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Abstract

The main purpose of this paper is to propose two three-dimensional Poiseuille–Rayleigh–Bénard flows (mixed convection flows in h
rectangular channels heated from below), covering two different flow ranges, as benchmark problems and to solicit numerical co
between various contributors in order to obtain two benchmark solutions for the validation of numerical codes. The second objective is
the less perturbing outflow boundary conditions for this flow type. The first test case is a steady longitudinal roll flow in a large aspect rati
(A = L/H = 50,B = l/H = 10) at moderate Reynolds numberRe= 50, Rayleigh numberRa= 5000 and Prandtl numberPr = 0.7. The second
one is a fully-established space and time periodic transversal roll flow in a small aspect ratio channel (A = 25,B = 4) at small Reynolds numbe
Re= 0.1, Ra= 2500 andPr = 7. The model equations are the incompressible Navier–Stokes equations under the Boussinesq approxim
 2005 Elsevier SAS. All rights reserved.
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1. Objectives

The purpose of this paper is to propose two three-dimens
Poiseuille–Rayleigh–Bénard (PRB) flows as benchmark p
lems and to solicit interested groups to submit numerical
lutions for comparison. The main objective is to obtain a
merical benchmark solution to validate numerical codes for
computation of thermoconvective instabilities in open chann
The second objective is to evaluate the influence of the out
boundary conditions on the bulk solutions and to identify
less perturbing outflow boundary conditions for two differe
flow classes. The third objective is to identify the most effici
numerical methods in terms of CPU time and computatio
cost to deal with this type of problems.

2. Governing equations

The two flows proposed as benchmark cases are PRB fl
in horizontal rectangular channels (cf. Fig. 1). A Poiseuille fl
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Fig. 1. Geometry and top and bottom thermal boundary conditions (the ve
lateral walls are adiabatic).

is imposed at the channel entrance and the incoming flu
cold. After an entrance zone over which a zero heat flux is
posed on the four walls, the top horizontal wall is maintain
at a cold temperatureTc and the bottom wall is maintaine
at a higher temperatureTh. The vertical lateral walls are ad
abatic. LetA and B represent the streamwise and spanw
aspect ratios of the computational domain andAe the stream-
wise entrance aspect ratio. The working fluid is Newton
and the flows are governed by the 3D incompressible Nav
Stokes equations under the Boussinesq assumption. Usin
channel heightH , the mean flow velocityUmean, ρU2

mean and
H/Umean as reference quantities for lengths, velocities, p
sure and time, respectively, and using the reduced temper
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θ = (T − Tc)/(Th − Tc), the governing equations take the fo
lowing dimensionless form:


∇.�v = 0
∂ �v
∂t

+ (�v.∇)�v = −∇p + 1
Re∇2�v + Ra

Pr Re2
θ �k

∂θ
∂t

+ �v.∇θ = 1
Pr Re∇2θ

(1)

wherex, y, z, t , �v = (u, v,w) and p are the dimensionles
streamwise, spanwise and vertical coordinates, time, velo
vector and pressure,�k is the upward unit vector,Pr is Prandtl
number (= ν/α), Re is Reynolds number (= UmeanH/ν) and
Ra is Rayleigh number (= gβ(Th − Tc)H

3/(να)). For the two
test cases, the boundary and initial conditions foru, v, w andθ

are:

• at z = 0, �v = �0; for x ∈ [−Ae,0], ∂θ/∂z = 0; for x ∈
[0,A − Ae], θ = 1;

• at z = 1, �v = �0; for x ∈ [−Ae,0], ∂θ/∂z = 0; for x ∈
[0,A − Ae], θ = 0;

• aty = 0 andB, �v = �0 and∂θ/∂y = 0;
• at x = −Ae, u = uPois(y, z), v = w = 0 andθ = 0, where

uPois(y, z) is given either directly by an approximate so

tion of the Poisson equation∂
2uPois
∂y2 + ∂2uPois

∂z2 = Re∂p
∂x

, with
no-slip boundary conditions aty = 0 andB and atz = 0
and 1, or by the analytical solution of this equation giv
in [1];

• at x = A − Ae, an outflow non-reflective boundary cond
tion is imposed. The choice of this boundary condition
left free: one will just try to impose a boundary conditi
that perturbs the outflow the least;

• at t = 0, ∀x ∈ [−Ae,A − Ae], u = uPois(y, z), v = w = 0
andθ = 0.

3. Definition of the two test cases

The first test case is a steady longitudinal roll flow defin
by: Re= 50; Ra= 5000;Pr = 0.7; A = 50; B = 10; Ae = 2.
The second test case is a space and time periodic transvers
flow defined by:Re= 0.1; Ra= 2500;Pr = 7; A = 25;B = 4;
Ae = 5. These two flows are symmetrical about the median
gitudinal vertical plane and they are obtained by starting fr
ty

roll

-

the initial conditions given in Section 2 after an intermitte
phase which will not be exploited here.

4. Analysis of the results

4.1. Analysis of the first test case

Calculate the four dimensionless heat fluxes defined in
ble 1, whereSi , So, St and Sb are the inlet, outlet, top an
bottom surfaces of the channel respectively.

Calculate the 18 dimensionless momentum fluxes define
Table 2, whereSf andSr designate the front and rear surface
y = 0 andy = B respectively, and calculate the integral of t
buoyancy term,−Ra

Re2Pr
θ , on the whole computational domain.

By denotingφ the four dimensionless fieldsθ , u, v andw,
and by denotingNut (x, y) andNub(x, y) the local Nusselt num
bers on the top and bottom walls, with:

Nut,b(x, y) = −H(∂T
∂Z

)Z=H,Z=0

Th − Tc

= −
(

∂θ

∂z

)
z=1,z=0

(2)

compute and display the following longitudinal and transve
profiles:

(1) φy−z(x) at (y, z) = (2,0.2) and(5,0.5) (= 8 profiles);
(2) Nut,by (x) aty = 2 and 5 (= 4 profiles);
(3) φx−z(y) at x = 10,30 and 48 and atz = 0.2 and 0.5 (= 24

profiles);
(4) Nut,bx (y) atx = 10,30 and 48 (= 6 profiles);

and determine their minimum and maximum values (φ
min,max
y−z ,

φ
min,max
x−z , Numin,max

t,by
, Numin,max

t,bx
) and their locations(x, y,

z)min,max. Consequently, 42 profiles and 84 extrema and t
coordinates have to be calculated.

4.2. Analysis of the second test case

4.2.1. Spatial analysis at a fixed timet◦
This flow is first analyzed at the fixed timet◦ > t∗, where

t∗ is the time necessary to get the fully-established perio
Table 1

Φθ,i Φθ,o Φθ,b Φθ,t∫∫
Si

(−Re Pruθ + ∂θ
∂x

)dy dz
∫∫

So
(RePruθ − ∂θ

∂x
)dy dz

∫∫
Sb

∂θ
∂z

dx dy
∫∫

St
− ∂θ

∂z
dx dy

Table 2

Φu Φv Φw

Si

∫∫
Si

(
p − 2

Re
∂u
∂x

+ u2)
dy dz

∫∫
Si

−1
Re

(
∂v
∂x

+ ∂u
∂y

)
dy dz

∫∫
Si

−1
Re

(
∂w
∂x

+ ∂u
∂z

)
dy dz

So

∫∫
So

(−p + 2
Re

∂u
∂x

− u2)
dy dz

∫∫
So

( 1
Re

(
∂v
∂x

+ ∂u
∂y

) − uv
)
dy dz

∫∫
So

( 1
Re

(
∂w
∂x

+ ∂u
∂z

) − uw
)
dy dz

Sf

∫∫
Sf

(− 1
Re

∂u
∂y

)
dx dz

∫∫
Sf

(
p − 2

Re
∂v
∂y

)
dx dz

∫∫
Sf

(− 1
Re

∂w
∂y

)
dx dz

Sr

∫∫
Sr

( 1
Re

∂u
∂y

)
dx dz

∫∫
Sr

(−p + 2
Re

∂v
∂y

)
dx dz

∫∫
Sr

( 1
Re

∂w
∂y

)
dx dz

Sb

∫∫
Sb

(− 1
Re

∂u
∂z

)
dx dy

∫∫
Sb

(− 1
Re

∂v
∂z

)
dx dy

∫∫
Sb

(
p − 2

Re
∂w
∂z

)
dx dy

St

∫∫
St

( 1
Re

∂u
∂z

)
dx dy

∫∫
St

( 1
Re

∂v
∂z

)
dx dy

∫∫
St

(−p + 2
Re

∂w
∂z

)
dx dy

Stot 0 0
∫∫∫

D

( −Ra
Re2Pr

θ
)
dx dy dz
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Table 3

φ̃max
y,z=0.2,0.2(x) = supt>t∗ φ(x, y = 0.2, z = 0.2, t) φ̃min

y,z=0.2,0.2(x) = inft>t∗ φ(x, y = 0.2, z = 0.2, t)

φ̃max
y,z=2,0.5(x) = supt>t∗ φ(x, y = 2, z = 0.5, t) φ̃min

y,z=2,0.5(x) = inft>t∗ φ(x, y = 2, z = 0.5, t)
o-

a-
se
ng

um

d
om

s

uen-

ed
hed-
ans-
ay
t
ise
ults
e

this
ation

ww.

ce
ixed

B 48
flow and wheret◦ is the time when the vertical velocity comp
nentw reaches a local maximum at the fixed point(x, y, z) =
(15.5,2,0.5). Compute the four heat fluxesΦθ,i , Φθ,o, Φθ,t

and Φθ,b, the eighteen momentum fluxesΦu,i , Φu,o, . . . and
Φw,t , the volume integral of the buoyancy term given in T
bles 1 and 2 (note that, since the flow of the second test ca
unsteady, the total fluxes are non-zero) and the following lo
tudinal, transversal and vertical profiles:

(1) φy−z(x) at (y, z) = (0.2,0.2) and(2,0.5) (= 8 profiles);
(2) Nut,by (x) aty = 0.2 and 2 (= 4 profiles);
(3) φx−z(y) at (x, z) = (15.5,0.5) (= 4 profiles);
(4) Nut,bx (y) atx = 15.5 (= 2 profiles);
(5) φx−y(z) atx = 20 and aty = 0.2 and 2 (= 8 profiles);

and, for each profile, determine their minimum and maxim
valuesφ

min,max
y−z , Numin,max

t,by
, φ

min,max
x−z , Numin,max

t,bx
andφ

min,max
x−y

and their locations(x, y, z)min,max. Therefore, 26 profiles an
52 extrema and their coordinates have to be calculated. C
pute the four average dimensionless wavelengthsλφy−z(x), in
the interval 7� x � 15, from the four longitudinal profile
φy−z(x) at (y, z) = (2,0.5).

4.2.2. Temporal analysis
Starting from timet = t◦, record the following signalsφ(t)

andNut,b(t):

(1) φx−y−z(t) at x = 0,5,15 and 20, aty = 2 and atz = 0.5
(= 16 signals);

(2) Nut,bx−y (t) atx = 5,15 and 20 and aty = 2 (= 6 signals).
is
i-

-

Determine the minimum and maximum valuesφmin,max
x−y−z ,

Numin,max
t,bx−y

of these 22 signals and the 16 dimensionless freq
ciesfφx−y−z(t) from the 16 signalsφx−y−z(t). Finally, compute
the 16 envelopes ofφ defined in Table 3.

5. Deadlines and presentation of the results

The time allotted for completion of this exercise is not fix
yet. However, a presentation of the first results is already sc
uled during the congress SFT2006 of the French Heat Tr
fer Society that will take place at the Ile de Ré, 16–19 M
2006. Therefore, the potential contributors should contacas
soon as possiblethe coordinators of this comparison exerc
(M. Medale and X. Nicolas) and send them their (first) res
before the end of April to permit their compilation with th
other results.

Remarks, comments and further information relative to
comparison exercise (required results, data format, present
of the results, deadlines, first results,. . .) will be available on
the web page of the French Heat Transfer Society (SFT): w
sft.asso.fr/groupes/simul.html.

References

[1] A. Benzaoui, X. Nicolas, S. Xin, Efficient vectorized finite differen
method to solve the incompressible Navier–Stokes equations for 3D m
convection flows in high aspect ratio channels, Numer. Heat Transfer
(2005) 277–302.

www.sft.asso.fr/groupes/simul.html
www.sft.asso.fr/groupes/simul.html

