posedness of a linear parameter estimation 
problem, whatever the value of the noise level (for an i.i.d. noise). Since it requires the 
construction of the reduced sensitivity matrix, it depends on the nominal values of the 
parameters and can change strongly, depending on this choice, even if the problem is linear. 

 
4. Conclusion 
 
The example of a linear model with respect to its two parameters is rich enough to introduce 
many tools useful in the field of parameter estimation : sensitivity coefficients that compose 
the sensitivity matrix that has to be inverted to solve the estimation problem are the main 
tool. The covariance matrix that helps to qualify the quality of the estimation (variance of 
each estimation, correlation between them, size of the confidence region), needs also these 
coefficients. In the non linear case, the problem is often solved by assuming a local linear 
behaviour of the objective function to be minimized and of the confidence region. 
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