Lecture L2 : Basics for linear inversion, the 'white box' case

Fabrice Rigollet, Christophe Le Niliot IUSTI UMR CNRS 6595
Marseille, France

Olivier Fudym
RAPSODEE FRE 3213 CNRS
Ecole des Mines d'Albi, France

Daniel Petit
PPRIME
Poitiers, France

Denis Maillet
LEMTA UMR CNRS
Nancy, France

General context, white box case

 2011

First : Beyong the magic of 'trendline tool' ('courbe de tendance' in français...)

20 measurements y_{i} at 20 times $t_{i}, i=1$ to 20

Beyong the magic of 'trendline tool'

20 measurements y_{i} at 20 times $t_{i}, i=1$ to 20

Beyong the magic of 'trendline tool'

20 measurements y_{i} at 20 times $t_{i}, i=1$ to 20

Beyong the magic of 'trendline tool'

20 measurements y_{i} at 20 times $t_{i}, i=1$ to 20

Beyong the magic of 'trendline tool'

20 measurements y_{i} at 20 times $t_{i}, i=1$ to 20

Let's play with the trendline tool, and let's observe what happens...

A researcher (names Y. J.) works with three students, on an experiment that begins at 0.00 o'clock and that is during about 20h. Each student performs $\mathrm{m}=20$ measurements y_{i}. Each measurement is done with the same accuracy.

Y. J. suspects that every measurement can be explained by the simple model :
$y_{m o}=x_{1} t+x_{2}$
He also expects the values
$x_{1}=x_{1}^{\text {nom }}=5 K / h$
$x_{2}=x_{2}^{\text {nom }}=2 K$
...but keep them secret... He asks each student to use the trendline tool on his own 20 measurements and give him the value of x_{1} and x_{2}

Result of estimations in the 'estimation plane’

Result of estimations in the 'estimation plane'

 2011

- each student gives a different result
- each student is at a different distance from the expected value

One way to be sure :
« Do experiment and parameter estimation again! And again, and again....! "

The experiment is the same... excepted the random part of it : the noise measurement

Mettis

 2011

Relative scattering of each cloud around its center

Results

Each student can annonce now :

- the central value of its cloud of 100 estimations
- a size of the region (absolute and relative) in which are located the majority of its estimations

Student	D.M.	P.L.M.	Y.F.
Time range (h)	$0.5 \mathrm{~h}-2.5 \mathrm{~h}$	$5 \mathrm{~h}-7.5 \mathrm{~h}$	$15 \mathrm{~h}-17.5 \mathrm{~h}$
Central value $\bar{X}_{1}(\mathrm{~K} / \mathrm{h})$	$4.994 \mathrm{~K} / \mathrm{h}$	$4.738 \mathrm{~K} / \mathrm{h}$	$4.985 \mathrm{~K} / \mathrm{h}$
Absolute interval $(\mathrm{K} / \mathrm{h})$	$\pm 0.3 \mathrm{~K} / \mathrm{h}$	$\pm 0.35 \mathrm{~K} / \mathrm{h}$	$\pm 0.35 \mathrm{~K} / \mathrm{h}$
Relative interval $(\%)$	$\pm 6 \%$	$\pm 7 \%$	$\pm 7 \%$
Central value $\bar{X}_{2}(\mathrm{~K})$	2.019	3.52	2.223
Absolute interval (K)	$\pm 0.5 \mathrm{~K}$	$\pm 1 \mathrm{~K} / \mathrm{h}$	$\pm 5.3 \mathrm{~K} / \mathrm{h}$
Relative interval $(\%)$	$\pm 10 \%$	$\pm 28 \%$	$\pm 106 \%$

- Finally we can say that to the question:
'Find the x_{1} and x_{2} values of model $y_{m o}=x_{1} t+x_{2}$,
given m measurements y_{i} at t_{i}^{\prime}
the answer is not :
'a unique point $\left(\hat{x}_{1}, \hat{x}_{2}\right)$ '
but rather :
'a SPOT (or a cloud) of points $\left(\hat{x}_{1}, \hat{x}_{2}\right)$ ' because of random noise measurement. In other words :

'Blur on measurements gives blur on estimations'
- Here clouds of estimations have elliptical shapes with high density in the central region
- The center of each spot is very close to the nominal value
- The ideal spot would be : - with the 'smallest' extension

Next comments : influence of experimental conditions

- It seems that certain experimental conditions are better than others :
- here, measurements have to be 'close' to $t=0$
- Suppose we know the equation of the elliptical solution spot (detailed later) :
- What happens if noise measurement magnitude changes ?

- What happens if number of measurements ($m=20$) changes ?

Back to the magic...

- So it would be very interesting to predict the performances of a parameter estimation method in term of 'spot (or cloud) of estimations' without achieving 100 experiment/identifications!
- We must try to predict the shape of the 'spot of estimations' (that will be called 'the confidence region'), associated to only one experiment/identification realisation
- But before, we have to reveal the secret of the 'magic/top model/OLS line'...

($m \times 1$) experimental measurements vector

$$
\boldsymbol{y}=\left[y_{1} \ldots y_{i} \ldots y_{m}\right]^{\mathrm{t}} \quad \text { with } \quad y_{i}=y\left(t_{i}\right), t_{i}=t_{\min }+(i-1) . d t, \quad i=1, \ldots, m
$$

($m \times 1$) time vector (explicative variable)

$$
\boldsymbol{t}=\left[t_{1} \ldots t_{i} \ldots t_{m}\right]^{t}
$$

($m \times 1$) measurement errors vector

$$
\boldsymbol{\varepsilon}=\left[\varepsilon_{1} \ldots \varepsilon_{i} \ldots \varepsilon_{n}\right]^{\mathbf{t}} \quad \varepsilon_{i} \text { be the (unknown) error associated to the measurement }
$$

Some assumptions have to be done on these measurement errors.

Number	Assumption on measurement errors	Explanation
1	Additive errors	$\boldsymbol{y}=\boldsymbol{y}_{\text {perfect }}+\boldsymbol{\varepsilon}$
2	Unbiased model	$\boldsymbol{y}_{\text {perfect }}=y_{\text {mo }}\left(x^{\text {exact }}\right)$
3	Zero mean errors	$E[\varepsilon]=0$
4	Constant variance	$\operatorname{Var}[\varepsilon]=\sigma_{\varepsilon}^{2}$
5	Uncorrelated errors	$\operatorname{Cov}\left[\varepsilon_{i} \varepsilon_{j}\right]=0$ for $i \neq j$
6	Normal probability distribution	
7	Known statistical parameters	
8	No error in the $X_{i j}$	\mathbf{X} is not a random matrix
9	No prior information regarding the parameters	

$E[$.$] Is the expected value operator (representing the mean of a large number of$ realizations of the random variable)

Covariance Matrix of measurement errors

$$
\boldsymbol{\Psi}=E\left[(\boldsymbol{\varepsilon}-E[\boldsymbol{\varepsilon}])(\boldsymbol{\varepsilon}-E[\boldsymbol{\varepsilon}])^{t}\right]=E\left[\boldsymbol{\varepsilon} \boldsymbol{\varepsilon}^{t}\right]=\operatorname{diag}\left(\sigma_{\varepsilon}^{2}, \cdots, \sigma_{\varepsilon}^{2}, \cdots, \sigma_{\varepsilon}^{2}\right)=\boldsymbol{I} . \sigma_{\varepsilon}^{2}
$$

Roadmap for estimation
($m \times 1$) experimental measurements vector

$$
\begin{aligned}
& \boldsymbol{y}_{m o}(\boldsymbol{t}, \boldsymbol{x})=\left[\begin{array}{llll}
y_{m o, i}\left(t_{1}, \boldsymbol{x}\right) \ldots & y_{m o, i}\left(t_{i}, \boldsymbol{x}\right) \ldots & y_{m o, m}\left(t_{m}, \boldsymbol{x}\right)
\end{array}\right]^{\mathbf{t}} \\
& \text { with } y_{m o}(t, \boldsymbol{x})=\eta(t, \boldsymbol{x}) \\
& \text { parameters vector }(n \times 1): \quad \boldsymbol{x}=\left[\begin{array}{lll}
x_{1} & \ldots & x_{n}
\end{array}\right]^{\mathbf{t}}
\end{aligned}
$$

Modelization of the experiment (Direct calculation)

With here: $y_{m o}(t, \boldsymbol{x})=x_{1} t+x_{2}$

Roadmap for estimation

$$
y_{m o}(t, \boldsymbol{x})=x_{1} t+x_{2}
$$

NB : that model is said 'linear' on the parameter estimation point of view because it is linear with respect to its parameter x_{i}. The following model

$$
y_{\text {mo }}(t, \boldsymbol{x})=x_{1} \sqrt{t}+x_{2} \cdot \operatorname{erf}(t)
$$

is still linear with respect to its parameter x_{i} even it is not with respect to time. The following model

$$
y_{m o}(t, \boldsymbol{x})=x_{1} \sqrt{t}+\exp \left(-x_{2} t\right)
$$

is not linear with respect to x_{2}

Writing the m model values for the m time values, the m resulting equations can be written in a matrix way as following :

$$
\left[\begin{array}{c}
y_{m o, 1} \\
\vdots \\
y_{m o, i} \\
\vdots \\
y_{m o, m}
\end{array}\right]=\left[\begin{array}{cc}
t_{1} & 1 \\
\vdots & \vdots \\
t_{i} & 1 \\
\vdots & \vdots \\
t_{m} & 1
\end{array}\right] \cdot\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \text { or } \boldsymbol{y}_{m o}=\boldsymbol{S x} \quad \text { with } \boldsymbol{S}=\left[\begin{array}{cc}
S_{1}\left(t_{1}\right) & S_{2}\left(t_{1}\right) \\
\vdots & \vdots \\
S_{1}\left(t_{i}\right) & S_{2}\left(t_{1}\right) \\
\vdots & \vdots \\
S_{1}\left(t_{m}\right) & S_{2}\left(t_{1}\right)
\end{array}\right]=\left[\begin{array}{cc}
t_{1} & 1 \\
\vdots & \vdots \\
t_{i} & 1 \\
\vdots & \vdots \\
t_{m} & 1
\end{array}\right]
$$

with $\quad S_{k}(t, \boldsymbol{x})=\left.\frac{\partial y_{m 0}(t, \boldsymbol{x})}{\partial x_{k}}\right|_{t, x_{j} \text { for } \mathrm{j} \neq \mathbf{k}} \begin{aligned} & \text { : sensitivity coefficient relative } \\ & \text { to parameter } x_{k}, k=1, \ldots, n\end{aligned}$

Roadmap for estimation

Problem : use the $m(=20)$ measurements to estimate the $n(2)$ unknown parameters : Overdetermined problem transformed in a minimization problem :

Residual vector ($\mathrm{m} \times 1$)

$$
\boldsymbol{r}(\hat{\boldsymbol{x}})=\boldsymbol{y}-\boldsymbol{y}_{m o}(\hat{\boldsymbol{x}})=\left[\begin{array}{lllll}
y_{1}-y_{m o, 1}\left(t_{1}, \hat{\boldsymbol{x}}\right) & \ldots & y_{i}-y_{m o i i}\left(t_{i}, \hat{\boldsymbol{x}}\right) & \ldots & y_{m}-y_{m o, m}\left(t_{m}, \hat{\boldsymbol{x}}\right)
\end{array}\right]^{t}
$$

Without any a priori information on the parameters and given the above assumptions for measurements errors, the square of the Euclidian norm of the residual vector is minimised:

$$
J_{O L S}(\hat{\boldsymbol{x}})=\|\boldsymbol{r}(\hat{\boldsymbol{x}})\|^{2}=\|\boldsymbol{y}-\boldsymbol{S} \hat{\boldsymbol{x}}\|^{2}
$$

This scalar number is called the Ordinary Least Squares (OLS) cost function

$$
\left.J_{O L S}(\hat{\boldsymbol{x}})=\sum_{i=1}^{m} r_{i}(\hat{\boldsymbol{x}})^{2}=\sum_{i=1}^{m}\left(y_{i}-\sum_{j=1}^{n} S_{j}\left(t_{i}\right) \hat{x}_{j}\right)\right)^{2}=\sum_{i=1}^{m}\left(y_{i}-y_{m o, i}\left(t_{i}, \hat{\boldsymbol{x}}\right)\right)^{2}
$$

With a matrix formulation it gives :

$$
\begin{aligned}
& J_{O L S}(\hat{\boldsymbol{x}})=\left[\boldsymbol{y}-\boldsymbol{y}_{m o}(\hat{\boldsymbol{x}})\right]^{t}\left[\boldsymbol{y}-\boldsymbol{y}_{\text {mo }}(\hat{\boldsymbol{x}})\right] \\
& J_{O L S}(\hat{\boldsymbol{x}})=[\boldsymbol{y}-\boldsymbol{S} \hat{\boldsymbol{x}}]^{t}[\boldsymbol{y}-\boldsymbol{S} \hat{\boldsymbol{x}}]
\end{aligned}
$$

The solution of the problem is then : $\hat{\boldsymbol{x}}_{\text {OLS }}=\arg \left[\min \left(J_{O L S}(\hat{\boldsymbol{x}})\right]\right.$

Roadmap for estimation

The OLS estimator is the one that minimizes the scalar function $J_{\text {OLS }}(\hat{\boldsymbol{x}})$

$$
\nabla_{x} J_{O L S}\left(\hat{\boldsymbol{x}}_{O L S}\right)=0 \quad \text { with } \quad \nabla_{x}=\left(\begin{array}{c}
\frac{\partial}{\partial x_{1}} \\
\vdots \\
\frac{\partial}{\partial x_{n}}
\end{array}\right)
$$

$$
\nabla_{x} J_{O L S}(\hat{\boldsymbol{x}})=2\left[\nabla_{x}\left[\boldsymbol{y}-\boldsymbol{y}_{m o}(\hat{\boldsymbol{x}})\right]\right]^{t}\left[\boldsymbol{y}-\boldsymbol{y}_{m o}(\hat{\boldsymbol{x}})\right]
$$

Knowing that $\boldsymbol{S}^{t}=\left[\nabla_{x} \boldsymbol{y}_{m o}(\hat{\boldsymbol{x}})\right]^{t}$ and $\quad \boldsymbol{y}_{m o}(\hat{\boldsymbol{x}})=\boldsymbol{S} \hat{\boldsymbol{x}}$

$$
\nabla_{x} J_{O L S}(\hat{\boldsymbol{x}})=-2 \boldsymbol{S}^{t}[\boldsymbol{y}-\boldsymbol{S} \hat{\boldsymbol{x}}]
$$

Then $\hat{\boldsymbol{x}}_{O L S}$ is solution of : $\left[\boldsymbol{S}^{t} \boldsymbol{S}\right] \hat{\boldsymbol{x}}_{O L S}=\boldsymbol{S}^{t} \boldsymbol{y} \quad$ (the Normal Equation)

NB : $\left[\boldsymbol{S}^{t} \boldsymbol{S}\right]^{-1} \boldsymbol{S}^{t}(\mathrm{n} \times \mathrm{m})$ is the Moore Penrose matrix
If we distinguish parameters to be estimated $\boldsymbol{x}_{\boldsymbol{r}}$ from parameters that will be fixed $\boldsymbol{x}_{\boldsymbol{c}}$

$$
\boldsymbol{y}_{\boldsymbol{m o}}(\boldsymbol{x})=\boldsymbol{S} \boldsymbol{X}=\boldsymbol{S}_{\boldsymbol{r}} \boldsymbol{x}_{\boldsymbol{r}}+\boldsymbol{S}_{\boldsymbol{c}} \boldsymbol{x}_{c}
$$

$\left.\boldsymbol{S}=\left[\boldsymbol{S}_{r}: \boldsymbol{S}_{c}\right]=\left[\left[\begin{array}{ccc}\mathcal{S}_{1}\left(t_{1}\right) & \ldots & S_{r}\left(t_{1}\right) \\ \vdots & \ldots & \vdots \\ S_{1}\left(t_{m}\right) & \ldots & S_{r}\left(t_{m}\right)\end{array}\right]: \begin{array}{cccc}S_{r+1}\left(t_{1}\right) & \ldots & S_{q}\left(t_{1}\right) \\ \vdots & \ldots & \vdots \\ S_{r+1}\left(t_{m}\right) & \ldots & S_{q}\left(t_{m}\right)\end{array}\right]\right]$

$$
\hat{\boldsymbol{x}}_{\text {OLS }}=\left[\mathbf{S}_{r}^{t} \mathbf{S}_{r}\right]^{-1} \boldsymbol{S}_{r}^{t}\left(\boldsymbol{y}-\boldsymbol{S}_{c} \boldsymbol{x}_{c}\right)
$$

Matrix $\boldsymbol{S}^{t} \boldsymbol{S}$ needs to be inverted

Roadmap for estimation
\#5 : the confidence through the covariance
$\boldsymbol{e}_{r}=\hat{\boldsymbol{x}}_{r, \text { OLS }}\left(\tilde{\boldsymbol{x}}_{c}\right)-\boldsymbol{x}_{r}^{\text {exact }}:$ error on estimations
$\boldsymbol{e}_{c}=\tilde{\boldsymbol{x}}_{c}-\boldsymbol{x}_{c}^{\text {exact }} \quad:$ deterministic error (bias) on parameter
$\hat{\boldsymbol{x}}_{r, \text { oLS }}\left(\tilde{\boldsymbol{x}}_{c}\right)=\boldsymbol{A}_{r}\left(\boldsymbol{y}-\boldsymbol{S}_{c} \tilde{\boldsymbol{x}}_{c}\right) \quad$ and $\quad \boldsymbol{y}=\boldsymbol{y}_{m 0}\left(\boldsymbol{x}^{\text {exacat }}\right)+\boldsymbol{\varepsilon}=\boldsymbol{S}_{r} \boldsymbol{x}_{r}^{\text {eratat }}+\boldsymbol{S}_{c} \boldsymbol{x}_{c}^{\text {exact }}+\boldsymbol{\varepsilon}$
$\rightarrow \boldsymbol{e}_{r}=\hat{\boldsymbol{x}}_{r, \text { OLS }}\left(\tilde{\boldsymbol{x}}_{c}\right)-\boldsymbol{x}_{r}^{\text {exact }}=\boldsymbol{A}_{\boldsymbol{r}} \boldsymbol{\varepsilon}-\boldsymbol{A}_{r} \boldsymbol{S}_{c} \boldsymbol{e}_{c}=\boldsymbol{e}_{r 1}+\boldsymbol{e}_{r 2} \quad, \quad \boldsymbol{A}_{r}=\left[\boldsymbol{S}_{r}^{t} \boldsymbol{S}_{r}\right]^{-1} \boldsymbol{S}_{r}^{t}$

Random contribution due to random measurement errors
the non-random (deterministic) contribution to the total error vector due to the deterministic error on the fixed parameters

Covariance of estimations

$$
\boldsymbol{C}_{1}=\operatorname{cov}\left(\boldsymbol{e}_{r 1}\right)=E\left[\boldsymbol{e}_{r 1} \boldsymbol{e}_{r 1}^{t}\right]=\boldsymbol{A}_{r} E\left[\boldsymbol{\varepsilon} \boldsymbol{\varepsilon}^{t}\right] \boldsymbol{A}_{r}^{t}=\boldsymbol{A}_{r} \boldsymbol{\psi} \boldsymbol{A}_{r}^{t}=\left[\boldsymbol{S}_{r}^{t} \boldsymbol{S}_{r}\right]^{-1} \boldsymbol{\sigma}_{\varepsilon}^{2}=\boldsymbol{C}_{1}
$$

$\longrightarrow\left[\boldsymbol{S}_{r}^{t} \boldsymbol{S}_{r}\right]^{-1}$ is a matrix (r×r) that amplifies the noise measurements (we have found the danger!)

Bias of estimations

$$
E\left[\boldsymbol{e}_{r 2}\right]=-\boldsymbol{A}_{r} \boldsymbol{S}_{c} \boldsymbol{e}_{c}=\left[\boldsymbol{S}_{r}^{t} \mathbf{S}_{r}\right]^{-1} \mathbf{S}_{r}^{t} \boldsymbol{S}_{c} \boldsymbol{e}_{c} \neq 0
$$

$\longrightarrow\left[\boldsymbol{S}_{r}^{t} \boldsymbol{S}_{r}\right]^{-1} \boldsymbol{S}_{r}^{t} \boldsymbol{S}_{c} \quad \begin{aligned} & \text { is a matrix }(r \times(n-r) \text {) that amplifies the bias on fixed } \\ & \text { parameters (we have found another danger!) }\end{aligned}$

Roadmap for estimation

For a fixed value of $\tilde{\boldsymbol{x}}_{c}$, the covariance matrix of estimations errors is

$$
\boldsymbol{C}_{r}=\operatorname{cov}\left(\boldsymbol{e}_{r}\right)=E\left[\left(\boldsymbol{e}_{r}-E\left[\boldsymbol{e}_{r}\right]\right)\left(\boldsymbol{e}_{r}-E\left[\boldsymbol{e}_{r}\right]\right)^{t}\right]=E\left[\boldsymbol{e}_{r 1} \boldsymbol{e}_{r 1}^{t}\right]=\operatorname{cov}\left(\boldsymbol{e}_{r 1}\right)=\boldsymbol{C}_{1}
$$

The covariance matrix components are

Individual variances on the r estimations are on the diagonal

Roadmap for estimation

$$
\boldsymbol{C}_{1}=\left[\mathbf{S}_{r}^{t} \mathbf{S}_{r}\right]^{-1} \boldsymbol{\sigma}_{\varepsilon}^{2}
$$

if σ_{ε}^{2} is not measured before the experiment, an estimation of it may be obtained at the end of estimation thanks to the final value of the objective function :

$$
J_{O L S}\left(\hat{\boldsymbol{x}}_{r, O L S}\left(\tilde{\boldsymbol{x}}_{c}\right)\right)=\sum_{i=1}^{m} r_{i}\left(\hat{\boldsymbol{x}}_{O L S}\left(\tilde{\boldsymbol{x}}_{c}\right)\right)^{2}
$$

a non biased estimation of σ_{ε}^{2} for the estimation of r parameter from the use of m measurements is thus given by

$$
\hat{\sigma}_{\varepsilon}^{2}=\frac{J_{O L S}\left(\hat{\boldsymbol{x}}_{r, O L S}\left(\tilde{\boldsymbol{x}}_{c}\right)\right)}{n-r}
$$

Equation in centered $\left(\delta x_{1}, \delta x_{2}\right)$ axes

$$
\boldsymbol{\delta} \boldsymbol{x}^{t} \cdot \boldsymbol{S}^{t} \boldsymbol{S} \cdot \boldsymbol{\delta} \boldsymbol{x}=\Delta^{2}
$$

$$
\Delta^{2}=\chi_{1-\alpha}^{2}(2) \sigma_{\varepsilon}^{2}
$$

σ_{ε}^{2} : variance of noise
$\chi_{1-\alpha}^{2}(2)$ is computed by chi2inv(alpha,2) in MATLAB ${ }^{\circledR}$ for a confidence region at a level 95\% ($\alpha=0.95$)

Equation in principal axes $\left(\delta x_{1}^{\prime}, \delta x_{2}^{\prime}\right): \quad \boldsymbol{\delta} \boldsymbol{x}^{\mathbf{\prime} t} . \boldsymbol{\Lambda} . \boldsymbol{\delta} \boldsymbol{x}^{\prime}=\Delta^{2}$
Where $\boldsymbol{\Lambda}=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}\right)$ contains the eigenvalues of $\boldsymbol{S}^{t} \boldsymbol{S}$

Length of the two half axis are 'long' if eigenvalues are 'small' :

$$
\begin{aligned}
& \rho_{1}=\Delta / \sqrt{\lambda_{1}} \\
& \rho_{2}=\Delta / \sqrt{\lambda_{2}}
\end{aligned}
$$

Notice : determinant of $\boldsymbol{S}^{t} \boldsymbol{S}$ Is given by

$$
\operatorname{det}\left(\boldsymbol{S}^{t} \boldsymbol{S}\right)=\lambda_{1} \lambda_{2}
$$

the area of the region inside the ellipse is given by

$$
A=\pi . \rho_{1} \cdot \rho_{2}=\frac{\pi \chi_{1-\alpha}^{2}(2) \sigma_{\varepsilon}^{2}}{\sqrt{\operatorname{det}\left(\boldsymbol{S}^{t} \boldsymbol{S}\right)}}=\frac{\pi \chi_{1-\alpha}^{2}(2) \sigma_{\varepsilon}^{2}}{\sqrt{\lambda_{1} \lambda_{2}}}
$$

$\boldsymbol{C}_{1}=\left[\mathbf{S}_{r}^{t} \mathbf{S}_{r}\right]^{-1} \sigma_{\varepsilon}^{2} \quad$: 'absolute' covariance matrix of estimations
We can use $\boldsymbol{S}^{*}=\boldsymbol{S} . \operatorname{diag}(\boldsymbol{x})$ instead of \boldsymbol{S}, whose the columns contain the reduced sensitivity coefficients (of same unit than model $y_{m o}$)

$$
S_{k}^{*}(t, \boldsymbol{x})=x_{k} S_{k}(t, \boldsymbol{x})=\left.x_{k} \frac{\partial y_{m o}(t, \boldsymbol{x})}{\partial x_{k}}\right|_{t, x_{j} \text { for } \mathrm{j} \neq \mathbf{k}}=\left.\frac{\partial y_{m o}(t, \boldsymbol{x})}{\frac{\partial x_{k}}{x_{k}}}\right|_{t, x_{j} \text { for } \mathrm{j} \neq \mathrm{k}}
$$

$\frac{\partial y_{m o}(t, \boldsymbol{x})}{\left(\frac{\partial x_{k}}{x_{k}}\right)}=$| Those reduced coefficients give the |
| :--- |
| absolute variation of model due to |
| relative variation on parameters |

They can be compared between them and compared to the magnitude of noise
$\boldsymbol{S}^{*}=\left[\begin{array}{cc}S_{1}^{*}\left(t_{1}\right) & S_{1}^{*}\left(t_{1}\right) \\ \vdots & \vdots \\ S_{i}^{*}\left(t_{i}\right) & S_{i}^{*}\left(t_{1}\right) \\ \vdots & \vdots \\ S_{m}^{*}\left(t_{m}\right) & S_{m}^{*}\left(t_{1}\right)\end{array}\right]=\left[\begin{array}{cc}x_{1} t_{1} & x_{2} \\ \vdots & \vdots \\ x_{1} t_{i} & x_{2} \\ \vdots & \vdots \\ x_{1} t_{m} & x_{2}\end{array}\right]$

With that reduced sensitivity matrix, we can build the relative covariance matrix

Roadmap for estimation

The same can be done with the ellipse equation

$$
\begin{aligned}
& \boldsymbol{\delta} \boldsymbol{x}^{t} \cdot \boldsymbol{S}^{t} \boldsymbol{S} . \boldsymbol{\delta} \boldsymbol{x}=\Delta^{2} \\
& \text { with } \boldsymbol{S}^{*}=\boldsymbol{S} \cdot \operatorname{diag}\left(\boldsymbol{x}^{\text {nom }}\right) \boldsymbol{S}=\boldsymbol{S}^{*} \operatorname{diag}\left(\boldsymbol{x}^{\text {nom }}\right)^{-1} \\
& \text { gives }(\underbrace{\operatorname{diag}\left(\boldsymbol{x}^{\text {nom }}\right)^{-1} \boldsymbol{\delta} \boldsymbol{x}}_{\frac{\delta \boldsymbol{x}}{\boldsymbol{x}^{n o m}} \longrightarrow})^{t} . \boldsymbol{S}^{t} \boldsymbol{S} . \operatorname{diag}\left(\boldsymbol{x}^{\text {nom }}\right)^{-1} \boldsymbol{\delta} \boldsymbol{x}=\Delta^{2} \\
& \text { Relative confidence ellipse (in \%) }
\end{aligned}
$$

Residuals analysis

Last, for qualifying the quality of estimation : the residuals analysis

$$
\boldsymbol{r}(\hat{\boldsymbol{x}})=\boldsymbol{y}-\boldsymbol{y}_{m o}(\hat{\boldsymbol{x}})=\left[\begin{array}{lllll}
y_{1}-y_{m o, 1}\left(t_{1}, \hat{\boldsymbol{x}}\right) & \ldots & y_{i}-y_{m o, i}\left(t_{i}, \hat{\boldsymbol{x}}\right) & \ldots & y_{m}-y_{m o, m}\left(t_{m}, \hat{\boldsymbol{x}}\right)
\end{array}\right]^{t}
$$

Difference between measurements and model response with optimal parameters must 'look like' noise measurement : 'the right model with the right parameters must explain the measurements except its random part'

(a) Uncorrelated residuals

(b) Signed residuals

The danger has been identified : the inversion of $\boldsymbol{S}^{t} \boldsymbol{S}$ or $\boldsymbol{S}^{* t} \boldsymbol{S}^{*}$
It has been shown that the matrix $\boldsymbol{S}^{t} \boldsymbol{S}$ is fundamental in the processus of parameter estimation :

- it has to be inverted to achieve the OLS estimation
- it also has to be inverted to compute the covariance matrix. The inverse of $\boldsymbol{S}^{t} \boldsymbol{S}$ respectively $\boldsymbol{S}^{* t} \boldsymbol{S}^{*}$ plays the role of "noise amplification", in absolute or, respectively, in relative values
- the eigenvalues of $\boldsymbol{S}^{t} \boldsymbol{S}$ enable the calculation of the lengths of the half principal axis of the elliptical confidence region
- the determinant of $\boldsymbol{S}^{t} \boldsymbol{S}$ enables the calculation of the area of the elliptical confidence region
\longrightarrow Illustration in our examples, using too the conditioning number of $\boldsymbol{S}^{t} \boldsymbol{S}$ SENSITIVITY COEFFICIENTS composing S MUST BE LINEARLY INDEPENDENT

Mettio 2011
'Graphical' analysis of reduced sensitivity coefficients : independent case

(a)

(d)

(9)

(b)

©

(h)

(c)

(1)

(i)
'Graphical' analysis of reduced sensitivity coefficients : dependent case

2011

 2011

Analysis of sensitivity coefficients in our triple situation

Student Y.F.

