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General context, white box case

Modelized excitation 
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White box : 
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First : Beyong the magic of ‘trendline tool’
(‘courbe de tendance’ in français...)

t (h)

20 measurements yi at 20 times ti, i=1 to 20
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Beyong the magic of ‘trendline tool’

t (h)

20 measurements yi at 20 times ti, i=1 to 20
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Beyong the magic of ‘trendline tool’

t (h)

20 measurements yi at 20 times ti, i=1 to 20
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Beyong the magic of ‘trendline tool’

t (h)

The ‘top model’ line

The ‘OLS’ line...

The ‘magic’ line

20 measurements yi at 20 times ti, i=1 to 20
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Beyong the magic of ‘trendline tool’

t (h)

The ‘magic’ model

Let’s play with the trendline tool, and let’s observe what happens...

20 measurements yi at 20 times ti, i=1 to 20
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Let’s play with the ‘trendline tool’

A researcher (names Y. J.) works with three students, on an experiment that begins
at 0.00 o’clock and that is during about 20h. Each student performs m=20 
measurements yi. Each measurement is done with the same accuracy.. 

0 5 10 15 20
0

20

40

60

80

100

t (h)

y 
(K

)

D.M. is working
between 0.5 and 2.5 am

P.L.M. is working
between 5 and 7.5 am

Y. F. is working, 
between 15 and 17.5 pm

Y. J. suspects that every
measurement can be explained by 
the simple model :

21 xtxymo +=

...but keep them secret... He asks
each student to use the trendline
tool on his own 20 measurements
and give him the value of x1 and x2

He also expects the values 

hKxx nom /511  ==
Kxx nom  222 ==
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Result of estimations in the ‘estimation plane’

4.7 4.8 4.9 5 5.1 5.2
1.5

2

2.5

3

3.5

4

4.5

5

expected nominal value

(5,2)

estimation by P.L.M.

(4.738,3.52)

(4.823,4.551)
estimation by Y.F.

estimation by D.M.
(5.092,1.624)

)(ˆ2 Kx

)/(ˆ1 hKx
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Result of estimations in the ‘estimation plane’

4.7 4.8 4.9 5 5.1 5.2
1.5

2

2.5

3

3.5

4

4.5

5

expected nominal value

error by 
P.L.M.

error by Y.F.

error by D.M.

• each student gives a 
different result

• each student is at a 
different distance from the 
expected value

One way to be sure : 
« Do experiment and parameter
estimation again! And again, and 
again.... ! »

)(ˆ2 Kx

)/(ˆ1 hKx

The experiment is the same... 
excepted the random part of it : 
the noise measurement
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Relative scattering of D.M.’s cloud around its center
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Three clouds of 100 estimations
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Relative scattering of each cloud around its center
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D.M. is working between
0.5 and 2.5 am

P.L.M. is working
between 5 and 7.5 am

Y. F. is working, between
15 and 17.5 pm
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Results

Each student can annonce now :
- the central value of its cloud of 100 estimations
- a size of the region (absolute and relative) in which are located the majority of its
estimations

Student D.M. P.L.M. Y.F.

Time range (h) 0.5 h -2.5 h 5 h -7.5 h 15 h -17.5 h

Central value        (K/h) 4.994 K/h 4.738 K/h 4.985 K/h

Absolute interval (K/h) ±0.3 K/h ±0.35 K/h ±0.35 K/h

Relative interval (%) ± 6 % ± 7 % ± 7 %

Central value        (K) 2.019 3.52 2.223

Absolute interval (K) ±0.5 K ±1 K/h ±5.3 K/h

Relative interval (%) ± 10 % ± 28 % ± 106 %

1x

2x
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First comments

� Here clouds of estimations have elliptical shapes with high density in 
the central region

� The center of each spot is very close to the nominal value

� Finally we can say that to the question :
‘Find the x1 and x2 values of model                           , 

given m measurements yi at ti’

the answer is not :
‘a unique point              ‘

but rather :

‘a SPOT (or a cloud) of points              ‘
because of random noise measurement.

In other words :

‘Blur on measurements gives blur on estimations’

21 xtxymo +=

)ˆ,ˆ( 21 xx

)ˆ,ˆ( 21 xx

4.4 4.6 4.8 5 5.2 5.4 5.6 5.8

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

)(ˆ2 Kx

)/(ˆ1 hKx

� The ideal spot would be :  - with the ‘smallest’ extension 

- centered on the nominal value
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Next comments : influence of experimental conditions

� Suppose we know the equation of the elliptical solution spot (detailed
later) :

� It seems that certain experimental conditions are better than others : 

� here, measurements have to be ‘close’ to t=0 

� What happens if noise measurement
magnitude changes ?

� What happens if number of 
measurements (m=20) changes ?

4 4.5 5 5.5 6 6.5
0

0.5
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1.5
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3.5

noise halfed

noise doubled

)(ˆ2 Kx

)/(ˆ1 hKx

)(ˆ2 Kx

)/(ˆ1 hKx
4 4.5 5 5.5 6 6.5

0

0.5

1

1.5

2

2.5

3

3.5

m doubled

m halfed

tmin and tmax fixed (dt adapted)
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Back to the magic...

� So it would be very interesting to predict the performances of a 
parameter estimation method in term of ‘spot (or cloud) of estimations’
without achieving 100 experiment/identifications!

� We must try to predict the shape of the ‘spot of estimations’ (that will
be called ‘the confidence region’), associated to only one 
experiment/identification realisation

� But before, we have to reveal the secret of the ‘magic/top model/OLS 
line’...

Add a trendline
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Roadmap for estimation               #1 : measurements

Modelized excitation 
and 

Boundary Conditions

Model 
function of

PARAMETERS

Model response =
f(PARAMETERS)

Modelization of the experiment (Direct calculation)

sample Measure of thermal 
response

Real experiment

excitation

Confidence on 
estimations

minimizes Optimal design of 
experiment

Comparison criterion
J=f(PARAMETERS)

Minimization
of criterion

PARAMETERS
MODIFICATION

(optimizer)

(estimator)
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Roadmap for estimation               #1 : measurements

sample Measure of thermal 
response

Real experiment

excitation

(m×1) experimental measurements vector 

[ ]t  mi yyy KK1=y

t
mi ttt ][ 1 KK=t

dtitti ).1(min −+=)( ii tyy =with

iε be the (unknown) error associated to the measurement 

iy

(m×1) measurement errors vector

[ ]t  ni εεε KK1=ε
Some assumptions have to be done on these measurement errors.

(m×1) time vector (explicative variable) 

, , i=1,…,m
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Roadmap for estimation               #1 : measurements

Number Assumption on measurement errors Explanation

1 Additive errors

2 Unbiased model

3 Zero mean errors

4 Constant variance

5 Uncorrelated errors for

6 Normal probability distribution

7 Known statistical parameters

8 No error in the Xij X is not a random matrix

9 No prior information regarding the parameters 

εyy += perfect

)( exact
moperfect xy=y

0][ =εE
2][ εσε =Var

0][ =jiCov εε ji ≠

[ ] [ ]tt EEEE εεεεεεψ =−−= ])[])([(
Covariance Matrix of measurement errors

[.]E Is the expected value operator (representing the mean of a large number of 
realizations of the random variable)

( ) 2222 .,,,, εεεε σσσσ I== LLdiag
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Roadmap for estimation               #1 : measurements

Modelized excitation 
and 

Boundary Conditions

Model 
function of

PARAMETERS

Model response =
f(PARAMETERS)

Modelization of the experiment (Direct calculation)

sample Measure of thermal 
response

Real experiment

excitation

Confidence on 
estimations

minimizes Optimal design of 
experiment

Comparison criterion
J=f(PARAMETERS)

Minimization
of criterion

PARAMETERS
MODIFICATION

(optimizer)

(estimator)
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Roadmap for estimation               #2 : model

(m×1) experimental measurements vector 

Modelized excitation 
and 

Boundary Conditions

Model 
function of

PARAMETERS

Model response =
f(PARAMETERS)

Modelization of the experiment (Direct calculation)

[ ]t ),(),(),(),( ,,11, xxxxtymo mmmoiimomo tytyty KK=

)η(t,tymo xx =),(with

parameters vector  (n×1) :  [ ]t  ... nxx1=x

21),( xtxtymo +=xWith here:
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Roadmap for estimation               #2 : model

21),( xtxtymo +=x

NB : that model is said ‘linear’ on the parameter estimation point of view because it
is linear with respect to its parameter xi. The following model 

)(.),( 21 terfxtxtymo +=x

is still linear with respect to its parameter xi even it is not with respect to time. The 
following model  

)exp(),( 21 txtxtymo −+=x

is not linear with respect to x2
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Roadmap for estimation               #2 : model

Writing the m model values  for the m time values , the m resulting equations   
can be written in a matrix way as following :
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: sensitivity coefficient relative 
to parameter xk, k=1,…,n
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Roadmap for estimation            #3 : the cost function

Problem : use the m(=20) measurements to estimate the n (2) unknown parameters :
Overdetermined problem transformed in a minimization problem : 

[ ]tmmmomiimoimomo tyytyytyy )ˆ,()ˆ,()ˆ,()ˆ()ˆ( ,,11,1 xxxxyyxr −−−=−= KK

iimoi tyy )ˆ,(, x−

Residual vector (m×1)

),ˆ( txymo
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Roadmap for estimation            #3 : the cost function

Without any a priori information on the parameters and given the above assumptions 
for measurements errors, the square of the Euclidian norm of the residual vector is 
minimised :

22 ˆ)ˆ()ˆ( xSyxrx −==OLSJ

This scalar number is called the Ordinary Least Squares (OLS) cost function

( )∑∑ ∑∑
== ==

−=
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i
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n

j
iji
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i
iOLS tyyxtSyrJ
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)ˆ,()ˆ)()ˆ()ˆ( xxx

[ ] [ ]
[ ] [ ]xSyxSyx

xyyxyyx

ˆˆ)ˆ(

)ˆ()ˆ()ˆ(

−−=

−−=
t

OLS

mo
t

moOLS

J
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With a matrix formulation it gives :

[ ])ˆ(min(argˆ xx OLSOLS J=The solution of the problem is then :



slide # 28June 14th, 2001Lecture #2 : Basics for linear estimation

2011

Roadmap for estimation            #4 : the OLS solution

The OLS estimator  is the one that minimizes the scalar function )ˆ(xOLSJ

0)ˆ( =∇ OLSOLSxJ x




















∂
∂

∂
∂

=∇

n

x

x

x
M

1with

[ ][ ] [ ])ˆ()ˆ(2)ˆ( xyyxyyx mo

t

moxOLSxJ −−∇=∇

[ ] t

mox
t )ˆ(xyS ∇= xSxy ˆ)ˆ( =moandKnowing that

[ ]xSySx ˆ2)ˆ( −−=∇ t
OLSxJ

[ ] ySxSS t
OLS

t =ˆOLSx̂Then is solution of : (the Normal Equation)
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Roadmap for estimation            #4 : the solution

cxSxSSxxy crrmo +==)(

If we distinguish parameters to be estimated xr from parameters that will be fixed xc
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[ ] )(ˆ
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rr

t
rOLS xSySSSx −=

−

[ ] ySSSx tt
OLS

1ˆ −
=

[ ] tt SSS
1−

NB : (n×m) is the Moore Penrose matrix

Matrix needs to be invertedSS t
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Roadmap for estimation            #5 : the confidence 
through the covariance

: error on estimations

: deterministic error (bias) on parameter

exact
rcOLSrr xxxe −= )~(ˆ ,

exact
ccc xxe −= ~

[ ] t
rr

t
rr SSSA

1−
=21, )~(ˆ rrccrr

exact
rcOLSrr eeeSAεAxxxe +=−=−=

)~()~(ˆ , ccrcOLSr xSyAxx −= εxSxSεxyy ++=+= exact
cc

exact
rr

exact
mo )(and

,

Random contribution due to 
random measurement
errors

the non-random (deterministic) 
contribution to the total error vector 
due to the deterministic error on the 
fixed parameters
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Roadmap for estimation            #5 : the confidence

Covariance of estimations 

Bias of estimations 

[ ] 1
21

1111 ][][)cov( CSSψAAAεεAeeeC ======
−

εσr
t
r

t
rr

t
r

t
r

t
rrr EE

[ ] [ ] 0
1

2 ≠=−=
−

cc
t
rr

t
rccrrE eSSSSeSAe

[ ] 1−
r

t
rSS

is a matrix (r×r) that amplifies the noise measurements
(we have found the danger!)

[ ] c
t
rr

t
r SSSS

1− is a matrix (r×(n-r)) that amplifies the bias on fixed
parameters (we have found another danger!)
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Roadmap for estimation            #5 : the confidence

For a fixed value of     , the covariance matrix  of estimations errors iscx~

1111 )cov(][]])[])([[()cov( CeeeeeeeeC ===−−== r
t
rr

t
rrrrrr EEEE
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2
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121
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),cov(

),cov(),cov(
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eeee
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σ
σ
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K

C

The covariance matrix components are

Individual variances on the r estimations are on the diagonal 
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Roadmap for estimation            #5 : the confidence

[ ] 21

1 εσ−
= r

t
rSSC

2
εσif         is not measured before the experiment, an estimation of it 

may be obtained at the end of estimation thanks to the final 
value of the objective function :

2

1
, ))~(ˆ())~(ˆ( cOLS

m

i
icOLSrOLS rJ xxxx ∑

=

=

rn

J cOLSrOLS

−
=

))~(ˆ(
ˆ ,2 xx

εσ

a non biased estimation of        for the estimation of r parameter from the use of m
measurements is thus given by

2
εσ
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Confidence ellipse at confidence level α

2'..' ∆=δxΛδx t
Equation in principal axes                       : ),( 2

'
1
' xx δδ

OLSx ,1ˆ

OLSx ,2ˆ

1x

2x
2xδ

'
2xδ

'
1xδ

1xδ
95.0=α

2.. ∆=δxSSδx tt

Equation in centered ),( 21 xx δδ
axes

22
1

2 )2( εα σχ −=∆
2
εσ : variance of noise

is computed by 
chi2inv(alpha,2) in MATLAB®

for a confidence region at a 
level 95% (α=0.95)

)2(2
1 αχ −

Where contains the eigenvalues of  ),( 21 λλdiag=Λ SS t
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Confidence ellipse at confidence level α

22

11

/

/

λρ

λρ

∆=

∆=

OLSx ,1ˆ

OLSx ,2ˆ

1x

2x
2xδ

'
2xδ

'
1xδ

1xδ
95.0=α

Length of the two half axis are 
‘long’ if eigenvalues are ‘small’ :

Notice : determinant of SS t

Is given by 

21)det( λλ=SS t

21

22
1

22
1

21

)2(

)det(

)2(
..

λλ
σπχσπχρρπ εαεα −− ===

SS t
Athe area of the region inside 

the ellipse is given by
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Roadmap for estimation            #5 : the confidence

[ ] 21

1 εσ−
= r

t
rSSC

We can use  )(.* xSS diag=

kj for 
kj for 

≠
=

≠
∂

∂
∂

∂==
jxt

k

k

mo

jxtk

mo
kkkk

x
x
ty

x
ty

xtSxtS
,

,

* ),(),(
),(),(

xx
xx

instead of S, whose the columns contain the   

: ‘absolute’ covariance matrix of estimations

reduced sensitivity coefficients (of same unit than model ymo)

Those reduced coefficients give the 
absolute variation of model due to 
relative variation on parameters

k

k

mo

x
x

ty
∂

∂ ),( x

They can be compared between them and compared to the magnitude of noise
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Roadmap for estimation            #5 : the confidence
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Relative standard deviation
of each estimation!
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Roadmap for estimation            #5 : the confidence

2.. ∆=δxSSδx tt

The same can be done with the ellipse equation

)(.* nomdiag xSS =with 1* )( −= nomdiag xSS

( ) 211 )(..)( ∆=−− δxxSSδxx nomttnom diagdiaggives

nomx
xδ Relative confidence ellipse (in %)
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Cloud with absolute and relative Ellipses pour D.M.
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Residuals analysis

Last, for qualifying the quality of estimation : the residuals analysis

OK, see if the 
variances are not 
too large

Not OK : there may
be a problem in the 
model or in the 
measurements

Uncorrelated residuals

Signed residuals

[ ]tmmmomiimoimomo tyytyytyy )ˆ,()ˆ,()ˆ,()ˆ()ˆ( ,,11,1 xxxxyyxr −−−=−= KK

Difference between measurements and model response with optimal parameters
must ‘look like’ noise measurement : ‘the right model with the right parameters must 
explain the measurements except its random part’
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Roadmap for estimation : anticipating the 
performances

The danger has been identified : the inversion of           or  SS t ** SS
t

It has been shown that the matrix            is fundamental in the processus of 
parameter estimation :

- it has to be inverted to achieve the OLS estimation

- it also has to be inverted to compute the covariance matrix. The inverse of , 
respectively plays the role of "noise amplification“, in absolute or, 
respectively, in relative values 

- the eigenvalues of             enable the calculation of the lengths of the half 
principal axis of the elliptical confidence region

- the determinant of enables the calculation of the area of the elliptical 
confidence region

SS t

SS t

SS t

SS t

** SS
t

Illustration in our examples, using too the conditioning number of SS t

SENSITIVITY COEFFICIENTS composing S MUST BE LINEARLY INDEPENDENT
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‘Graphical’ analysis of reduced sensitivity
coefficients : independent case
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‘Graphical’ analysis of reduced sensitivity
coefficients : dependent case
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Analysis of sensitivity coefficients in our triple situation

Student D.M. Student P.L.M. Student Y.F.
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Summary of Indicators
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Student D.M. P.L.M. Y.F.

Time range (h) 0.5 h -2.5 h 5 h -7.5 h 15 h -17.5 h

↑ 1.03e1 6.5e-1 ↓ 6.2e-2 ↓

↓ 1.29e3 1.8e4  ↑ 1.3e5 ↑

↑ 1.34e4 1.18e4  ↓ 8.0e3 ↓

↓ 3.52e-4 3.99e-4 ↑ 5.9e-4 ↑

↓ 1.24e2 2.78e4 ↑↑ 2.1e6 ↑↑

↓ -0.93 -0.995 ↑ -0.993 ↔

** SS t of minλ
** SS t ofmaxλ

)det ** SS t(

Ellipse area

minmax /) λλ=** SS tcond(
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D.M. is working
between 0.5 and 2.5 
am

P.L.M. is working
between 5 and 7.5 
am

Y. F. is working, 
between 15 and 17.5 
pm

All indicators
are ‘red’ : it is
not a good 
design to 
have large 
times for 
simultaneous
estimation of 
x1 and x2


