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Abstract

A solution to a benchmark problem for a three-dimensional mixed convection

flow in a horizontal rectangular channel heated from below and cooled from above

(Poiseuille-Rayleigh-Bénard flow) is proposed. This flow is a steady thermoconvec-

tive longitudinal roll flow in a large aspect ratio channel at moderate Reynolds and

Rayleigh numbers (Re=50, Ra=5000) and Prandtl number Pr=0.7. The model

is based on the Navier-Stokes equations with Boussinesq approximation. We pro-

pose a reference solution resulting from computations on large grids, Richardson

extrapolation (RE) and cubic spline interpolations. The solutions obtained with

finite difference, finite volume and finite element codes are in good agreement and

reference values for the flow fields and the heat and momentum fluxes are given

up to 4 to 5 significant digits. Some difficulties in the use of RE are highlighted

due to the use of mixed Dirichlet and Neumann thermal boundary conditions on

the same wall. The observed convergence orders of the numerical methods with

RE are then discussed from the viewpoint of this singularity. A correction to the

Taylor expansion involved in the RE formalism is proposed to take into account the

singularity and to explain the majority of the RE behaviors observed. The results

of the present study are published in two papers in Numerical Heat Transfer, Part

B [1, 2].
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1 Context and objectives

Mixed convection flows in channels of rectangular cross section are encountered in

many industrial applications: thermal and chemical reactors, chimneys, solar collectors,

thermal insulation of buildings, heat exchangers, etc. More specifically, the Poiseuille-

Rayleigh-Bénard (PRB) configuration (i.e. mixed convection flows in horizontal rectan-

gular channels heated from below) is representative of rectangular Chemical Vapor Depo-

sition (CVD) reactors and of air flows in the cooling of printed electronic circuit boards,

among others [3, 4, 5]. However, to the authors’ best knowledge, three-dimensional

benchmark numerical solutions of mixed convection flows in rectangular channels do not

exist in the literature. In numerous numerical studies of PRB flows, for instance, numer-

ical codes are only validated by comparisons with experimental data, particularly those

of Chiu and Rosenberger [6] and Ouazzani et al. [7], in which laser Doppler anemometry

measurements of local velocities are given. However, a precise agreement between the

experimental and numerical results is hard to obtain because the thermal and dynami-

cal initial and boundary conditions are not perfectly controlled experimentally and are

very hard to accurately reproduce numerically [8]. The objective of the present paper

is therefore to propose a first 3D numerical benchmark solution that can be used to

validate numerical codes for the computation of thermoconvective instabilities in open

rectangular channels.

This benchmark exercise was first proposed in the framework of the French Heat

Transfer Society (SFT) by several laboratories involved in the numerical analysis of

thermoconvective flows in closed cavities and open channels. A call for contributions was

published in 2006 [9]. Initially, two configurations of PRB flows, covering two different

flow ranges, were chosen. The first one concerned the present steady longitudinal roll flow

in a large aspect ratio channel (A=L/H=50, B=W/H=10) at Reynolds number Re=50,

Rayleigh number Ra=5000 and Prandtl number Pr=0.7. The second one concerned

a fully-established space and time periodic transverse roll flow in a small aspect ratio

channel (A=25, B=4) at small Reynolds number Re=0.1, Ra=2500 and Pr=7. In this

paper, only the solution of the first test case is presented. The computation of 3D

unsteady mixed convection flows in channels often requires computational domains of

long and/or wide aspect ratios, fine space and time discretizations. Therefore, efficient

numerical methods are needed to solve the conservation equations. The interest of this

first test case is that its computational cost is quite reasonable and it is accessible with

limited computational facilities. It is indeed steady and, the computational domain being

extended up to the fully-established zone, a homogeneous Neumann boundary condition

at the outflow accommodates the problem solution. It is therefore much more easy to

compute than the second test case in which a steady state is never established since

unsteady thermoconvective rolls are permanently transported by the flow.
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In the present work, we solve the first benchmark problem using four different CFD

research codes and three discretization methods: finite difference, finite volume and finite

element methods. All contributors have mobilized a significant amount of computational

resources to achieve reliable spatial convergence with each code. Approximate solutions

have been obtained on successively refined grids so that Richardson extrapolation (RE)

could be used to extent the results. This technique enables one to improve the accuracy

of the discrete solutions when used in the asymptotic range of the numerical methods.

However, in the present test case, difficulties in the use of RE have appeared due to

the mixed thermal boundary conditions on the channel bottom and top plates. Indeed,

to try to reproduce the operating conditions of the PRB experiments by Pabiou et al.

[10], adiabatic Neumann conditions are imposed near inlet while isothermal Dirichlet

conditions are imposed downstream. This generates a thermal gradient discontinuity at

the boundary condition junction. Because the method used to determine the reference

solution is as important as the reference values themselves, the consequences of this

singularity will be discussed in this article so that we can evaluate the degree of validity

of the proposed reference solutions.

The geometry, the governing equations, the boundary conditions and the flow param-

eters of the simulated test case are described in section §2. The solvers of the different

contributors are briefly presented in section §3 and references are given for more details.

The methodology of RE adopted to compute the extrapolated reference solutions of the

present benchmark problem is described in section §4. The fundamental assumptions

for the validity of the RE technique are recalled in §4.1. The influence of the boundary

condition singularity on the convergence order of RE is discussed in §4.2. Technical

aspects to compute reference solutions of local values by RE are given in §4.3. The

results are presented and analyzed in section §5. In §5.1, RE of integral values over the

whole domain are discussed and used to determine the observed convergence order of

our numerical methods when a singularity is present in the domain. Then, in §5.2, the

streamwise and spanwise profiles of the velocity, temperature and wall Nusselt number

are presented and selected extrapolated extrema on these profiles are given. The pro-

files of the convergence orders observed from RE of these quantities are also discussed

from the viewpoint of the singularity. In §5.3, the extrapolated values of the heat and

momentum fluxes through the channel boundaries are computed. Finally, in §5.4, we

propose an explanation for the observed behaviors of RE and a correction to the Taylor

expansion involved in the extrapolation formalism. The conclusions and the difficulties

that have been raised during the study are summarized in section §6.
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2 Test case description
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Figure 1: Geometry and top and bottom thermal boundary conditions (the vertical
lateral walls are adiabatic). The red dashed lines are some of the lines along which
θ, u, v and w profiles and their extrema are calculated.

The proposed benchmark is a PRB flow, made of ten steady longitudinal thermo-

convective rolls, in the horizontal rectangular channel drawn in Figure 1. A Poiseuille

flow is imposed at the channel entrance and the incoming fluid is cold, at temperature

Tc. After an entrance zone over which a zero heat flux is imposed on the four walls,

the top horizontal wall is maintained at the cold temperature Tc and the bottom wall

is maintained at a higher temperature Th. The vertical lateral walls are adiabatic. A

and B are the streamwise and spanwise aspect ratios of the computational domain and

Ae is the streamwise entrance aspect ratio (see Figure 1). The working fluid is Newto-

nian and the flow is governed by the 3D incompressible Navier-Stokes equations under

the Boussinesq assumption. Using the channel height H , the mean flow velocity Umean,

ρU2
mean and H/Umean as reference quantities for lengths, velocities, pressure and time

respectively, and using the reduced temperature θ = (T − Tc)/(Th − Tc), the governing

equations take the following dimensionless form:



















∇.−→v = 0
∂−→v

∂t
+ (−→v .∇)−→v = −∇p +

1

Re
∇2−→v +

Ra

PrRe2
θ
−→
k

∂θ

∂t
+−→v .∇θ =

1

PrRe
∇2θ

(1)

where x, y, z, t, −→v = (u, v, w) and p are the dimensionless streamwise, spanwise and

vertical coordinates, time, velocity vector and pressure,
−→
k is the upward unit vector, Pr

is Prandtl number (= ν/α), Re is Reynolds number (= UmeanH/ν) and Ra is Rayleigh

number (= gβ(Th − Tc)H
3/(να)). The boundary and initial conditions for u, v, w and

θ are:
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• at z = 0, −→v =
−→
0 and there is a Neumann thermal boundary condition, ∂θ/∂z = 0,

for x ∈ [−Ae, 0[, next to the Dirichlet condition, θ = 1, for x ∈ [0, A− Ae];

• at z = 1, −→v =
−→
0 and there is a Neumann thermal boundary condition, ∂θ/∂z = 0,

for x ∈ [−Ae, 0[, next to the Dirichlet condition, θ = 0, for x ∈ [0, A− Ae];

• at y = 0 and B, −→v =
−→
0 and ∂θ/∂y = 0;

• at x = −Ae, u = uPois(y, z), v = w = 0 and θ = 0, where uPois(y, z) is given either

directly by an approximate solution of the Poisson equation
∂²u

Pois

∂y²
+

∂²u
Pois

∂z²
= Re ∂p

∂x
,

with no-slip boundary conditions at y = 0 and B and at z = 0 and 1, or by the

analytical solution of this equation computed in [11] and given in appendix A.

• at x = A−Ae, an outflow non-reflective boundary condition is imposed. The choice

of this boundary condition was left free in [9]. Note however that the standard

Neumann or Orlanski boundary conditions are appropriate for this test case since

the flow is convection dominant.

• at t = 0, ∀x ∈ [−Ae, A− Ae], u = uPois(y, z), v = w = 0 and θ = 0.

The present test case is defined by: Re = 50, Ra = 5000, P r = 0.7, A = 50, B = 10

and Ae = 2. The resulting flow pattern is the ten longitudinal roll steady flow which is

presented in Figure 2. It is obtained by starting from the initial conditions given above

and develops after a transient stage which will not be discussed here. It is symmetrical

with respect to the median longitudinal vertical plane and can therefore be computed

for y ∈ [0, B/2].

3 Contributors and solver description

Below, the solvers of the four contributors are presented in a few lines and references

are given for more details. The numerical parameters for each of the four schemes are

given in Table 1. In the table, we also indicate if the symmetry with respect to the

median longitudinal vertical plane was used or not, the mesh size, Nx × Ny × Nz, in

each space direction, the time step value, ∆t, an estimation of the user time (restitution

time) of each computation and the consistency orders1, α°, of each space discretization

method for each primitive variable. Note that, when symmetry is used, Ny is the node

number on the width B/2 of the computational domain.

1the consistency order is the formal convergence order that is the leading order of the space dis-
cretization truncation error.
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Figure 2: Temperature fields, θ, in the horizontal mid-plane and temperature field and
velocity vector field in the transverse plane at x = 30 in the longitudinal roll flow of the
present test case. The yellow dashed lines are some of the lines along which θ, u, v and
w profiles and their extrema are calculated.

3.1 Second order finite difference vectorized code: FD1

The test case solution “FD1” is computed using a finite difference method, opti-

mized for vectorial computers. The time discretization scheme is a second-order Adams-

Bashforth scheme, combining an explicit treatment of the convective term and an im-

plicit treatment of the diffusive term. The equations are discretized in space on uniform,

Cartesian and staggered grids using centered differences for the diffusive terms and a

second order upwind or central scheme for the convective terms. With the two finest

meshes used in this study (see Table 1), to avoid numerical scheme instabilities and

save CPU time, the solution is computed first with the upwind scheme and ∆t = 0.01.

Then, starting from this converged steady solution as initial condition, a new solution

is computed with the central scheme and ∆t = 0.002. The time integration and the

velocity-pressure coupling are computed by the projection method based on Goda’s al-

gorithm [12]. The Helmholtz equations for the temperature field and the components

of the predicted velocity field are solved using an incremental factorization method of

ADI type which preserves a second order time accuracy. The Poisson equation for the

pressure increment is solved by a factorization method which consists in the partial diag-

onalizing of the mono-dimensional Laplace operators in the transverse directions y and

z. The linear systems resulting from these two factorization methods are all tridiagonal

and are solved by the TDMA algorithm. An Orlanski type boundary condition is used at
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Contributor Nx ×Ny ×Nz

[symmetry]
∆t User time

[computer type (organism/lab)]
Consistency
orders α°

MSME,
FD1

400× 134× 40
600× 200× 60
800× 268× 80
1200×400×120

[no]

0.01
0.01
0.002
0.002

36 min on 1 processor
2 h 20 on 1 processor
25 h on 1 processor
100 h on 1 processor
[NEC SX5 (IDRIS)]

2 for θ, u, v, w;
2 for p

IUSTI,
FE2

601× 121× 41
901× 181× 61
1351× 271× 91

[yes]

0.01
0.01
0.005

19 min on 60 processors
1 h 40 on 150 processors
43 h 15 on 225 processors

[IBM SP6 (IDRIS)]

3 for θ, u, v, w;
2 for p

I2M
Institute,

FV3

601× 161× 41
901× 241× 61
1351× 361× 91

[yes]

0.1
0.1
0.1

8 h on 152 processors
12 h on 152 processors
56 h on 152 processors

[ALTIX ICE 8200 (I2M Inst.)]

2 for θ, u, v, w;
2 for p

CEA, FE4 601× 121× 49
751× 151× 61
801× 161× 65
1001× 201× 81

[yes]

0.5
0.5
0.5
0.5

200 h on 8 processors
400 h on 8 processors
450 h on 8 processors
1600 h on 8 processors

[PC 8 cores (CEA)]

3 for θ, u, v, w;
2 for p

Table 1: Numerical parameters used by the different contributors

the outflow boundary. Steady state solutions are obtained by integrating long enough.

Since this solver is highly vectorizable, the code is very efficient on vectorial supercom-

puters: for instance, it runs at 12.5 Giga Flops on average on the NEC-SX8 computer

at IDRIS (the CNRS supercomputing center at Orsay, France), when the peak power of

this computer is 16 Giga Flops. A detailed description of this code and of its validations

and performances can be found in Benzaoui et al. [8].

3.2 Third order finite element parallelized code: FE2

The numerical model “FE2” is based on a segregated approach to build up separate

integral forms associated with the set of coupled governing equations (1). The fluid flow

problem is kept in primitive variable formulation and solved using an unconditionally

stable projection algorithm [13]. As in most projection type algorithms the incompress-

ibility constraint is enforced in the FE2 code through a pressure correction field computed

from a pressure Poisson equation. The latter is obtained by taking the divergence of the

momentum equation in equations (1) and Neumann boundary conditions. Non homo-

geneous Neumann boundary conditions have been implemented for the pressure Poisson

equation in a form derived from [14, 15]:

∂p

∂~n
= (−

∂~v

∂t
− ~v∇~v −

1

Re
∇× (∇× ~v) +

Ra

PrRe2
θ~k) · ~n (2)
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The mechanical stress and heat flux outlet boundary conditions arising at x = A for the

momentum and energy equations have been treated with a formulation inspired from [16]

and adapted to the present framework combining a segregated approach for the mixed

convection problem together with a projection algorithm.

The spatial discretization of the three separate integral forms, associated with tem-

perature, velocity and pressure unknowns, follows the standard finite element method,

using tri-quadratic hexahedral finite elements for the velocity and temperature fields and

tri-linear approximation for the pressure field. The non-linear algebraic system resulting

from the discretization of the momentum equation is solved using a Newton-Raphson

procedure, despite only partial convergence is required for solving this nonlinear system

during the transient solution in the segregated procedure. The time integration is per-

formed with a second order Backward Difference Formula scheme (BDF2) [13]. At each

time step the three algebraic systems corresponding to the momentum, incompressible

projection and energy conservation are solved with an iterative solver (Bi-Conjugate

Gradient Stabilized, pre-conditioned with Additive Schwartz Method) provided in the

PETSc toolkit [17]. This implementation enables us to efficiently run high performance

massively parallel computers (IBM SP4 and SP6 at IDRIS). Finally, the computational

domain is discretized with three meshes uniformly spaced in the x, y and z directions and

whose node numbers are given in Table 1, e.g., the finest mesh consists of 675×135×45

tri-quadratic hexahedra finite elements, built on 1351× 271× 91 nodes.

3.3 Second order finite volume parallelized code: FV3

The test case solution “FV3” is computed using the finite volume code Thétis devel-

oped at the I2M Institute. Time discretization of the Navier-Stokes and energy equations

is implicit. A first order Euler scheme is used, with an implicit treatment of all the terms

of the equations (after linearization of the inertial term of the Navier-Stokes equations

and after uncoupling with the energy equation). The incompressibility constraint that

couples the velocity and the pressure is solved using a pressure correction scheme [18]. It

consists of splitting the Navier-Stokes system into two stages, a velocity prediction stage

and a pressure correction stage. The spatial discretization is based on the finite volume

method on a velocity-pressure staggered grid of the Marker and Cells type. Pressure

unknowns are located at the cell vertices whereas velocity components are face centered.

A centered scheme of order 2 is used for the inertial and stress terms of the Navier-Stokes

equations, as well as for the pressure correction step and the diffusive term of the energy

equation. The convective term of the latter equation is discretized with the Quick scheme

to avoid numerical instabilities [19]. A Neumann boundary condition is set on the outlet

boundary for velocity and temperature. The code is parallelized in a distributed way

and runs efficiently on hundreds of processors using the parallel solver library Hypre
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[20]. Among the different solvers and preconditioners available in this library, the most

efficient for this problem are a GMRES solver for the prediction step and the energy

equation with a point Jacobi preconditioner and a BiCGStab solver with a multigrid

preconditioner for the correction step. Three meshes were used. The first one begins

with 600 cells in direction x to avoid small oscillations observed in the temperature field

with coarser meshes. Simulations are stopped when the stationary criteria of 10−10 is

reached and L2 norm of the divergence is below 10−10. An SGI Altix 8200 cluster was

used composed of 152 quadcore dual Intel Xeon processor blades.

3.4 Third order finite element stationary parallelized code: FE4

The numerical model “FE4” spatially discretizes equations (1) in stationary form

(without the temporal derivative term) using an LBB-stable [21] finite element method.

No upwinding of the convective term is used. To find the solution of the discrete nonlin-

ear stationary problem, we used a defect-correction solver [22]. A certain linearization of

the equations and additional regularization terms give an inexact tangent matrix. This

tangent matrix is then approximately factorized as in the algebraic projection method

[23]. This leads to segregation of the linear systems to be solved for each scalar incremen-

tal unknown (3 velocities, 1 pressure, 1 temperature). The mesh is regular and consists

in hexahedral elements, triquadratic (Q2) for the velocity and temperature unknowns

and linear discontinuous (P nc
1 ) for the pressure. Thus, the formal spatial discretization

order of the method is 3 for the velocity and temperature unknowns and 2 for the pres-

sure unknown. The total number of degrees of freedom is 16 million for the coarsest

mesh and 73.3 millions for the finest one. The standard natural boundary condition on

momentum for the discretization used [21] is µ∂un/∂n − P = 0. A boundary term in

−Plast (the last pressure estimation) is discretized and added to the right hand side of

the boundary condition so that we get the desired µ∂un/∂n = 0 when convergence is

reached. The inexact tangent matrix is obtained from the following contributions: exact

tangent matrix for the diffusion, pressure gradient and velocity divergence terms, fixed

point linearization for the convective terms and a regularizing pseudo-time like mass term

on the velocity and temperature. The linear systems are solved with BiCGSTAB pre-

conditioned by an ILU(0) incomplete factorization [24] for the velocity and temperature

unknowns and FCG(1) preconditioned by algebraic multigrid for the pressure unknown.

We used the algebraic multigrid method of Notay [25] in sequential mode. To speed-up

convergence towards the final steady state, a four-point acceleration method is used.

The numerical model was implemented in Cast3m [26]: a freely available finite element

code developed at CEA (French Atomic Energy Commission). The model was run on

standard PC servers running Linux with up to 8 cores and 64 GB RAM. The most CPU

intensive part of the model is the pressure linear system solves.
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4 Richardson extrapolation method

4.1 General principle without singularity

When the approximate solutions of a continuous initial and boundary value problem

are computed by discretization methods such as finite difference, finite volume or finite

element methods, RE can be used to improve the precision of the discrete solutions.

Indeed, provided that three main assumptions are satisfied (see below), it is possible

to get an order of accuracy of at least O(hp+1) when the convergence order of the nu-

merical method is O(hp), where h is the mesh size. This technique then allows one

to compute extrapolated primitive variables at any point of the computational domain

as well as solution functionals such as differentiated or integrated quantities (heat and

momentum fluxes, volume or surface averaged quantities, and so on). A concise and el-

egant presentation of RE to estimate a posteriori discretization errors in computational

simulations can be found in [27]. More details and deeper discussions on the theory are

given in [28, 29, 30]. Examples of extrapolated solutions in natural and mixed convection

problems can be found in [31, 32].

RE first consists of computing the numerical solutions fhi
(1 ≤ i ≤ N) of the dis-

cretized boundary value problem on N different nested uniform grids of size hi, with h1

the coarsest grid and hN the finest one. If (assumption {A1}) the exact solution of the

continuous problem, fexact, is sufficiently smooth to justify the use of Taylor expansion

(at least up to the discretization order), then it can be written in the form:

fhi
= fexact + Cαh

α
i +O(hα+1

i ) (3)

where Cα is a coefficient which is dependent on α but independent of hi. Then, the

leading order α of the truncation error due to discretization, the coefficient Cα and

the exact solution fexact can be approximated from the discrete solutions, if two more

assumptions are satisfied. The second assumption {A2} is that the mesh spacings hi

used in the extrapolation must be small enough so that the discrete solutions fhi
are

located in the asymptotic convergence region that is the leading order term Cαh
α
i of the

truncation error truly dominates the total discretization error fexact − fhi
. In this case,

α will be considered as the observed convergence order from RE.

Thus, using three grids (N = 3) such as h1

h2

= h2

h3

, the approximations α̃, C̃α and f̃ ex

of α, Cα and fexact in equation (3) are given by [29, 30]:

α̃ =
ln
(

fh1−fh2
fh2−fh3

)

ln
(

h1

h2

)

C̃α =
fh2

− fh3

hα̃
2 − hα̃

3

(4)
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f̃ ex = fh3
− C̃αh

α̃
3

and, using four grids (N = 4) such as h1

h2
= h3

h4
, they are given by:

α̃ =
ln
(

fh1−fh3
fh2−fh4

)

ln
(

h1

h2

)

C̃α =
fh3

− fh4

hα̃
3 − hα̃

4

(5)

f̃ ex = fh4
− C̃αh

α̃
4

with C̃α = Cα + O(hN−1) and f̃ ex = fexact + O(hα̃+1
N ). As a consequence, the approxi-

mation f̃ ex of the asymptotic solution fexact will be better if hN is small and α̃ is large.

Thereafter, α̃ and f̃ ex will respectively be noted α and f ex.

The formal expression of the Taylor expansion (3) is valid for multidimensional prob-

lems, in any coordinates, including space and time, only if (assumption {A3}) the same

grid refinement ratio is applied in all space and time directions. In our stationary prob-

lem, this means that the cell aspect ratios are kept constant from one grid to another.

That is, if N uniform Cartesian grids of size ∆xi, ∆yi and ∆zi (i = 1, ..., N) are used

for RE, the ratios ∆xi

∆zi
must be equal whatever i, and the same holds for ∆yi

∆zi
[28, 29, 31].

On smooth problems, the spatial convergence orders of the codes used to compute

the FD1 and FV3 solutions have been shown to be equal to two (see [8] for the FD1

code) while, for the two finite element codes FE2 and FE4, they have been shown to

be equal to three, for the temperature θ and the velocity components u, v, w. That is,

for the four codes used in the present study, the spatial convergence order for u, v, w

and θ is equal to the consistency order, α°, mentioned in Table 1. As a consequence,

if the solution fexact of the problem is smooth enough (say fexact ∈ C2(Ω ∪ ∂Ω), where

Ω ∈ R
3 is the computational domain and ∂Ω ∈ R

2 its boundary), the u, v, w and θ

values that will be given as reference solutions from RE should only be obtained with an

associated extrapolation coefficient α equal to two for the FD1 and FV3 solutions and

to three for the FE2 and FE4 solutions. Otherwise, if α is very different from α°, this

means that the discrete solutions used to compute the extrapolated solution are not in

the asymptotic convergence region of RE (assumption {A2} is not satisfied) or that the

solution of the continuous problem defined in §2 is not smooth enough (assumption {A1}

is not satisfied). This is precisely what is observed in the present problem and what is

developed in the following subsection.
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4.2 Singularity influence on the RE convergence orders

The solution of the present problem is not smooth because the temperature gradient

on the horizontal plates is discontinuous at x = 0. This is due to the use of homogeneous

Neumann (adiabatic) conditions for −2 ≤ x < 0 and Dirichlet boundary conditions for

x ≥ 0 2. To understand the effect of this singularity on the convergence rate of the

solutions and, as a consequence, on the convergence rates, α, associated with RE, let

us refer to the finite element framework. Without any singularity, the theoretical finite

element discretization error of an elliptic problem is given by the basic interpolation

theory to be O(hα°) in the L2 norm, where the consistency order of the discretization

method is given by α°=k + 1, with k the polynomial approximation degree and h the

characteristic mesh size (k=2 and α°=3 for θ, u, v and w in the FE2 and FE4 methods).

But, as soon as a singularity enters the problem, the rate of convergence of the numerical

model becomes O(hmin(α°,r)), where r measures the problem regularity influence on the

actual convergence rate (see [33], section 14, p. 404). It seems therefore reasonable to

consider that the convergence rates, α, obtained from RE of integral quantities based

on a norm should be equal to min(α°, r), if the grids are located in the asymptotic

convergence regions of the discrete solutions. However, what happens for RE of other

quantities, such as local extrema for instance? Does α vary between min(α°, r) and

max(α°, r)? Does the singularity only influence its neighborhood or the whole domain?

These issues will be dealt with in §5.

Strang and Fix, in chapter 8 “Singularities” of reference [34], propose a theoretical

analysis to a priori determine the regularity r of a singular boundary value problem due

to the discontinuity of its boundary conditions. They analyze the singularity influence

on the convergence rate of finite element methods. Their analysis focuses on a test case

corresponding to the displacement computation in a 2D domain with a crack. As shown

in Figure 3, since the crack axis is a symmetrical axis, this test case can be viewed

as a 2D pure diffusion problem (Poisson problem) with a mixed Dirichlet/Neumann

condition on one of its boundaries. That is this test case presents the same singularity

as in the present benchmark problem except it is 2D instead of being 3D and there is no

convection. Strang and Fix [34] show that the solution around the singularity behaves

like x1/2, where x is here the distance to the singularity, and that the error of the finite

element solutions of this elliptic problem is O(h) for any choice of element. Thus, the

problem regularity is r = 1. But they also mentioned that away from the singularity a

higher regularity can be expected due to a decrease of the singularity pollution. In the

present benchmark exercise, the determination of the problem regularity will be done

2To explain the temperature gradient discontinuity, let’s consider the isotherms near this singular
point: the left-hand isotherms tend to be perpendicular to the wall due to the homogeneous Neumann
condition while the right-hand isotherms tend to be parallel to the wall due to the constant Dirichlet
condition. With a such change in the thermal boundary conditions, to avoid any singularity, a wall with
a convex 90° step would be necessary.
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a posteriori in §5.1.2 by performing specific numerical spatial convergence studies. We

will show, as in Strang and Fix [34], that the regularity r of the solutions attached to

the thermal field tends to 1 near the singularity and increases up to α° far away.

Boundary conditions :

du/dn=0

A C A
B

C
B

DE

GF

DE

1 2

u=0

Figure 3: On the left, the square domain (1) with a crack is used by Strang and Fix [34]
to study the effect of the singularity at point B. On the right, the equivalent domain
(2) is obtained using the symmetry of domain (1) through the line ABC. The domain
(2) has the same boundary condition singularity at point B as the present benchmark
problem for the temperature at x = 0 and z = 0 or 1 (see Figure 1).

4.3 Technical aspects of Richardson extrapolation of local values

Grid doubling or integer grid refinement ratios are not required for the validity of RE.

Thus, in the general case, solutions of the coarsest grids are not computed at the nodes

of the finest grid. However, if local values have to be evaluated by RE, it is necessary

to have the values of fhi
at the same points in equations (4) and (5). As suggested by

Roache [28], this is made possible by building an interpolation of the coarse solutions

on the finest grid, the order of which is higher than the space discretization order of the

used numerical method.

Since the consistency order, α°, of the numerical methods used in the present paper

is equal to two or three (see Table 1), a cubic spline interpolation has been used to

compute the solutions of the coarsest grids at the nodes of the finest one, before doing

RE of the temperature, Nusselt number and velocity local extrema (see §5.2.3). Indeed,

cubic spline interpolation is supposed to be third order if the solution is smooth enough

and the points far enough from the boundaries. Other interpolation methods could have

been used: for instance, an evaluation of the influence of Lagrangian interpolations on

RE is proposed in [35].

In the present paper, the values and the coordinates of the local extrema of the

extrapolated solution are also computed using cubic spline interpolation between the

finest grid nodes. This is illustrated in Figure 4 in which a zoom in the w streamwise
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profiles computed with the four grids of FD1, together with the extrapolated profiles, are

presented. This figure allows to determine the FD1 value and the streamwise coordinate

of the vertical velocity local extremum noted w2 and x2 in Table 3.

24.7 24.8 24.9 25 25.1 25.2 25.3
x

-0.473

-0.4725

-0.472

-0.4715

-0.471

-0.4705

w

Nx=400
Nx=600
Nx=800
Nx=1200
extrapolated solution

24.88 24.9 24.92 24.94
-0.47299

-0.472985

-0.47298

Figure 4: FD1 solutions of the vertical velocity component streamwise profiles along the
line at (y, z) = (B/5, 0.5), computed on the four grids described in Table 1, together
with the extrapolated solution. The latter can be considered as the asymptotic solution
here because the α values monotonously varies between 2.01 and 2.16 when x varies
between 24.7 and 25.3. In this figure, all the symbols correspond to the computational
or extrapolation points and the curves to the cubic spline interpolation curves. The
small window zooms in the local extremum of the extrapolated curve. The value w2 =
−0.472989 and the coordinate x2 = 24.907 of this extremum are reported in Table 3.

5 Result presentation and analysis

5.1 Richardson extrapolation of integral quantities

5.1.1 Presentation and discussion of the results

The extrapolated values of integral quantities are computed first. These integrals

are twice the mean kinetic energy, 2Ec, on the whole domain of volume D, the mean

pressure difference, ∆Pio, between inlet and outlet and the mean temperature, Tm, on

the whole domain that are defined by:

2Ec =
1

D

∫∫∫

D

(

u2 + v2 + w2
)

dx dy dz (6)
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∆Pio =
1

Si

∫∫

Si

P dy dz −
1

So

∫∫

So

P dy dz (7)

Tm =
1

D

∫∫∫

D

θ dx dy dz (8)

They have been computed using either the middle point rule for the FD1 and FV3

solutions or 3 × 3 × 3 Gauss integration scheme for the FE2 and FE4 solutions. The

advantage of these integrals is that they only depend on the primitive variables: no

differentiation and no interpolation are needed to compute their values on each grid.

Thus, in this case, the validity of RE and the values of the associated extrapolation

coefficient, αEc
, α∆Pio

and αTm
, only depend on the convergence orders of the numerical

methods and on the satisfaction of the three assumptions {A1} to {A3} stated in §4.1.

The values of f = (2Ec,∆Pio, Tm) on the finest grid (noted f fg) and extrapolated by

RE (noted f ex) are given in Table 2 with the associated convergence order, αf , and with

the relative distance between the finest grid and extrapolated solutions: df = (f fg −

f ex)/|f fg|. To check if the discrete solutions FD1 and FE4 are located in the asymptotic

convergence region, the first and fourth contributors have also computed Log|fhi−f
ex| =

Log(hi) on each of their grids and have compared the slopes of the linear interpolations

of the values of this functions with the αf values. For FD1 solutions, each of these

slopes is strictly equal to the associated αf value with four common figures. Referring to

[29, 30], this proves that the grid asymptotic convergence region is reached by the FD1

contribution. On the other hand, for FE4 solution, the slopes of the linear interpolations

and the αf values are nearly equal for Tm, but a little bit different and smaller than

1 for ∆Pio, and very different and negative for 2Ec (see Table 2). Consequently, the

asymptotic convergence region is not reached for ∆Pio and 2Ec and therefore RE can no

longer be used for these FE4 quantities. Note that such a reasoning cannot be hold for

the FE2 and FV3 solutions because RE is based on three grids only: in this case, the

three points Log|fhi−f
ex| = Log(hi) are by construction automatically aligned whatever

the fhi
values and the slope is necessarily equal to αf .

However, we note that 2Efg
c and ∆P fg

io values on the FE4 finest grid are very close to

the extrapolated values 2Eex
c and ∆P ex

io of the three other contributors. Thus, for each

quantity of Table 2, a reference value with its uncertainty margin and the precision of

the reference value determination have been defined. The reference value, fref , is equal

to the arithmetic average of the extreme values of the FD1, FE2 and FV3 extrapolated

values, plus the extrapolated or the finest grid FE4 value depending on whether RE

succeeds or not. The uncertainty margin, fmargin, is equal to the half difference between

the two extreme values. The precision of the determination, fprec, is equal to the ratio

of the uncertainty margin to the reference value. The reference values in Table 2 are

given with a precision of the order of 10−5, with five common figures among the four

extrapolated solutions for 2Ec and ∆Pio and four common figures for Tm.
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FD1 FE2 FV3 FE4 References

fref

±fmargin

fprec =
fmargin

fref

2Efg
c

2Eex
c

αEc

dEc

1.292479

1.292446

2.22

2.55× 10−5

1.292452

1.292452

2.92

2.35 × 10−7

1.292355

1.292455

2.00

−7.74× 10−5

1.292461

1.292467 °

−1.92 (-3.70)

−5.34×10−6 °

1.292453

±0.000008

6.19 × 10−6

∆P
fg
io

∆P ex
io

α∆Pio

d∆Pio

14.41210

14.40647

2.03

3.91× 10−4

14.40784

14.40649

1.99

9.36 × 10−5

14.40235

14.40678

2.00

−3.08× 10−4

14.40694

14.40658 °

0.83 (0.91)

2.55× 10−5 °

14.40670

±0.00024

1.67 × 10−5

T
fg
m

T ex
m

αTm

dTm

0.448490

0.448594

1.19

−2.32× 10−4

0.448625

0.448604

1.18

4.68 × 10−5

0.448725

0.448606

1.02

2.65 × 10−4

0.448659

0.448613

1.18 (1.17)

1.04× 10−4

0.448604

±0.000010

2.23 × 10−5

Table 2: Left columns: finest grid (f fg) and extrapolated (f ex) values of the integral
functions f = 2Ec, ∆Pio and Tm, truncation error leading order, αf , from their RE and

relative distance, df = ffg−fex

|ffg|
, between the extrapolated and finest grid values. FE4

column: the slopes of the linear interpolation of the functions Log|fhi−fh→0| = Log(hi)
are noted into brackets in italic; the symbol ° indicates an erroneous value due to the
extrapolation failure (thus the FE4 finner grid value replaces the FE4 extrapolated value
in the reference value determination). Right column: reference solutions with their
tolerance margin and the precision of their determination.

It can also be noted that the relative distances between the finest grid solutions and

the extrapolated solutions (when admissible) are higher for the second order methods

(FD1 and FV3) than for the third order methods (FE2 and FE4). All these relative dis-

tances are higher than the precision of the determination of the reference values (except

for 2Ec in FE2 column), showing that RE improves the accuracy of the reference values,

more substantially for the second order methods. Furthermore, for the FE4 contribution

the maximum relative distance on 2Ec (resp. ∆Pio) between the coarsest and finest grids

are equal to 4.25 × 10−6 (resp. 1.45 × 10−5), which is smaller than the precision of the

reference values given in Table 2.

It is interesting to analyze the Table 2 results going into details. Indeed, one can

see that the coefficients αEc
and α∆Pio

obtained when RE is admissible are respectively

nearly equal to the consistency orders αu,v,w° and αp° of each numerical method (see

Table 1). This corresponds to the expected behavior for a smooth problem without

discontinuity (see §4.1). On the other hand, αTm
is nearly equal to one for the four

contributions despite αθ°=2 for the FD1 and FV3 solutions and αθ°=3 for the FE2 and

FE4 solutions. In §5.1.2 below, we are going to show that the lower than expected αTm

values are due to the singularity induced by the thermal boundary conditions.
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5.1.2 Determination of the singularity influence

To analyze the influence zone of the singularity of the present benchmark problem,

extrapolated values of the mean temperature Tm (see equation (8)) and of the L2 norms

of temperature TL2 and vertical velocity component WL2 have been obtained by RE in

several subdomains of the whole computational domain. Here the L2 norm is defined

by fL2 = (
∫∫∫

D
f 2 dx dy dz)1/2. In all the subdomains considered, the extension is max-

imum in y and z transverse directions (that is 0 ≤ y ≤ B/2 or B depending on the

contributor and 0 ≤ z ≤ 1) and it varies from x = −2 to x = x° for the upstream

subdomains and from x = x° to x = A = 48 for the downstream subdomains, with

−2 < x°<48. Then the convergence orders αTm
, αT

L2
and αW

L2
, observed from RE of

Tm, TL2 and WL2 respectively, were computed in the downstream and upstream subdo-

mains. They are drawn as a function of x° in Figures 5(a-c). Note that, for the FD1

and FE4 solutions, the mean temperature computed in each subdomain is such that

the points (Log(hi), Log|Tmhi
−T

ex
m |) are perfectly aligned for the four grids considered:

these solutions are therefore located in the asymptotic convergence region (see §5.1.1).

However, this is not the case for TL2 and WL2 at the coordinates x° where αT
L2

and

αW
L2

diverge in Figures 5(b, c).

Figure 5(a) shows that RE of Tm succeeds except for the FD1 solution in the upstream

subdomains near the entrance of the channel (divergence of αTm
) and for the FV3 solution

(negative values of αTm
for the downstream subdomains). On the other hand, Figure 5(b)

shows that RE of TL2 succeeds for the FV3 solution but fails for the FD1, FE2 and FE4

solutions in the downstream subdomains (divergence of αT
L2

). These different behaviors

are maybe due to the different discretization schemes used for the convective terms by

the contributors: centered difference schemes for the FD1, FE2 and FE4 solutions and

Quick scheme for the FV3 solution. If we only consider the cases with a successful

RE, it appears that αTm
→ 1 for the upstream subdomains located near the beginning

of the heated plate (x° = 0), and αTm
increases when the subdomains are more and

more located downstream: for the FD1 solution, the αTm
values on the downstream

subdomains stabilize around 1.8 (that is around the consistency order α° = 2) for 20 ≤

x° ≤ 48, while it increases beyond α°=3 for the two finite element solutions. The behavior

of αT
L2

for the FV3 solution is similar to the behavior of αTm
for the FD1 solution: αT

L2

is nearly equal to one near x° = 0 for the upstream subdomains (αT
L2

≈ 1.3 for x°=0 )

and it increases towards α° in the downstream subdomains (αT
L2

≈ 1.7 for x°>20 ). It

can therefore be considered that the influence zone of the thermal boundary condition

singularity on the convergence orders of the quantities linked to temperature extends to

x = 20 to 25 in the present PRB flow, regardless of the numerical method used. This

zone precisely corresponds to the development zone of the longitudinal rolls as it can

be seen in Figure 2(a). As a conclusion of this analysis, it appears that the effect of

the singularity of the present problem spatially varies: it diminishes with the distance
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(a) Average temperature Tm

0 5 10 15 20 25 30 35 40 45
x°

0

1

2

3

4

5

6

α T
L

2

FD1 down (from x=x° to x=48)
FE2 down
FV3 down
FE4 down
FD1 up (from x=-2 to x=x°)
FE2 up
FV3 up
FE4 up

(b) L2 norm of temperature TL2
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(c) L2 norm of vertical velocity component WL2

Figure 5: Space evolution of the convergence orders α observed from RE of the integral
quantities Tm, TL2 and WL2 in various upstream or downstream subdomains of the
computational domain.
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to the singularity. Furthermore the exponent r introduced in §4.2 to characterize the

regularity of the solution tends to 1, regardless of the numerical method used, at least in

the neighborhood of the upstream edge of the heated zone and for the quantities derived

from the temperature field.

The dynamics fields should also be affected by this singularity through the buoyancy

term in the momentum equation which makes a coupling of the velocity fields with

the temperature field. To study this influence, RE of WL2 in the different subdomains is

presented in Figure 5(c). RE of WL2 succeeds for the downstream subdomains (except for

the FE2 solution for x° < 20) but fails for the FD1 and FV3 solutions in the upstream

subdomains. It appears that αW
L2

≈ 2 = α° for the FD1 and FV3 solutions in the

downstream subdomains whatever the x° value, whereas αW
L2

≈ 1.4 near inlet for the

FE4 solution and αW
L2

tends to values that vary between 3 and 5 for x°>20 for the two

FE solutions. Thus, the singularity of the thermal boundary conditions does not seem to

affect the velocity field with the second order FD1 and FV3 methods for the used grids,

whereas it influences the velocity field with the third order FE2 and FE4 methods. In

this last case, the length of the influence zone of the singularity is the same as for the

temperature integrals in Figures 5(a, b): it reaches x°≈25.

As a consequence, in the following, we have considered that the reference quantities

defined in the present benchmark problem should be established from the extrapolated

quantities only if the associated convergence rates α are such as 1 ≤ α ≤ α°. In practice,

we take into account numerical errors by using superior tolerance margins on α to choose

the conserved extrapolated values: in this paper, the reference solutions are defined from

the extrapolated solutions with 1 ≤ α . 2.5 for the FD1 and FV3 contributions and

with 1 ≤ α . 4 for the FE2 and FE4 contributions.

5.2 Richardson extrapolation of temperature, velocity and Nus-

selt number local extrema

5.2.1 Space profiles of the thermal and dynamical fields

In the following, we denote by Nut and Nub the local Nusselt numbers on the top

and bottom walls respectively. They are defined by:

Nut,b(x, y) = −
H

(

∂T
∂Z

)

Z=H,Z=0

Th − Tc
= −

(

∂θ

∂z

)

z=1,z=0

(9)

In the variational context of finite element methods, it is possible to compute the

Nusselt numbers in several ways. The “non consistent” way simply uses the definition

(9), i.e. the z-derivative of the interpolation function for θ is computed. The “consistent”

way exploits the duality between Dirichlet and Neumann boundary condition. The
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“consistent” flux at a Dirichlet boundary node is the one that would yield the same

solution if prescribed instead of the Dirichlet condition. Details on how to compute such

a flux in a finite element framework are given in references [36, 37]. A reported advantage

of the “consistent” flux is that it is generally more precise than the non-consistent one.

This is also what we have observed here (see §5.2.3). In the present study, the FE2

Nusselt numbers are the non consistent ones while the FE4 contribution proposes the

two Nusselt number types. The consistent Nusselt numbers will be denoted by Nucons
t

and Nucons
b while the notations Nut and Nub will be kept to denote the non consistent

Nusselt numbers and to denote the Nusselt numbers in a generic way.
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Figure 6: Longitudinal profiles of θ, u, v and w along the lines at (y, z) = (2, 0.2) and
(y, z) = (5, 0.5) and longitudinal profiles of Nut and Nub along the lines at y = 2 and
y = 5. The filled circles indicates the local extrema whose values and coordinates are
given in Tables 3, 4, 6 and 7.

In Figure 6, the longitudinal profiles of the primitive variables θ, u, v and w are

drawn along the lines (y, z) = (2, 0.2) and (5, 0.5) and the profiles of Nut and Nub are

drawn along the lines y = 2 and y = 5. One can note that the longitudinal roll flow

computed here is not fully established in space since all the longitudinal profiles go on

slightly evolving in the streamwise direction at x = 48. The transverse profiles of θ, u,

v and w are drawn in Figure 7 along the four lines at x = 10 and 30 and at z = 0.2 and

0.5. The transverse profiles of Nut and Nub are drawn in Figure 8 along the lines at

x = 10 and x = 30. Only the first half of these transverse profiles is shown because the

flow is symmetrical with respect to the median vertical plane (y = 5). The transverse

profiles at x = 10 are located in the entrance region, more precisely at mid-length of the
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forced convection triangular zone, where only two longitudinal rolls are present along

each vertical wall (see Figure 2(a)). On the other hand, the transverse profiles at x = 30

are located where ten well developed longitudinal rolls are present.
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Figure 7: Spanwise profiles of the primitive variables θ, u, v and w along the lines at
(x, z) = (10, 0.2), (10, 0.5), (30, 0.2) and (30, 0.5). The filled circles indicates the local
extrema whose values and coordinates are given in Table 5.
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Figure 8: Transverse profiles of the Nusselt numbers Nut and Nub along the lines at
x = 10 and x = 30. The filled circles indicates the local extrema whose values and
coordinates are given in Table 8.
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Figure 9: FD1 solutions of the temperature streamwise profiles along the line at
(y, z) = (B/5, 0.5), computed on the four grids described in Table 1, together with
the extrapolated solution. The latter does not tend to the asymptotic solution near
x = 22.35 because the α values (the black filled circles in the figure) diverge where
the profiles intersect. All the symbols correspond to the computational or extrapolated
points. The curves correspond to the cubic spline interpolation curves, except for the
extrapolated solution where they are linear segments linking the extrapolated points.
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All these profiles are computed from the FD1 solution on the finest mesh. The

same profiles are obtained with the other numerical methods (FE2, FV3, FE4) if the

comparisons are done at the same scales as those of Figures 6, 7 and 8. Note that it

is not possible to draw the extrapolated profiles in the present problem because it is

impossible to be located in the asymptotic convergence region along the whole profiles.

In particular, RE diverges at points where the profiles computed on two distinct meshes

intersect. Indeed, when fhi
= fhj

for hi 6= hj , α diverges in equations (4) or (5). This

is illustrated in Figure 9 that focuses on a zone where a curve crossing is present. Such

behaviors are also observed in [38].

5.2.2 Space profiles of the observed convergence rates from RE

To complete the preceding observations, a selection of streamwise and spanwise pro-

files of the convergence rates, α, observed from RE of the different primitive variables

and Nusselt numbers are presented in Figures 10 and 11. It can be shown that the α

profiles are very erratic and that RE can even fail. This happens when the values of

the studied quantity do not monotonously vary from one grid to the following finer one.

This behavior is indicated by arbitrarily fixing α to zero in some profiles. As already

seen in Figure 9, α profiles present several sharp overshoots and undershoots at the

points where the field profiles on the different grids intersect [38]. This is the case for

instance at x = 0 for all the variables of the four contributions, but also in nearly all

the entrance zone for the FD1, FE2 and FE4 contributions. This is due to the probable

conjunction of two causes. First the exact solution of the cold Poiseuille flow imposed

as inlet boundary condition at x = −2 is nearly conserved untill the beginning of the

heated plate at x = 0 on all the grids. Second, the FD1, FE2 and FE4 contributions

use centered discretization schemes for the convective terms and very small oscillations

are observed in their temperature and velocity streamwise profiles around x = 0 with

their coarsest grids such as Nx ≤ 601 (more precisely, no velocity oscillation is observed

in the FD1 solution and very small velocity oscillations are observed on all the grids

of the FE4 solution). These oscillations generally appear just around x = 0 because a

streamwise acceleration of the flow due to the density variation near the bottom plate

and high transverse thermal gradients are present at the same place. No oscillations are

observed in the FV3 solutions because the Quick scheme is used (see §3.3).

In a general way, the FD1 and FV3 α profiles are much more regular than the FE2

and FE4 ones. The FD1 and FV3 α values for θ, u, v, w are nearly equal to α°=2 in the

downstream zone for x > 20. On the other hand, the FE4 and FE2 RE can fail, even

in the downstream zone, or can succeed but with associated α values very different from

α°=3. This is very likely due to the higher precision of the finite element methods used

here. Indeed, the values computed on each grid with these methods are very near one

from the others: for instance, the maximum relative distance on the primitive variables
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Figure 10: Comparison of the streamwise profiles of the extrapolation coefficients, α,
computed by the four contributors for θ, u, v and w, along the line at (y, z) = (2, 0.2).
The corresponding profiles of θfg, ufg, vfg and wfg on the finest grid are also drawn on
the figures.

between the coarsest and the finest grid solutions of the FE2 and FE4 contributions

generally varies between 10−4 and 10−5 (or even less) when it varies between 10−2 and

10−3 for the FD1 and FV3 solutions. As a consequence, the finite element solutions

are very sensitive to the numerical errors, to the entrance singularity and to the curve

crossings. A way of limiting these negative effects on the RE with the high order methods

would have been to increase the size ratio of the successive grids. However this solution

has appeared impossible in the present case due to the computational costs on grids

much finer than those already used.

In Figures 10 and 11, it can also be noted that the α profiles computed by the two

finite element codes are very similar and that they diverge nearly at the same points.

Furthermore, for the four contributions, the α values associated with θ and Nut are

generally smaller than α° for x < 20, except where over and undershoots are present.

They tend to 1 for x < 10 due to the singularity influence (cf. §5.1.2). The α values
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Figure 11: Comparison of streamwise and spanwise profiles of the extrapolation coef-
ficients, α, for Nut computed by the four contributors. The corresponding profiles of
Nut−fg on the finest grid are also drawn on the figures.
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associated with Nut also vary between 1 and α° in the spanwise direction (see Figure

11(c)). This explains why α ≈ 1.2 for x > 20 in the FV3 Nut profile at (y, z) = (2, 1) (see

Figure 11(a)) and α ≈ 1.8 for x > 25 in the FE2 and FE4 Nut profiles at (y, z) = (5, 1)

(see Figure 11(b)).

5.2.3 Temperature, velocity and Nusselt number local extrema

FD1 FE2 FV3 FE4 References
fref ± fmargin

xref ± xmargin

fprec =
fmargin

fref

θ1

x1

α1

d1

0.454843

13.696

1.85

3.3 × 10−5

0.454844

13.691

3.46

2.0× 10−6

0.454847

13.692

1.92

2.2× 10−4

0.454845

13.691

2.73

1.4 × 10−6

0.454845 ± 0.000002

13.693 ± 0.003

4.4 × 10−6

θ2

x2

α2

d2

0.210061

27.319

1.90

−2.4× 10−3

0.210048

27.315

3.11

2.2× 10−6

0.210056

27.332

1.90

7.2× 10−4

0.210048

27.313

4.42

−2.4×10−6

0.210055 ± 0.000007

27.322 ± 0.010

3.3 × 10−5

u1

x1

α1

d1

1.572726

0.950

2.00

−1.2× 10−4

1.572725

0.945

3.47

1.3× 10−6

1.572713

0.944

2.05

3.2× 10−5

1.572725

0.941

∗ ∗ ∗

1.572720 ± 0.000007

0.945 ± 0.005

4.5 × 10−6

u2

x2

α2

d2

1.660787

16.299

1.98

1.9 × 10−4

1.660795

16.295

1.14

1.2× 10−7

1.660826

16.291

2.05

−8.2× 10−5

1.660796

16.289

∗ ∗ ∗

1.660806 ± 0.000020

16.294 ± 0.005

1.2 × 10−5

w1

x1

α1

d1

0.0032591

4.265

1.99

2.5 × 10−4

0.0032597

4.258

3.04

−1.2× 10−4

0.0032605

4.259

1.99

−1.6× 10−3

0.0032594

4.252

∗ ∗ ∗

0.0032598±0.0000007

4.259 ± 0.007

1.8 × 10−4

w2

x2

α2

d2

−0.472989

24.907

2.05

−1.8× 10−4

−0.472991

24.901

3.51

−1.1× 10−6

−0.473026

24.898

1.72

1.5× 10−3

−0.472991

24.898

4.06

3.0 × 10−5

−0.473007 ± 0.000019

24.902 ± 0.005

4.0 × 10−5

Table 3: Extrapolated values or finest grid values (indicated by ∗ ∗ ∗) of f = (θ, u, w)
local extrema along the line (y, z) = (5, 0.5) and of their streamwise coordinates, x;

truncation error leading order, α, of RE and relative distance, d = ffg−fex

|ffg|
, between the

extrapolated and the finest grid values (when the extrapolated value is obtained). In the
References column, the reference value and the margin on the primitive variables and on
their coordinates are given, as well as the precision on the primitive variables.

As it has just been discussed, extrapolated solutions of the present problem cannot

be determined for the whole field but only for some local values, such as local extrema,
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or for integral quantities (see §5.1.1 and §5.3 for instance). The extrapolated values and

the coordinates of forty local extrema, identified by small filled circles on the profiles of

Figures 6-8 along the lines at (y, z) = (5, 0.5) and (2, 0.2) and at (x, z) = (30, 0.5), have

been computed using the method described in §4.3. The local extrema of the primitive

variables, θ, u, v and w, are given in the Tables 3-5 and those of the Nusselt numbers

Nut and Nub in the Tables 6-8.

FD1 FE2 FV3 FE4 References
fref ± fmargin

xref ± xmargin

fprec =
fmargin

fref

θ1

x1

α1

d1

0.87527

11.746

1.91

4.1 × 10−4

0.87529

11.741

3.32

5.7× 10−7

0.87521

11.740

2.05

−5.6× 10−7

0.87529

11.738

3.68

1.4 × 10−6

0.87525 ± 0.00004

11.742 ± 0.004

4.6× 10−5

θ2

x2

α2

d2

0.869502

21.179

1.88

2.9 × 10−4

0.869514

21.172

4.16

6.9× 10−7

0.869534

21.159

2.09

−9.4× 10−5

0.869514

21.170

4.20

1.2 × 10−6

0.869518 ± 0.000016

21.169 ± 0.010

1.8× 10−5

u1

x1

α1

d1

1.111322

1.380

2.00

−1.3× 10−4

1.111319

1.374

4.51

9.0× 10−8

1.111326

1.372

2.00

−2.2× 10−5

1.111320

1.377

2.41

5.4 × 10−7

1.111322 ± 0.000004

1.376 ± 0.004

3.6× 10−6

u2

x2

α2

d2

0.675525

33.819

2.03

7.3 × 10−4

0.675547

33.801

3.34

−2.7× 10−6

0.675435

33.784

2.03

5.9× 10−4

0.675544

33.784

∗ ∗ ∗

0.67549 ± 0.00006

33.802 ± 0.018

8.9× 10−5

v1

x1

α1

d1

−0.00147704

1.139

2.09

−8.8× 10−3

−0.00147695

1.138

3.28

3.4× 10−5

−0.00147748

1.133

2.05

2.4× 10−3

−0.00147694

1.127

∗ ∗ ∗

(−14772 ± 3)× 10−7

1.133 ± 0.006

2.0× 10−4

v2

x2

α2

d2

−0.070310

31.463

1.99

2.2 × 10−2

−0.070331

31.468

1.76

2.0× 10−5

−0.070486

31.454

2.01

9.3× 10−3

−0.070334

31.469

2.55

8.59 × 10−6

−0.07040 ± 0.00009

31.462 ± 0.008

1.3× 10−3

w1

x1

α1

d1

0.198243

15.337

1.93

1.5 × 10−3

0.198252

15.332

3.98

−1.3× 10−5

0.198325

15.318

2.02

−1.5× 10−3

0.198215

15.324

∗ ∗ ∗

0.19827 ± 0.00006

15.328 ± 0.010

3.0× 10−4

w2

x2

α2

d2

0.191757

48.0

2.00

1.1 × 10−3

0.191741

48.0

3.98

−1.5× 10−4

0.191801

48.0

1.99

−1.1× 10−3

0.191702

48.0

∗ ∗ ∗

0.19175 ± 0.00005

48.0

2.6× 10−4

Table 4: Same as Table 3 but for f = (θ, u, v, w) along the line (y, z) = (2, 0.2).
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FD1 FE2 FV3 FE4 References
fref ± fmargin

yref ± ymargin

fprec =
fmargin

fref

θ1

y1

α1

0.24719

1.0361

1.90

0.24716

1.0368

2.91

0.24714

1.0363

1.96

0.24715

1.0365

3.38

0.24716 ± 0.00003

1.0364 ± 0.0004

1.2× 10−4

θ2

y2

α2

0.23816

2.8991

1.92

0.23806

2.9000

2.90

0.23816

2.8993

1.99

0.23807

2.8990

∗ ∗ ∗

0.23811 ± 0.00005

2.8995 ± 0.0005

2.1× 10−4

θ3

y3

α3

0.77385

3.9042

1.94

0.77384

3.9039

2.86

0.77387

3.9042

2.09

0.77383

3.9041

∗ ∗ ∗

0.77385 ± 0.00002

3.9041 ± 0.0002

2.6× 10−5

u1

y1

α1

1.06513

1.0087

1.95

1.06513

1.0087

2.87

1.06499

1.0086

2.01

1.06509

1.0086

∗ ∗ ∗

1.06506 ± 0.00007

1.0086 ± 0.0001

6.6× 10−5

u2

y2

α2

1.15071

3.9004

1.94

1.15059

3.9005

2.96

1.15049

3.9002

1.93

1.15062

3.9002

∗ ∗ ∗

1.15060 ± 0.00011

3.9003 ± 0.0002

9.6× 10−5

u3

y3

α3

1.74979

4.4425

1.94

1.74962

4.4425

2.94

1.74987

4.4425

2.02

1.74978

4.4425

∗ ∗ ∗

1.74975 ± 0.00013

4.4425 ± 0.0000

7.4× 10−5

v1

y1

α1

0.0288474

0.4081

1.93

0.0288520

0.4076

∗ ∗ ∗

0.0288523

0.4078

2.09

0.0288521

0.4088

∗ ∗ ∗

0.0288499±0.0000025

0.4082 ± 0.0006

8.7× 10−5

v2

y2

α2

0.035892

0.7049

1.97

0.035912

0.7043

3.15

0.035916

0.7050

2.03

0.035900

0.7051

∗ ∗ ∗

0.035904 ± 0.000012

0.7047 ± 0.0004

3.3× 10−4

v3

y3

α3

0.032867

4.7390

1.96

0.032907

4.7395

∗ ∗ ∗

0.032917

4.7390

1.67

0.032878

4.7388

3.62

0.032892 ± 0.000025

4.7391 ± 0.0004

7.6× 10−4

w1

y1

α1

0.372397

0.2286

2.00

0.372372

0.2285

2.91

0.372496

0.2285

1.98

0.372397

0.2285

∗ ∗ ∗

0.37243 ± 0.00006

0.2285 ± 0.0001

1.6× 10−4

w2

y2

α2

−0.513013

2.8998

1.91

−0.513049

2.8995

2.85

−0.513221

2.9000

2.00

−0.513050

2.8999

∗ ∗ ∗

−0.51311 ± 0.00011

2.8998 ± 0.0003

2.1× 10−4

w3

y3

α3

0.490347

3.9028

1.95

0.490335

3.9029

2.91

0.490478

3.9027

1.96

0.490347

3.9028

∗ ∗ ∗

0.49041 ± 0.00007

3.9028 ± 0.0001

1.4× 10−4

Table 5: Extrapolated values or finest grid values (indicated by ∗ ∗ ∗) of f = (θ, u, v, w)
local extrema along the line (x, z) = (30, 0.5) and of their spanwise coordinates, y, and
truncation error leading order, α, of RE. See the Table 3 caption for the description of
the References column.
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FD1 FE2 FV3 FE4 References
fref ± fmargin

xref ± xmargin

fprec =
fmargin

fref

Nut1

x1

α1

d1

Nuconst1

xcons1

0.44151

21.107

1.86

1.3 × 10−3

0.44144

21.106

1.68

9.5× 10−4

0.44119

21.110

1.95

3.1× 10−3

0.44145

21.105

1.68

1.1 × 10−3

0.44150

21.101

0.44135 ± 0.00016

21.106 ± 0.005

3.6× 10−4

Nut2

x2

α2

d2

Nuconst2

xcons2

0.60675

28.085

1.90

−2.5× 10−3

0.60658

28.085

1.70

1.2× 10−3

0.60615

28.074

1.90

2.9× 10−3

0.60657

28.081

1.68

1.4 × 10−3

0.60666

28.077

0.60645 ± 0.00030

28.080 ± 0.006

4.9× 10−4

Nub1

x1

α1

d1

Nuconsb1

xcons1

3.48657

24.997

2.00

1.6 × 10−3

3.48650

24.990

3.05

2.0× 10−4

3.4416°

25.037°

∗ ∗ ∗

3.48650

24.990

3.11

2.8 × 10−4

3.48663

24.988

3.48657 ± 0.00007

24.993 ± 0.005

2.0× 10−5

Nub2

x2

α2

d2

Nuconsb2

xcons2

3.38972

29.165

2.06

1.8 × 10−3

3.38945

29.165

3.06

1.9× 10−4

3.3455°

29.222°

∗ ∗ ∗

3.38945

29.164

3.11

2.7 × 10−4

3.38958

29.162

3.38959 ± 0.00014

29.164 ± 0.002

4.1× 10−5

Table 6: Extrapolated values or finest grid values (indicated by ∗ ∗ ∗) of f = (Nut, Nub)
local extrema along the line y = 5 and of their streamwise coordinates, x; truncation

error leading order, α, of RE and relative distance, d = ffg−fex

|ffg|
, between the extrapolated

and finest grid values (when the extrapolated value is got). In the reference column, the
reference value and the margin on the Nusselt numbers and on their coordinates are
given, as well as the precision on the Nusselt numbers. For FE4 contribution, Nut

and Nub are the extrapolated values of the non consistent Nusselt numbers and Nucons
t

and Nucons
b are the consistent Nusselt number values on the finest grid. The symbol °

indicates values that are excluded from the reference determination.

For the FD1, FE2 and FV3 solutions, more than 70% of the whole extrema have

been extrapolated with an associated extrapolation coefficient, α, whose value is equal

to α = α°±20%, that is very close to the spatial consistency order, α°, of the numerical

method used. For the other extrema, α values do not agree with the consistency order

for the various reasons already listed above: intersection of the profiles computed on the

different grids, influence zone of the thermal boundary condition singularity for x < 20

and, probably, influence of the boundary conditions on the cubic spline interpolations
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when the extrema are very close to the wall. For the FE4 solutions, the α values are very

different of α° for the majority of the extrema. We consider that FE4 RE fails because

its second assumption {A2} is not satisfied (the discrete solutions are not located in the

asymptotic convergence region). Other explanations are proposed in §5.4.

FD1 FE2 FV3 FE4 References
fref ± fmargin

xref ± xmargin

fprec =
fmargin

fref

Nut1

x1

α1

d1

Nuconst1

xcons1

3.32049

16.294

2.06

2.4× 10−3

3.32014

16.285

3.09

2.1× 10−4

3.32360

16.302

1.27

−2.2× 10−3

3.32010

16.288

3.15

3.0× 10−4

3.32026

16.284

3.3218 ± 0.0018

16.293 ± 0.009

5.4 × 10−4

Nut2

x2

α2

d2

Nuconst2

xcons2

3.30269

18.968

2.06

2.2× 10−3

3.30234

18.958

3.09

2.0× 10−4

3.30586

18.970

1.25

−2.1× 10−3

3.30235

18.958

3.15

2.9× 10−4

3.30251

18.956

3.3041 ± 0.0018

18.963 ± 0.007

5.4 × 10−4

Nub1

x1

α1

d1

Nuconsb1

xcons1

0.68330

11.422

1.93

−2.6× 10−3

0.68310

11.418

1.64

1.1× 10−3

0.68270

11.416

1.83

2.5 × 10−3

0.68309

11.417

1.63

1.3× 10−4

0.68320

11.414

0.6830 ± 0.0003

11.418 ± 0.004

4.4 × 10−4

Nub2

x2

α2

d2

Nuconsb2

xcons2

0.75378

30.103

1.89

−3.6× 10−4

0.75359

30.142

1.67

1.2× 10−3

0.75325

30.174

1.89

1.9 × 10−3

0.75361

30.157

1.69

1.5× 10−4

0.75371

30.156

0.7535 ± 0.0003

30.14 ± 0.04

4.0 × 10−4

Table 7: Same as Table 6 but along the line y = 2.

A part of the extrapolated values and coordinates of the local extrema for which

1.2 < α < 2.1 for the FD1 and FV3 solutions and 1.1 < α < 4.5 for the FE2 and FE4

solutions are given in Tables 3-8, together with the associated α values and the relative

distance d between the extrapolated and the finest grid values. In several cases (mainly

concerning the FE4 solutions), only the values and the coordinates on the finest grid are

provided because the associated α values are too high or too small compared with the α

ranges given above. In these cases, the α values are replaced by ∗ ∗ ∗.
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FD1 FE2 FV3 FE4 References
fref ± fmargin

yref ± ymargin

fprec =
fmargin

fref

Nut1
y1
α1

Nuconst1

ycons1

2.5641

0.2910

2.02

2.5639

0.2912

3.91

2.5614

0.2921

1.58

2.5639

0.2909

4.04

2.5641

0.2909

2.5628 ± 0.0014

0.2915 ± 0.0006

5.5× 10−4

Nut2

y2

α2

Nuconst2

ycons2

3.3359

1.9552

2.06

3.3356

1.9554

3.11

3.3390

1.9584

1.27

3.3356

1.9557

3.11

3.3357

1.9555

3.3373 ± 0.0017

1.9568 ± 0.0016

5.1× 10−4

Nut3

y3

α3

Nuconst3

ycons3

3.3767

3.9034

2.06

3.3765

3.9036

2.93

3.3796

3.9028

1.35

3.3764

3.9033

3.18

3.3765

3.9032

3.3780 ± 0.0016

3.9032 ± 0.0004

4.7× 10−4

Nub1

y1

α1

Nuconsb1

ycons1

3.3063

1.0421

2.07

3.3059

1.0423

3.17

3.3095

1.0422

1.24

3.3060

1.0422

3.13

3.3061

1.0423

3.3077 ± 0.0018

1.0422 ± 0.0001

5.4× 10−4

Nub2

y2

α2

Nuconsb2

ycons2

3.3561

2.9003

2.06

3.3558

2.9002

3.02

3.3593

2.9006

1.30

3.3558

2.9005

3.20

3.3559

2.9003

3.3575 ± 0.0018

2.9004 ± 0.0002

5.4× 10−4

Nub3

y3

α3

Nuconsb3

ycons3

0.6612

3.9104

1.94

0.6611

3.9105

1.84

0.6606

3.9108

1.89

0.6610

3.9104

1.61

0.6612

3.9104

0.6609 ± 0.0003

3.9106 ± 0.0002

4.5× 10−4

Table 8: Extrapolated values of f = (Nut, Nub) local extrema along the line x = 30 and
of their spanwise coordinates, y, and truncation error leading order, α, of RE. See the
Table 6 caption for more details.

Reference solutions for the local extrema and their coordinates have been determined

in the same way as those of the integral values presented in §5.1.1. These reference

solutions (denoted by fref , xref or yref), with their uncertainty margin (denoted by

fmargin, xmargin or ymargin) and the precision of fref (denoted by fprec) are given in Tables

3-8. Here, the reference values are equal to the arithmetic average of the minimum and

maximum values of the extrapolated values of the four contributors, except when the FE2
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or FE4 RE fails. In this case, the FE2 or FE4 extrapolated value is replaced by the FE2

or FE4 finest grid value. On the other hand, the FD1 and FV3 solutions on the finest

grid are never used to define the reference solutions. Indeed, as it can be seen in Tables

3 and 4, the relative distances d on θ, u, v, w for the FD1 and FV3 solutions are nearly

always one or two orders higher than fprec whereas, for the FE2 and FE4 solutions, they

are always on the same order or smaller than fprec (when RE is possible). This means

that, with the definition and the precision of the reference values given here, RE of the

discrete solutions obtained by the finite element methods are useless to determine the

reference values of θ, u, v, w. RE is useful only to allow the second order FD1 and FV3

methods give solutions with a third order precision equal to the precision of the FE2 and

FE4 methods.

The same observation as for the primitive variables can be done with the consistent

Nusselt numbers Nucons
t and Nucons

b computed with the FE4 method. That is why only

their values on the finest grid are proposed in the Tables 6-8. On the other hand, RE

is useful to determine the reference values from the non consistent Nusselt numbers

(compare d and fprec in Table 6 for instance). The extrapolated values of the non

consistent Nusselt numbers and the finest grid values of the consistent Nusselt numbers

are thus kept to define the reference values of the Nusselt numbers.

Following the methodology just described, the reference values of the primitive vari-

able local extrema are given with four to five significant figures and those of the Nusselt

number with three to four significant figures. Their coordinates are generally given with

three significant figures in x direction and with four significant figures in y direction.

5.3 Heat and momentum fluxes through channel faces

Finally, we compare the dimensionless heat flux, Φθ, and momentum fluxes, Φu, Φv

and Φw, through the boundary surfaces of the half channel obtained when the symmetry

through the mid-plane at y = B/2 is taken into account. The flux definitions are given

in Table 9. In this table, Si, So, Sf , St and Sb are respectively the inlet, outlet, front,

top and bottom surfaces of the half channel, Ss is the symmetry plane at y = B/2 and

Stot = Si ∪ So ∪ Sf ∪ Ss ∪ St ∪ Sb is the total surface of the half channel Ω/2. Note

that, from the Navier-Stokes equation in (1), the total momentum flux, Φw, through

Stot is equal to the integral of the buoyancy term, Ibuo =
∫

Ω/2

(

−Ra
Re²Pr

θ
)

dV , on the half

computational domain.

The diagonal terms of the momentum flux tensor depend on pressure. Since pressure

is defined up to a constant, we decided to fix the value of this constant such that, for

each grid, the momentum flux Φu vanishes on the inlet surface Si. Furthermore, due

to the symmetry conditions and our choice of boundary conditions, several other flux

components are equal to zero. These are indicated in Table 9.
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Φθ Φu Φv Φw

Si

∫

Si

(

− ∂θ
∂x +RePr uθ

)

dS
∫

Si

(

p− 2
Re

∂u
∂x+u²

)

dS=0
∫

Si

(

−1
Re

(

∂v
∂x+

∂u
∂y

)

+uv
)

dS
∫

Si

(

−1
Re

(

∂w
∂x +

∂u
∂z

)

+uw
)

dS

So

∫

So

(

∂θ
∂x−RePr uθ

)

dS
∫

So

(

−p+ 2
Re

∂u
∂x − u²

)

dS
∫

So

(

1
Re

(

∂v
∂x+

∂u
∂y

)

−uv
)

dS
∫

So

(

1
Re

(

∂w
∂x +

∂u
∂z

)

−uw
)

dS

Sf

∫

Sf
− ∂θ

∂y dS = 0
∫

Sf

−1
Re

∂u
∂y dS

∫

Sf

(

p− 2
Re

∂v
∂y

)

dS
∫

Sf

−1
Re

∂w
∂y dS

Ss

∫

Ss

∂θ
∂y dS = 0

∫

Ss

1
Re

∂u
∂y dS = 0

∫

Ss

(

−p+ 2
Re

∂v
∂y

)

dS
∫

Ss

1
Re

∂w
∂y dS = 0

Sb

∫

Sb
−∂θ

∂z dS
∫

Sb

−1
Re

∂u
∂z dS

∫

Sb

−1
Re

∂v
∂z dS

∫

Sb

(

p− 2
Re

∂w
∂z

)

dS

St

∫

St

∂θ
∂z dS

∫

St

1
Re

∂u
∂z dS

∫

St

1
Re

∂v
∂z dS

∫

St

(

−p+ 2
Re

∂w
∂z

)

dS

Stot 0 0 0
∫

Ω/2
−Ra
Re²Prθ dV

Table 9: Definition of the heat and momentum fluxes through the channel faces

We computed the fluxes in Table 9 on each grid then extrapolated these values by

RE. The extrapolated values, or the values on the finest grid when RE fails, and the

reference values with their tolerance margin are given in Table 10. The same criteria as

those used in §5.1.1 and §5.2.3 to define the reference values and the tolerance margins

of the integral quantities and local extrema are used here for the heat and momentum

fluxes. In particular, the range of α kept to choose the extrapolated values used to define

the references are 1 ≤ α ≤ 2.5 for the FD1 and FV3 solutions and 1 ≤ α ≤ 3.4 for the

FE2 and FE4 solutions. Furthermore, the FD1 and FV3 solutions on the finest grid are

not kept to define the reference. On the other hand, the FE2 and FE4 solutions on the

finest grid are kept because, in this case, the relative distance between the extrapolated

and finest grid solutions is still smaller than or on the same order as the precision of

the reference solutions (not shown in Table 10). This methodology allows us to estimate

the fluxes on the different surfaces with two to five significant digits, depending on the

magnitude of the fluxes.

In Table 10, all the finite element fluxes are non consistent fluxes. The last part of

the table gives the extrapolated total fluxes through Stot. The total flux balances are

well satisfied since Φθ,Stot
, Φu,Stot

and Φv,Stot
are very near to zero and since Φw,Stot

is

very near to the buoyancy term integral Ibuo
3. The maximum relative errors of the total

flux balances, compared with the maximum elementary flux among the six elementary

surfaces, are on the order of 10−4 (the maximum relative error is equal to 10−3 for Φu

through Stot computed with the FD1 method). Finally, one can note that the convergence

3For the FE2 solution, the term Φw,Stot
is slightly different from the term Ibuo because the value

of Φw on St is overestimated. Indeed, the expected improvement associated with the consistent non
homogeneous Neumann boundary condition for the pressure correction (see §3.2) turns out to become a
weakness for the coarsest meshes considered (M1 and probably M2) to perform RE. Indeed, the normal
projection of the second order derivative term associated with the viscous stress is quite stiff in the
boundary layers and the M1 mesh resolution does not enable to accurately compute this term, which
results in a poor pressure correction close to the horizontal walls where both thermal and hydrodynamic
boundary layers develop. Further investigations are on the way to implement in a more subtle way this
term for Q2 finite elements especially for coarse mesh problems. That is why the FE2 values of Φw,St

and Φw,Stot
are excluded from the reference value determination in Table 10.
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Φθ Φu Φv Φw

FD1 Si −9.092× 10−9 [∗]° 0.0 −2.1364 × 10−2 [1.07] 6.931× 10−5 [1.00]

FE2 Si −1.011× 10−8 [∗] 0.0 −2.1344 × 10−2 [2.72] 7.042× 10−5 [2.76]

FV3 Si −1.17× 10−8 [∗]° 0.0 −2.1348 × 10−2 [2.18] 7.144× 10−5 [∗]°

FE4 Si −1.031× 10−8 [∗] 0.0 −2.1346 × 10−2 [∗] 7.058× 10−5 [∗]

Ref. Si −(1.021±0.010)×10−8 0.0 −(2.1354±0.0010)×10−2 (7.00± 0.07) × 10−5

FD1 So −87.6290 [1.99] 72.1696 [2.03] 3.0294 × 10−2 [0.88] 1.6804 × 10−2 [1.02]

FE2 So −87.6274 [2.54] 72.1710 [2.80] 3.1236 × 10−2 [2.37] 1.6576 × 10−2 [2.89]

FV3 So −87.6328 [2.27] 72.1711 [1.99] 3.0356 × 10−2 [1.56] 1.6822 × 10−2 [1.86]

FE4 So −87.6292 [∗] 72.1703 [0.93] 3.0262 × 10−2 [1.04] 1.6828 × 10−2 [∗]

Ref. So −87.630 ± 0.003 72.1704 ± 0.0008 (3.07 ± 0.05)× 10−2 (1.670 ± 0.013) × 10−2

FD1 Sf ∼ 0.0° −3.9727 [0.81]° −409.362 [2.00] −1.7570 [0.95]°

FE2 Sf −0.00303 [2.46]° −3.9804 [2.58] −409.311 [2.56] −1.7672 [3.38]

FV3 Sf ∼ 0.0° −3.9878 [1.77] −409.366 [1.91] −1.7683 [1.01]

FE4 Sf 0.04744 [1.69]° −3.9884 [1.65] −409.381 [∗] −1.7675 [3.17]

Ref. Sf 0.0 −3.984± 0.004 −409.35 ± 0.04 −1.7678± 0.0006

FD1 Ss ∼ 0.0° ∼ 0.0° 409.307 [2.07] ∼ 0.0°

FE2 Ss −3.996× 10−3 [2.91]° −3.96× 10−4 [2.88]° 409.301 [2.66] 1.027× 10−6 [3.39]°

FV3 Ss ∼ 0.0° −7.928×10−6 [2.90]° 409.318 [2.03] 5.499× 10−7 [3.13]°

FE4 Ss 4.547× 10−4 [2.88]° 5.848× 10−5 [2.85]° 409.316 [2.45] 1.989× 10−6 [3.10]°

Ref. Ss 0.0 0.0 409.31 ± 0.01 0.0

FD1 Sb 479.993 [2.07] −35.4293 [1.16] 2.6366 [2.37] −2249.602 [2.12]

FE2 Sb 480.018 [2.64] −35.4043 [3.22] 2.6370 [2.33] −2249.595 [2.26]

FV3 Sb 479.741 [0.76]° −35.4122 [1.08] 2.6358 [1.84] −2249.678 [2.03]

FE4 Sb 479.928 [2.49] −35.4029 [3.20] 2.6373 [2.28] −2249.678 [2.85]

Ref. Sb 479.97 ± 0.05 −35.416± 0.013 2.6366 ± 0.0008 −2249.64 ± 0.04

FD1 St −392.228 [2.17] −32.7936 [1.08] −2.5867 [2.55] 1930.952 [2.05]

FE2 St −392.368 [2.70] −32.7810 [3.18] −2.5864 [2.65] 1931.972 [2.26]°

FV3 St −392.382 [1.42] −32.7861 [1.11] −2.5868 [2.11] 1930.982 [1.99]

FE4 St −392.293 [2.68] −32.7793 [3.15] −2.5871 [2.50] 1930.979 [2.53]

Ref. St −392.31 ± 0.08 −32.786± 0.008 −2.5868 ± 0.0004 1930.967 ± 0.015

FD1 Stot 0.1140 [1.37]° 0.07796 [0.83]° 2.039 × 10−4 [∗]° −320.4334 [2.07]

FE2 Stot 0.03801 [2.29]° 0.00560 [3.86]° 5.120 × 10−2 [2.54]° −319.5350 [2.62]°

FV3 Stot −0.3576 [0.49]° 0.007652 [∗]° 3.159 × 10−3 [1.13]° −320.4303 [1.03]

FE4 Stot 0.03687 [1.72]° −0.009371 [∗]° 2.666 × 10−3 [1.61]° −320.4572 [∗]

Ref. Stot 0.0 0.0 0.0 −320.444 ± 0.014

FD1 Ibuo −320.4245 [1.19]

FE2 Ibuo −320.4318 [1.18]

FV3 Ibuo −320.4330 [1.02]

FE4 Ibuo −320.4375 [1.18]

Ref. Ibuo −320.431 ± 0.007

Table 10: Extrapolated values of the heat and momentum fluxes through channel surfaces
and buoyancy term integral. The values of the extrapolation coefficient α are noted by
[ ]. Extrapolation failure is indicated by [∗] and the flux value on the finest grid is
given. When the flux value is strictly smaller than 10−11, it is noted ∼ 0.0. The symbol
° indicates values that are excluded from the reference determination. The reference
values 0.0 correspond to the theoretical values given in Table 9.
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orders, α, of Ibuo are equal to those of Tm in Table 2 since Ibuo and Tm are proportional

quantities.

5.4 Explanation of the observed behavior of Richardson Extrap-

olation

The preceding sections have shown a variety of behaviors when trying to apply

Richardson extrapolation: (i) working behavior with an observed convergence order α

equal to the consistency order α° of the discretization method; (ii) working behavior with

an observed convergence order α located between 1 and α°; (iii) non-working behavior.

In this section, we discuss these observations. The basic idea is to assume that the ap-

proximation error of a quantity fh can be written as two main terms within the Taylor

expansion instead of one as in equation (3), section 4.1. Namely :

fh(h, Cα°, α°, Cr, r) = fexact + Cα°h
α° + Crh

r +O(h1+max(α°,r)) (10)

where Cα°h
α° is the leading term of the approximation error of the regular part of the

solution (same term as the one in equation (3)) and Crh
r is the leading term of the

approximation error of the singular part of the solution. As before a° is the consistency

order of the discretization and r measures the problem regularity influence on the actual

convergence rate. Here fh → fexact when h → 0.

When h → 0, the term with largest exponent becomes negligible and Richardson

extrapolation allows us to determine the smallest exponent and associated constant C

as in section 4.1. However, in practice, we work with a fixed sequence of 3 (or 4) given h

values, say {h1; h2; h3} =
{

h1;
h1

τ
; h1

τ2

}

with τ > 1. Scaling equation (10) with f̃h = fh
fexact

and h̃ = h
h1

, one gets:

f̃h(h̃, C̃α°, α°, C̃r, r) = 1 + C̃α°h̃
α° + C̃rh̃

r +O(h̃1+max(α°,r)) (11)

In the following, we use the scaled equation (11), leaving out the tildes on f̃ , h̃, C̃α° and

C̃r for notation clarity. For example, our fixed sequence of (scaled) h, is now:
{

1; 1
τ
; 1
τ2

}

.

Then we choose typical numerical values Cα° = 10−4 << 1, τ = 2 and r = 1 and we

plot the observed convergence order α as a function of the ratio ρ = Cr

Cα°

when we apply

the RE process (equation (4) of section 4.1) to our model function fh (equation (11)),

neglecting the O(h1+max(α°,r)) term, in the four following cases : (i) ρ > 0, α° = 2; (ii)

ρ > 0, α° = 3; (iii) ρ < 0, α° = 2; (iv) ρ < 0, α° = 3.

We also define a Richardson efficiency ratio σ as follows:

σ = log
|f ex − fexact|

max
(
∣

∣Cα°h3
α°
∣

∣ , |Crh3
r|
) (12)
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where f ex is the extrapolated function. If σ < 0, this means that RE has been successful

in reducing the main component of the error compared to its value for the smallest h.

Figure 12(a) (resp. Figure 12(b)) shows the profile of α and σ as a function of log |ρ|

when ρ > 0 (resp. ρ < 0). On the two plots, we can distinguish three zones:

Zone 1 log |ρ| . −1 where the approximation error of the regular part of the solution

dominates the approximation error of the singular part;

Zone 2 −1 . log |ρ| . 1 where the approximation error of the regular and singular

parts of the solution have the same order of magnitude;

Zone 3 1 . log |ρ| where the approximation error of the singular part of the solution

dominates. This zone corresponds to the asymptotic range in the present example

since r = 1 and α°=2 or 3.

We can make the following remarks:

1. Zone 1 and 3 are the zones where RE is effective in reducing the error. This was

expected for Zone 3 which is in the asymptotic range as defined in section 4.1, but

not necessarily so for Zone 1;

2. In Zone 2, the behavior of RE depends on the sign of ρ: when ρ < 0, RE is not

applicable, while if ρ > 0, RE still gives a result. However, as the profile of σ on

Figure 12(a) shows, very little improvement in the reduction of the error is to be

expected. We can conclude by saying that in Zone 2, RE is not very useful;

3. For the third-order methods, Zone 2 is larger than for the second-order methods

(almost two decades instead of one);

4. As shown by the σ profiles, RE is less efficient at reducing the error for third-order

methods than for second-order methods.

Remark 1 is consistent with our observations of the second order methods FD1 and FV3

for which RE seems to improve the results even though we are not in the asymptotic

range. Therefore, most quantities seem to behave as if in Zone 1, with the notable

exception of the mean temperature.

Remark 3 is related to the fact that, for FE4 and FE2, RE was found to be much

more difficult to apply than for the low order methods: this suggests that most quantities

behave as if in Zone 2. This fact can be tempered with Remark 4 which suggests that

less improvement in the error is to be expected for third order method than for second

order method.

Applicability of RE was found to be higher for FE2 than for FE4: Remark 2 could

provide an explanation for this suggesting that when close to or inside Zone 2, RE
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behavior can be found from non-working to almost working depending on the sign of ρ.

Also, FE2 and FE4 not using the same finite elements, could be in different zones.
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(a) α° = 2 or 3 and ρ > 0.
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(b) α° = 2 or 3 and ρ < 0.

Figure 12: Profiles of α and σ as a function of log |ρ| for τ = 2.
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(b) α° = 2 or 3 and ρ < 0.

Figure 13: Profiles of α and σ as a function of log |ρ| for τ = 4
3
.

In the test we have just presented, we have taken a mesh sequence with τ = 2, that

is the cell length in each space direction is halved from one mesh to another. Remember
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that our fixed sequence of (scaled) h, is:
{

1; 1
τ
; 1
τ2

}

. Now, we examine what happens

when we take a smaller τ = 4
3
. This gives us figure 13a (resp. figure13b) which shows

the profile of α and σ when ρ > 0 (resp. ρ < 0). The main thing to notice is that Zone

2 seems to be smaller for τ = 4
3

than for τ = 2. This is interesting because Zone 2 is the

zone where RE doesn’t work reliably. We explain this fact as follows: by taking a more

condensed sequence of h, it is easier to be in the same convergence zone for all the hs.

To conclude this section, although further investigations would be necessary to assess

that the proposed explanations are the right ones, we have found that the simple model

in equation (11) allowed us to reproduce most of the behavior we have observed in trying

to apply RE to the benchmark of this article.

6 Conclusions

In this paper, a methodology has been presented in details to establish a first nu-

merical benchmark solution of a three-dimensional mixed convection flow in a horizontal

rectangular channel, partially heated from below and cooled from above. This methodol-

ogy is based on the use of four different numerical methods (second order finite difference

and finite volume methods, and third order finite element methods), Richardson extrap-

olations (RE) on very fine grids and cubic spline interpolations. Reference solutions are

proposed for the dynamical and thermal fields, in the form of local, integral or differential

quantities such as local extrema of the primitive variables and Nusselt numbers, surface

heat and momentum fluxes, volume integrals of the temperature and kinetics energy,

etc. These reference solutions are generally given up to four or five significant figures.

The difficulty of the present benchmark problem is that a discontinuity takes place in

the thermal gradient over the bottom plate at x = 0, which not only significantly restricts

the conditions of application of RE to establish reference solutions, but also complicates

its analysis. Therefore the theoretical basis of RE are reminded and discussed from

the viewpoint of this singularity. It is shown that the convergence order, α, observed

from RE of the local and integral quantities is reduced to one in the neighborhood of

the boundary condition discontinuity and tends to the consistency order, α°=2 or 3, of

the used discretization methods far from the singularity. It is deduced from this result

and other test cases that the problem regularity is close to r = 1 in the vicinity of the

boundary condition discontinuity. Moreover, we have suggested in §5.4 a modified Taylor

expansion to account for the problem singularity in the RE formalism. A simplified

model problem has enabled us to reproduce most of the behaviors we have observed in

the former benchmark problem and helped us to understand them.

The paper has also brought to the fore several practical difficulties in the proper usage

and implementation of RE. It has been shown that the distance between the finest grid

solutions and the extrapolated solutions is much smaller for the FE2 and FE4 methods
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than for the FD1 and FV3 ones. Furthermore the local behavior of α is much more

oscillatory for the two third order methods than for the two second order ones. It was

also shown that, for the used grids, RE cannot be applied locally on the whole fields

due to the “crossing” of the computed quantities on the different grids. The FE2 and

FE4 solutions have appeared very sensitive to these field variations and this behavior

has been understood thanks to the model problem introduced in §5.4. Using larger grid

size ratios (resulting in much finer grids) and therefore much greater computational costs

than those required for the present paper would also have probably be another way to

solve this problem.

Furthermore, this study has reminded us that the convergence order of a numerical

model can be significantly deteriorated due to a loss of regularity of the solution and that

the standard RE framework should not be used without taking precautions in this case.

Finally, it is noteworthy that the four numerical models used for this benchmark have

displayed their own sensibility to the various problem peculiarities (establishment zone,

localized thermal gradient singularity, etc.) and, wherever the RE has been found to be

applicable, the resulting convergence order could also depend on the quantity (primitive

or derived variable) it is based on and its definition (L2 norm, mean value, etc.).

Appendix A

The analytical solution of the dimensionless Poiseuille profile is equal to uPois(y, z) =
UPois(y,z)
Umean

, where the dimensional Poiseuille profile UPois(y, z) is given by [11]:

UPois(y, z)

U◦
= 6z(1 − z) +

48

π3

∞
∑

n=0

(−1)n+1 cosh[(2n+ 1)π(y − B
2
)] cos[(2n + 1)π(z − 1

2
)]

(2n+ 1)3 cosh[(2n+ 1)πB
2
]

(13)

where U◦ = − H2

12µ
∂P
∂X

is the average velocity of the “two-dimensional” Poiseuille flow, i.e.

in a two-dimensional channel or between two infinite plates, and where the dimensional

average velocity Umean of the Poiseuille flow is given by:

Umean

U◦
= 1 +

192

π5

∞
∑

n=0

(−1)n+1 sinh[(2n+ 1)πB
2
] sin[(2n+ 1)π/2]

(2n + 1)5B cosh[(2n+ 1)πB
2
]

(14)

Thus the inlet dimensionless Poiseuille profile uPois(y, z) is given by the ratio of equa-

tions (13) and (14), where about 25 terms are kept in the series to obtain a sufficiently

accurate entrance velocity profile. Note that in (13) and (14), the hyperbolic cosine at

the denominator diverges when n is high. To avoid any problem, the two hyperbolic

cosines of the series can be transformed in real exponentials via the Euler relations.
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Thus, by denoting N = 2n+ 1, the ratio of the two hyperbolic cosines writes:

cosh[Nπ(y − B
2
)]

cosh[NπB
2
]

= exp[Nπ(y − B)]
1 + exp(−2Nπ(y − B

2
))

1 + exp(−NπB)
(15)

To avoid the divergence of exp(−2Nπ(y− B
2
) when N is high, the Poiseuille profile must

only be computed for B
2
≤ y ≤ B. The symmetry with respect to the median vertical

plane is used to compute the Poiseuille profile for 0 ≤ y ≤ B
2
.

Appendix B : about the mesh accuracy in the vertical

direction and its consequences on the wall fluxes

In the cases of Rayleigh-Bénard free convection or PRB mixed convection, the thermal

and velocity gradients are present on the whole thickness of the fluid layer due to the

development of the thermoconvective rolls. This is clearly shown in Figure 14 in which

the isolines of the temperature and velocity components are drawn in a half transversal

plane at x = 45, with a constant step between two isolines in each sub-figure. This

explains why uniform meshes are generally used in the vertical and spanwise directions

when simulating such flows. As is shown in Figure 14, the temperature and velocity

gradients are maximum in the z-direction near the top and bottom walls on a thickness

equal to a quarter of the channel height. Therefore, in the present study, there is at

minimum 10 nodes/cells/points in this zone since the coarsest grid of each contributor

has 40 nodes/cells/points at minimum on the channel height. We have checked that this

is enough to get accurate wall fluxes for the Reynolds and Rayleigh number values used

in the present benchmark problem.

For instance, in Figure 15, we present the space evolution of the local Nusselt num-

ber along two lines on the bottom plate of the channel, computed on the four grids

(h1, h2, h3, h4) of the FD1 solution. The extrapolation coefficient α is also given as well

as the extrapolated Nusselt number values (when RE succeeds). One can see that the

maximum relative discrepancy between the Nusselt number values on the coarsest (h1)

and finest (h4) grids is at most 1%, while it is much less for the third order FE methods.
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Figure 15: FD1 streamwise and spanwise profiles of the local Nusselt number, along the
lines (y, z) = (5, 0) and (x, z) = (30, 0), on the four different grids used (h1, h2, h3, h4),
as well as the extrapolated Nu profile (hext) and its extrapolation coefficients α.

46


