

DART: a 3D radiative transfer model for urban studies

Jonathan Leon Tavares a, Yingjie Wangb, Zhijun Zhenb, c, Nicolas Lauret^b, Jean-Philippe Gastellu-Etchegorry^b

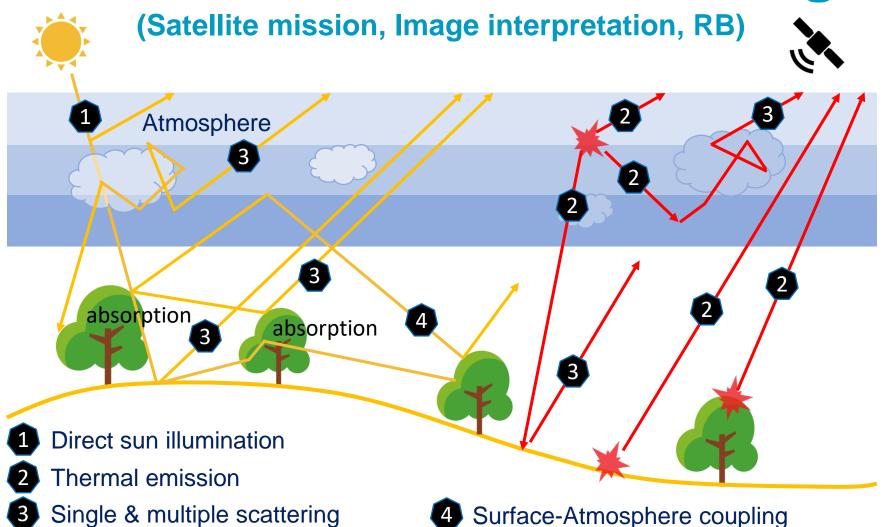
- ^a VITO NV Remote Sensing, Mol, Belgium
- b CESBIO-CNES/CNRS/IRD/INRAE/UT3-Paul Sabatier, Toulouse, France
- ^c University of Jilin, Jilin, China

Discrete Anisotropic Radiative Transfer

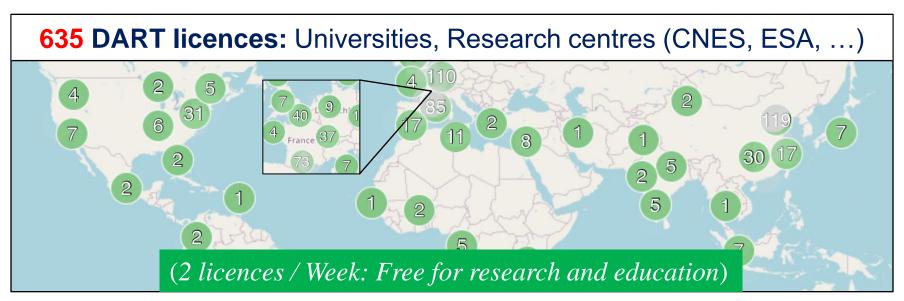
Outline

- 1. Introduction to DART
- 2. 3D urban scenes and simulations
- 3. Inversion & Differentiable radiative transfer

Outline


- 1. Introduction to DART
- 2. 3D urban scenes and simulations
- 3. Inversion & Differentiable radiative transfer

Radiative transfer modelling


DART model: an overview

History: developed in CESBIO since 1992 by 10 scientists. Patented in 2003

Accuracy (relative difference ε , RMSE) assessed with:

- Monte Carlo models (RAMI-III experiment): $\varepsilon_{\rho} \leq 1\%$ (Widlowski et al., 2007)
- Measurements: $\varepsilon_{\rho} \leq 2.5\%$ (Landier et al., 2018), $RMSE_{T_{B}} < 2K$ (Sobrino et al., 2011)

Community code certification: enhance research collaboration using DART.

DART Discrete Anisotropic Radiative Transfer

DART Team (CESBIO)

Jean-Philippe Gastellu-Etchegorry

*Professor (UT3)*Scientific leader

Nicolas Lauret

Dr, Engineer (CNRS)
Lead Developer

Science

Yingjie Wang
Assoc. Prof (UT3)
Atmos., MC

Zhijun Zhen
Lecturer (Univ. Jilin)
Inversion

Paul Boitard
PhD (UT3)
Biosphere processes

Romain Demoulin *PhD (UT3)*Vegetation

Ameni Mkaouar Post-Doc (NASA) Space mission Luka Lesage
Engineer (CNRS)
Energy balance

Computer science

Jordan Guilleux

Engineer (CNRS)
Interfaces, databases,

Eric Chavanon

Engineer (UT3)
Compilation, Scientific tools, ...

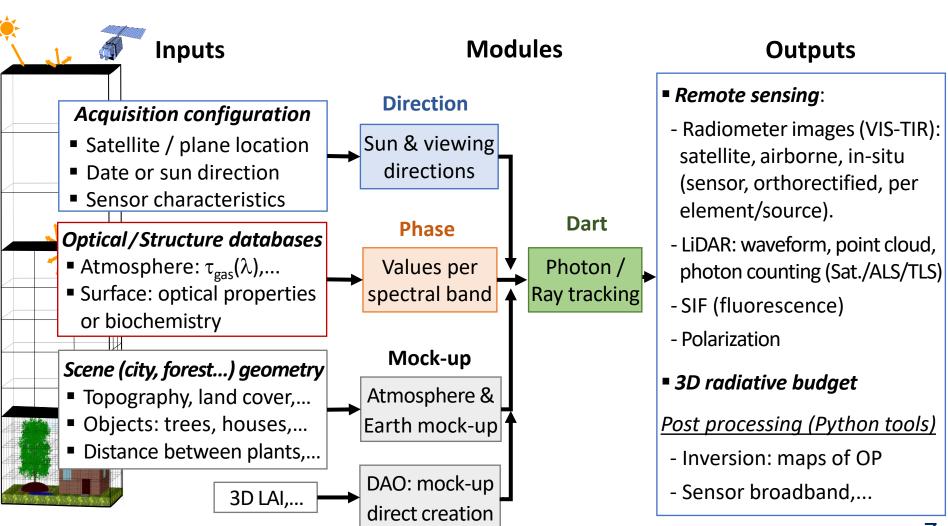
Outside CESBIO:

Z. Malenovsky, O. Regaieg, T. Nguyen (Univ. Bonn, Germany): SIF, TIR, RB.

A. Kallel (CRNS, Tunisia): Monte Carlo

T. Yin (HPU, China): Photogrammetry, LiDAR

R. Paugam (UCP, Spain): Fire


TETIS (Montpellier): F. De Boissieu, J.-B. Feret, S. Durrieu

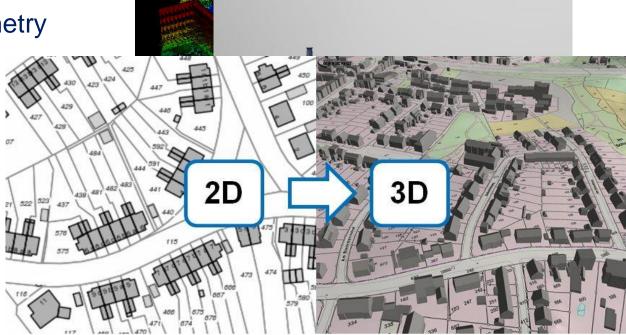
Pytools4dart: https://gitlab.com/pytools4dart

DART Discrete Anisotropic Radiative Transfer

DART model: an overview

Outline

- 1. Introduction to DART
- 2. 3D urban scenes and simulations
- 3. Inversion & Differentiable radiative transfer


3D city representation

Common techniques for 3D city construction:

(1) LiDAR point clouds

(2) Photogrammetry

(3) Cadastre

DART Discrete Anisotropic Radiative Transfer

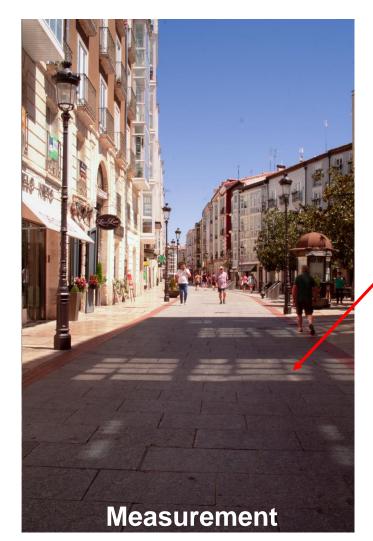
3D city representation

3D city representation

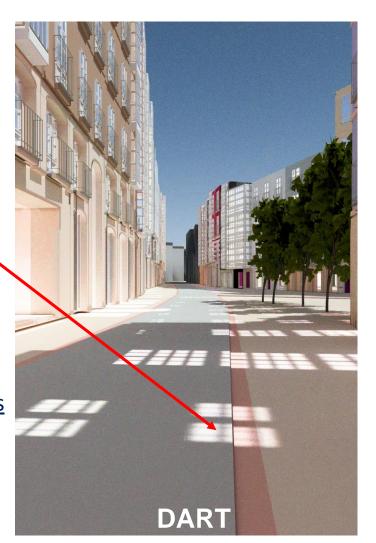
Basel city 3D mock-up (10 x 11 km).

3D city representation

London city 3D mock-up (5 x 4 km).



DART urban simulations


DART urban simulations

Reflection from windows

Work from **Diego Granados Lopez**dgranados@ubu.es

DART urban simulations

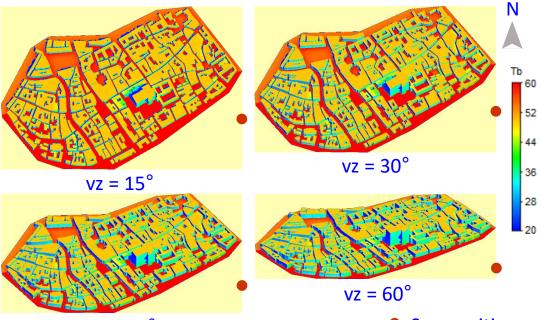
SOLENE model ⇒ 3D energy balance (2 broad bands) ⇒ LST + Tair

DART model ⇒ hyperspectral RTM (more accurate RB) ⇒ RS observations

Impact of urban surface heterogeneity on LST estimation from TIR satellites

(TRISHNA, LSTM)

LST – SOLENE microclimate

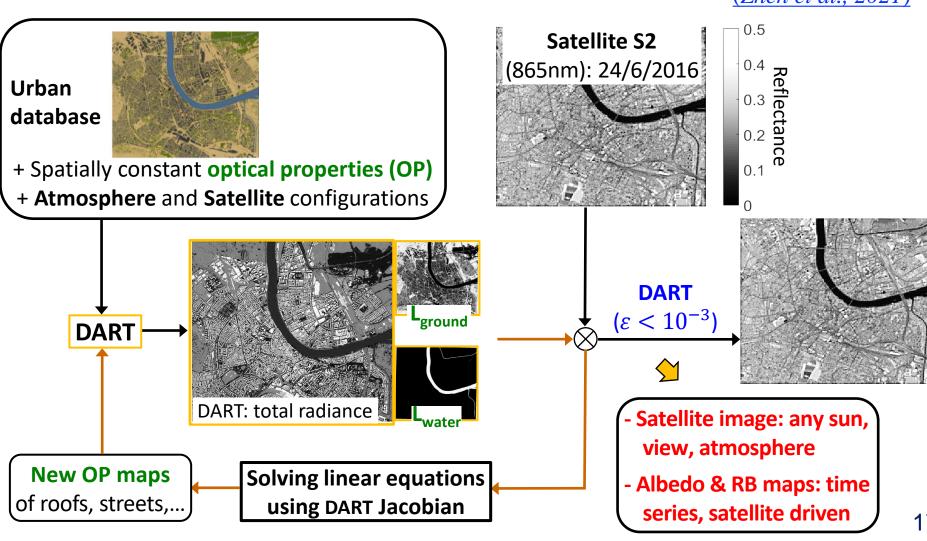


Strasbourg, cathedral district,

Brightness temperature at 4 view zenith (vz) angles

Outline

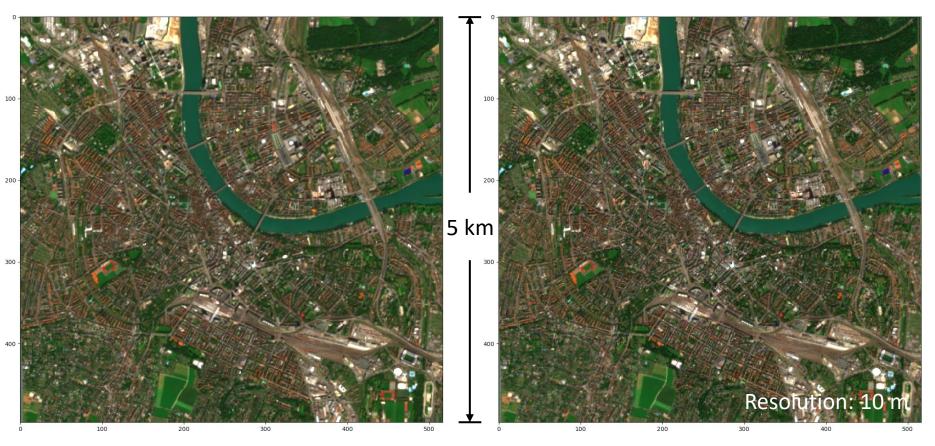
- 1. Introduction to DART
- 2. 3D urban scenes and simulations
- 3. Inversion & Differentiable radiative transfer



Discrete Anisotropic DART Radiative Transfer

Inversion

(*Zhen et al., 2021*)



DART Discrete Anisotropic Radiative Transfer

Inversion

(*Zhen et al., 2021*)

Sentinel 2 (B2, B3, B4)

DART simulation with OP maps

Jacobian matrix

What is Jacobian matrix?

The derivatives of measurements F to a series of parameters $\hat{\pi} = [\pi_1, \pi_2, ..., \pi_k, ..., \pi_N]$.

$$J = \left[\frac{\partial F}{\partial \pi_1}, \frac{\partial F}{\partial \pi_2}, \dots, \frac{\partial F}{\partial \pi_k}, \dots, \frac{\partial F}{\partial \pi_N} \right]$$

Jacobian matrix quantifies the change of RS signal due to the change of parameters:

- (a) Retrieve parameters $\hat{\pi}$ from RS obervation F
- (b) Estimate uncertainties of remote sensing products $u(\widehat{\pi})$ from u(F)
- (c) Estimate uncertainties of radiative transfer modelling u(F) from $u(\widehat{\pi})$
- (d) ...

Finite difference method

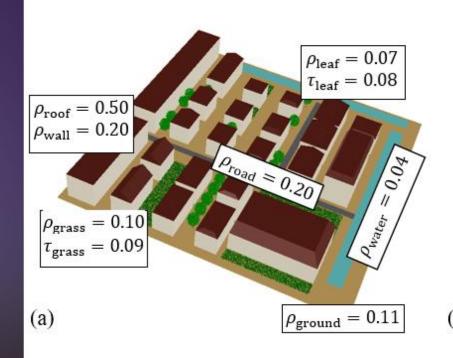
FD method: straightforward Jacobian matrix computation.

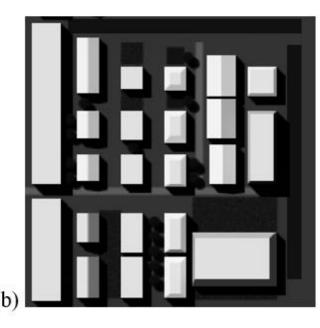
$$\frac{\partial F(\widehat{\pi})}{\partial \pi_k} = \frac{F(\pi_1, \dots, \pi_k + h\pi_k, \dots, \pi_N) - F(\pi_1, \dots, \pi_k - h\pi_k, \dots, \pi_N)}{2h\pi_k}$$

 $F(\hat{\pi}) \implies$ Radiative transfer modelling

Advantages: Acceptable accuracy + Easy to chain with RT code (Current implementation in DART)

Disadvantages:


- (1) Efficiency: N derivatives \Rightarrow 2N simulations.
- (2) Accuracy: Non-linearity between π̂ and F(π̂).
 Large h ⇒ baised derivative (error of approximation)
 Small h ⇒ baised derivative (error of RT modelling)
 - → Forward modelling of Jacobian Matrix



Differentiable radiative transfer

Differentiable radiative transfer modelling with DART

⇒ DART scene consists of 7 elements (roof, wall, roads, tree, grass, ground, water)

DART Scene

Nadir image

Differentiable radiative transfer

DART since 1992

22

Adaptation to inversion algori.