CONSIGLIO NAZIONALE DI OTTICA

UNIVERSITÀ DEGLI STUDI DI **BRESCIA**

Temperature Waves In Layered Correlated Materials And Temperonic Crystals

Giacomo Mazza, Massimo Capone, Francesco Banfi, Claudio Giannetti

marco.gandolfi1@unibs.it

Beyond Fourier Paris 2022

9th September 2022

www.ino.cnr.it

Introduction

Nano-scale heat transport

Beyond Fourier's Law ... a dispersion relation perspective

Temperature waves: graphite and correlated materials

Temperonic Crystal

M. Gandolfi

Beyond Fourier's Law

$$\boldsymbol{q}(\boldsymbol{x},t) = -k_T \nabla T(\boldsymbol{x},t)$$

Dual-Phase-Lag-Model

$$q(x,t+\tau_q) = -k_T \nabla T(x,t+\tau_T)$$
+ conservation of energy
$$\left(\frac{\tau_q}{\alpha}\right) \frac{\partial^2 T}{\partial t^2} - \frac{\partial^2 T}{\partial x^2} + \frac{1}{\alpha} \frac{\partial T}{\partial t} - \tau_T \frac{\partial^3 T}{\partial x^2 \partial t} = 0$$

M. Gandolfi

Beyond Fourier's Law

$$\boldsymbol{q}(\boldsymbol{x},t) = -k_T \nabla T(\boldsymbol{x},t)$$

Dual-Phase-Lag-Model $\boldsymbol{q}(\boldsymbol{x},t+\tau_q) = -k_T \nabla T(\boldsymbol{x},t+\tau_T)$ + conservation of energy $\left(\frac{\tau_q}{\alpha}\right)\frac{\partial^2 T}{\partial t^2} - \frac{\partial^2 T}{\partial x^2} - \frac{\partial^2 T}{\partial x^2}$ $\tau_T \frac{\partial^3 T}{\partial x^2 \partial t} = 0$ $\frac{1}{\alpha} \frac{\partial T}{\partial t}$ Diffusion Damping Waves damping

M. Gandolfi

Beyond Fourier's Law

$$\boldsymbol{q}(\boldsymbol{x},t) = -k_T \nabla T(\boldsymbol{x},t)$$

Dual-Phase-Lag-Model

$$q(x, t + \tau_q) = -k_T \nabla T(x, t + \tau_T)$$

+ conservation of energy
$$\left(\frac{\tau_q}{\alpha}\right) \frac{\partial^2 T}{\partial t^2} - \frac{\partial^2 T}{\partial x^2} + \frac{1}{\alpha} \frac{\partial T}{\partial t} - \tau_T \frac{\partial^3 T}{\partial x^2 \partial t} = 0$$

M. Gandolfi

M. Gandolfi

Dispersion relation perspective

Generality

Dispersion relation perspective

Layered Correlated Materials

Hubbard Model

$$H = \sum_{n=1}^{L} h_n + \sum_{n=1}^{L-1} \tau_{n,n+1}$$

$$h_n = \sum_{\langle i,j \rangle \sigma} t_{\parallel} c_{in\sigma}^{\dagger} c_{jn\sigma} + U \sum_i n_{in\uparrow} n_{in\downarrow}$$

$$\tau_{n,n+1} = \sum_{\sigma} t_{\perp} c_{in\sigma}^{\dagger} c_{in+1\sigma} + h.c.$$

 t_{\parallel} interlayer hopping

 t_{\perp} intra-layer hopping

U Coulomb interaction

G. Mazza et al., Nat. Comm. (2021)

M. Gandolfi

Layered Correlated Materials

Heat diffusion regimes

- Ballistic: large heat flux, no temperature dynamics
- Hydrodynamic: positive heat flux, temperature oscillations
- Fourier: $q \propto -\nabla T$

M. Gandolfi

Delay times for correlated materials

[THz]

14

 T_{c0} [K]

5 6 7

2 3 4 5 6 7

10

 λ [nm]

For SrV0₃

 $\tau_T \sim 5$ fs (scattering time from optics)

 $\tau_q \sim 500$ fs (from neq. dynamics)

$$k = 10 - 20 \text{ W m}^{-1} \text{ K}^{-1}$$

M. Gandolfi

Temperature Waves In Layered Correlated Materials And Temperonic Crystals

3 4 5 6 7

100

Temperonic Crystal

A Superlattice for Temperature Waves in Correlated Materials

PHYSICAL REVIEW LETTERS

Open Access

Highlights Recent Accepted Collections Authors Referees Search Press About

Temperonic Crystal: A Superlattice for Temperature Waves in Graphene

Marco Gandolfi, Claudio Giannetti, and Francesco Banfi Phys. Rev. Lett. **125**, 265901 – Published 31 December 2020

Photonic Crystal

M. Gandolfi

Temperonic Crystal

A Superlattice for Temperature Waves in Correlated Materials

PHYSICAL REVIEW LETTERS

Open Access

Highlights Recent Accepted Collections Authors Referees Search Press About

Temperonic Crystal: A Superlattice for Temperature Waves in Graphene

Marco Gandolfi, Claudio Giannetti, and Francesco Banfi Phys. Rev. Lett. **125**, 265901 – Published 31 December 2020

Photonic Crystal

M. Gandolfi

Spatio-temporal evolution of temperature

M. Gandolfi

Temperature Waves In Layered Correlated Materials And Temperonic Crystals

11

Conclusions

Beyond Fourier's Law ... a dispersion relation perspective

Temperonic Materials

Temperonic Crystal

IOPSCIENCE Q Journals - Books Publishing Support 😔 Login -

Physica Scripta

PAPER

Emergent ultrafast phenomena in correlated oxides and heterostructures

M Gandolfi^{1,2,3}, G L Celardo^{1,2,4}, F Borgonovi^{1,2,4}, G Ferrini^{1,2}, A Avella^{5,6,7}, F Banfi^{1,2} and C Giannetti^{8,1,2}

Published 31 January 2017 • © 2017 The Royal Swedish Academy of Sciences

Physica Scripta, Volume 92, Number 3

Focus issue on Ultrafast Bandgap Photonics

Citation M Gandolfi et al 2017 Phys. Scr. 92 034004

M. Gandolfi

Thank you for your attention!!!

an Open Access Journal by MDPI

Special Issue "Opto-Thermo-Mechanical Interactions in Nano-Objects and Metasurfaces"

Special Issue Website:

https://www.mdpi.com/journal/optics/special_issues/ object_meta

