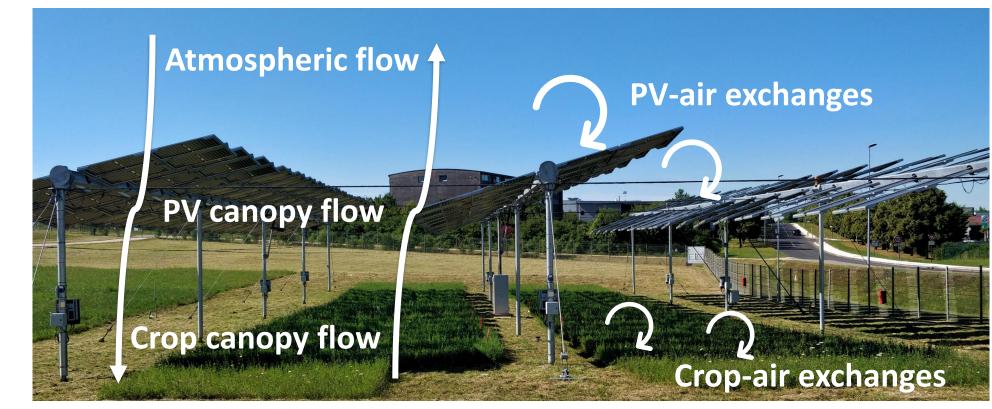


Exchange coefficients in an agrivoltaic power plant model

CFD & 3D crop model


How convective exchange coefficients vary between 2D & 3D crop models coupled to CFD?

Joseph Vernier^{1,2}, Sylvain Edouard¹, Baptiste Amiot², Mike Van Iseghem¹, Eric Dupont², Céline Caruyer², Didier Combes³, and Patrick Massin²

Context **

Agrivoltaics (APV) integrates photovoltaic (PV) energy generation and agricultural production on the same land. The goal is to accelerate the renewable energy transition while protecting crops from climate change. A coupling between a crop model, a Computational Fluid Dynamic (CFD) solver, and a 3D radiation model has been developed to simulate soil-plant-atmosphere energy and water exchanges in heterogeneous microclimates. It ultimately aims at understanding how APV power plants impact crop growth. In such a model, exchange coefficients are key parameters as they convert energy into temperature or evaporated water, thereby influencing both crop and PV yields.

> Which convective exchange coefficient model is the most appropriate in APV conditions?

2D crop model

The crop is modeled as the bottom surface boundary condition of the 3D CFD domain.

Surface model assumptions:

- plant height is small compared to the cell size;
- only vertical exchanges are considered;
- crop impact on air modeled with a wall law.

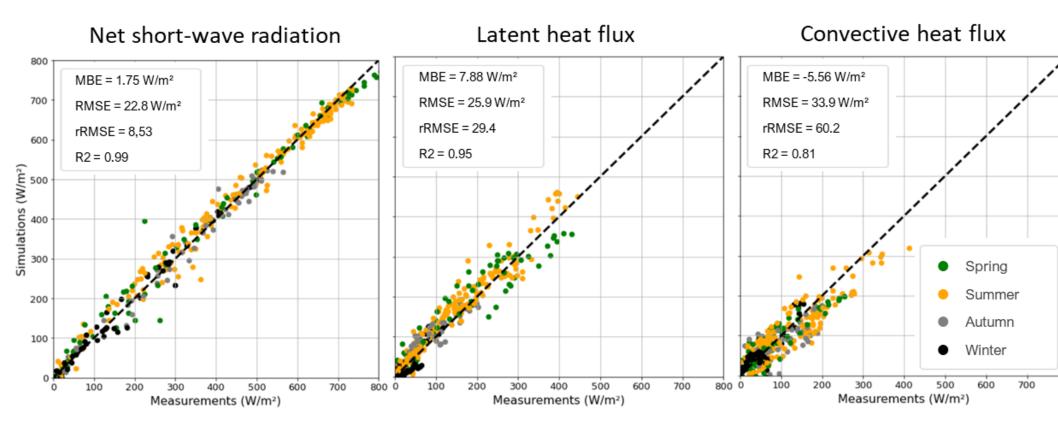
Convective exchange resistance $r_{a \to c}$:

> Shear stress exponential decrease (Raupach, et al., 1981)

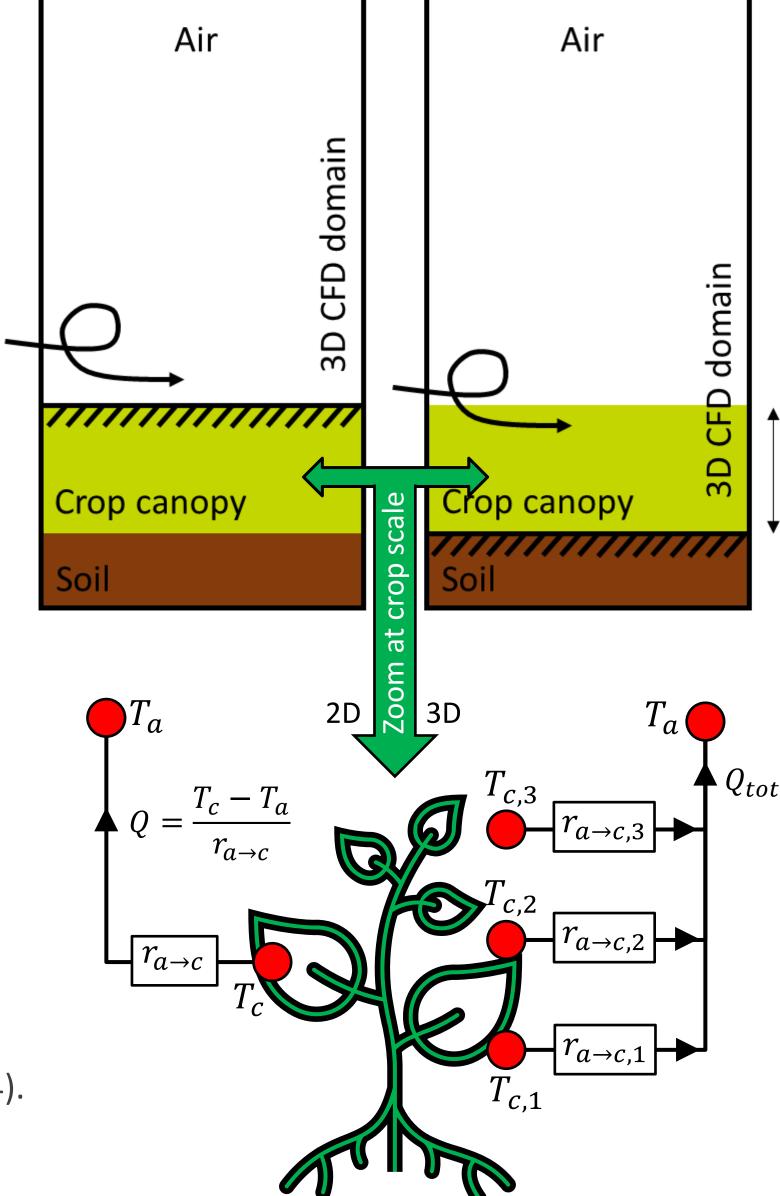
$$r_{a \to c} = \frac{P_{r_t}}{l_m} \frac{h_{exc}}{(1 - e^{-\eta})^{0.5} u_a^*}$$

- Crop exchange height h_{exc}
- Turbulent Prandtl number $P_{r_{m{ au}}}$
- Turbulent mixing length l_m Exponential extinction factor η
- Atmosphere friction velocity u_a^*

Crop impact on the air flow:


Exchanges modeled by a rough wall-law (Jacobson, 2005)

$$z_0 = h_c(1 - 0.91e^{-0.0075LAI})$$


- Dynamic roughness z_0
- Crop canopy height h_c Leaf Area Index *LAI*

Evaluation on ICOS Lusignan experimental data

> 20-days sunny and cloudy conditions, (Beauclair, et al., 2024). Root mean square error (RMSE) $< 30 \text{ W/m}^2$ in average.

(to be published)

CFD & 2D crop model

Convective flux comparison

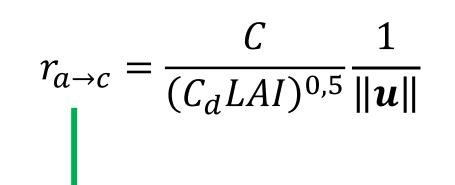
$$Q = \frac{T_c - T_a}{r_{a \to c}} \xrightarrow{\text{2D}} \frac{\text{3D}}{q_{tot}} = \sum_{i} \frac{T_{c,i} - T_a}{r_{a \to c,i}}$$

$$\frac{1}{r_{a \to c}} \xrightarrow{\text{2D}} \frac{\text{3D}}{r_{a \to c,eq}} = \sum_{i} \frac{1}{r_{a \to c,i}}$$

Convective flux Q Crop level « i »

- Crop temperature T_c • Air temperature T_a

3D crop model


The crop is virtually defined in the 3D CFD domain.

Volume model assumptions :

- some cells contain both plants and air;
- random distribution of leaves inside plant-related cells;
- exchanges between plant and air in the same cell.

Convective exchange resistance $r_{a \to c}$:

Canopy-related velocity correlation (Thom, et al., 1967)

- Empirical parameter $C \approx 22$
- Leaf drag coefficient \mathcal{C}_d Leaf Area Index *LAI*
- Wind speed magnitude $\|u\|$
- Leaf characteristic length l_{leaf}

Different from literature's formulas that are based on single isolated leaf experiments and have no canopy-related parameters! $r_{a\rightarrow c}=130l_{leaf}^{0.5}\|\boldsymbol{u}\|^{-0.5}$

(Grylls, et al., 2021)

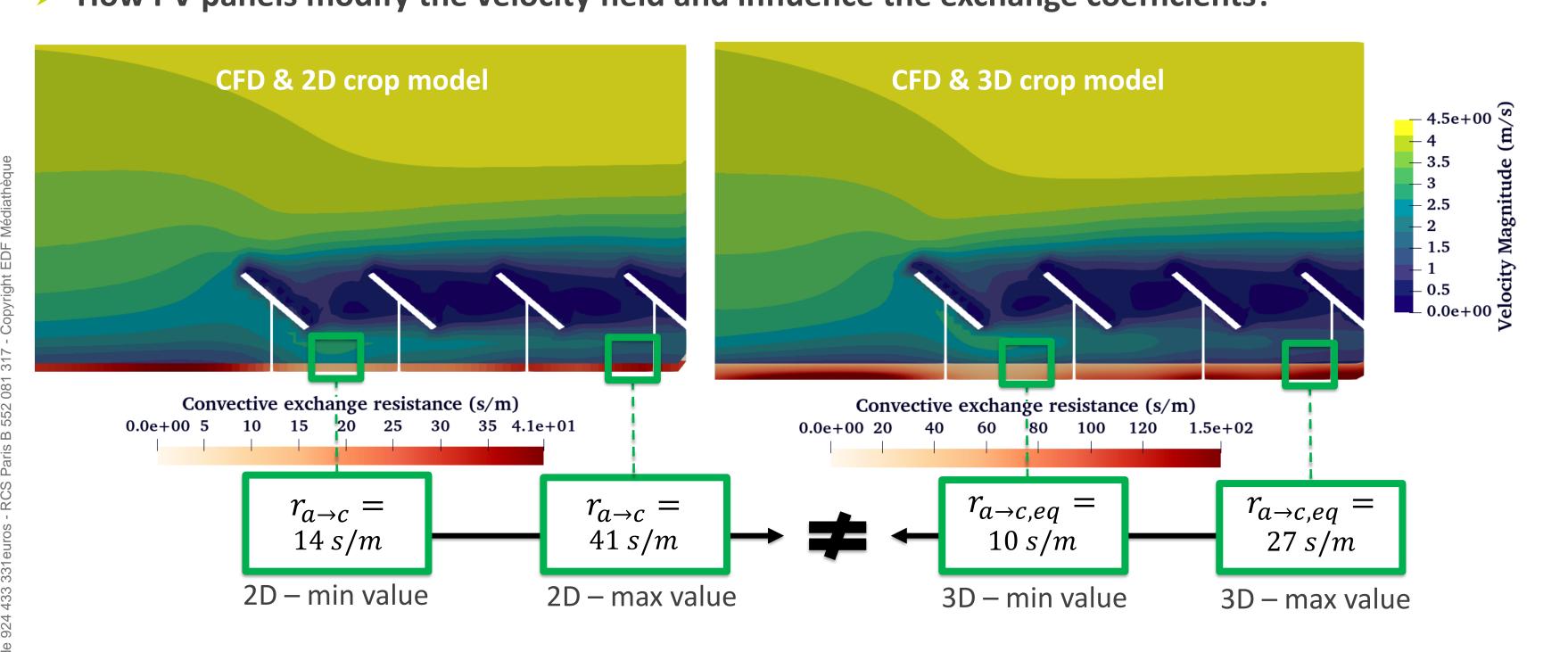
Crop impact on the air flow:

Exchanges modeled by source terms (Katul, et al., 2004) that are added in the equations of Navier-Stokes and the k-arepsilonturbulence model.

$$\begin{cases} S_{\boldsymbol{u}} = \rho C_{d} LAI \|\boldsymbol{u}\| \boldsymbol{u} \\ S_{k} = \frac{1}{2} \rho C_{d} LAI [\beta_{d} \|\boldsymbol{u}\|^{3} - \beta_{d} \|\boldsymbol{u}\| k] \\ S_{\varepsilon} = \frac{1}{2} \rho C_{d} LAI [C_{1} \|\boldsymbol{u}\|^{3} \frac{\varepsilon}{k} - C_{2} \|\boldsymbol{u}\| \varepsilon \end{bmatrix}$$

- Leaf drag coefficient C_d
- Mass density ρ
- Wind speed vector \boldsymbol{u}
- Turbulent kinetic energy k
- Turbulent dissipation ε
- Model constants β_p , β_d , C_1 , C_2

How to evaluate the 3D crop model?


- ➤ Using overall energy fluxes √
- How to evaluate temperature, energy and water exchanges at eachcrop level? Where to find experimental data?

Simulations with PV panels

Simulation of 4 rows of PV panels (dimensions of a panel array: height 5m, length 6m, width 20m, tilt 40°, spacing 8m), on a 1M-cell cartesian mesh, using the CFD solver 😧 code_saturne. Pre-calibration on 1m high homogeneous crop in open-field conditions giving similar resistances.

How PV panels modify the velocity field and influence the exchange coefficients?

Conclusion & Perspectives

- Validated coupling of a 2D crop model, code saturne, and a 3D radiation model (to be published).
- Same convective exchange coefficient values between the 2D and the 3D crop models in open-field conditions.
- > In presence of PV panels, almost the same velocity fields above the crop although a finer mesh for the 3D crop model and different plant to air exchange approaches.
- In presence of PV panels, 3D velocity penetration within the crop canopy only for the 3D crop model, leading to different convective exchange coefficients compared to the 2D crop model.
- Some doubts about convective exchange resistance formulas for 3D crop models. Which one to choose?
- How to the evaluate the convective exchanges in 3D crop models? Is there any open-source data?

