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Modeling heat transport at the nanoscale: L < mfp of phonon

→ Interfaces and out of equilibrium transport

Heat transfer in nanostructures
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Home made DFT based ab-initio based Full-Band Monte Carlo simulator

3/48

• Full-band description of (30x30x30 3D k-space): 
• Phonon dispersions:

• From DFT

• Phonon-phonon scattering rates:
• From DFT

• Advantages
• Anisotropic properties captured 
• Scattering mechanisms describe at the particle level
• Interface: reflection and transmission from atomistic approaches
• Non equilibrium distribution
• Complex geometry from nm to µm scale

(Davier, JPCM 2018)
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• Specular reflection/transmission

• Diffusive reflection/transmission
-Transmission probability via DMM

- Final angle randomized

Diffusive

- Phonon angular frequency

- Parallel heat flux

Specular

• Conservations of

Cf. Larroque, JAP 123, 2 (2018):

Particle scattering at semi-transparent interface
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Diffusive plane

Semi-transparent interface:   1

2
t  

 Linear decrease of T along the distance

 Drop of T at contacts and interface

Thermal conductivity of one side

𝜅 = Q/g𝑟𝑎𝑑𝑇
Q = heat flux density
DTinter = temperature offset at interface
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Thermal conductivity in short system??

Si-3C

In short device: g𝑟𝑎𝑑𝑇0, 𝜅 → ∞ > 𝜅  ‼

5



Diffusive plane Semi-transparent interface:   1

2
t  

 Linear decrease of T along the distance

 Drop of T at contacts and interface

Interface thermal conductance: 

DTinter

G =
Q

Q = heat flux
DTinter = temperature offset at interface
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Interface conductance in a cross plane homo-junction

Si-3C
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 MC and analytical DMM results are different in ballistic and intermediate regimes

 MC gives an unexpected length-dependence of G

 Not consistent !!!

(DMM = Diffusive Mismatch Model)

Monte Carlo
Analytical DMM1.2
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Temperature in a homo-junction – Interface conductance (2)
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Short version of a long story: “Thermal Boundary Resistance”

Swartz, E. T., et R. O. Pohl. Reviews of Modern Physics 61, no 3 (1989)

DTinter

G =
Q Q = heat flux density

DTinter = temperature offset at interface

 Defining a temperature near an interface (out of equilibrium) is an (theoretical and experimental) issue

 Different models and pseudo local temperatures have been defined in the literature :
Little, W. A. Can. J. Phys 37, 49 (1959)

Chen, G. Physical Review B 57, 23 (1998), …
Simons, S. Journal of Physics C: Solid State Physics 7, 22 (1974) 
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 Given the local energy density E, 
the « standard » pseudo temperature T is defined by : 

 Considering heat flux density Q instead of energy density 

Velocity vx [u.a]

Velocity distribution [u.a.]

0

 Considering only phonon with positive velocity

Definitions of pseudo T, T+ and T-

Monte Carlo simulation and temperature of incident phonons
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Diffusive plane Semi-transparent interface:   1

2
t  

We must consider the appropriate 

population of phonons to extract the 

temperature on both sides 

Interface thermal conductance: 

DTinter

G =
Q

Q = heat flux density
DTinter = temperature offset at interface
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 Good agreement between MC and DMM results

 Conductance independent of length

Monte Carlo (hemispherical T+ and T-)
Monte Carlo (standard T)
Analytical DMM

(DMM = Diffusive Mismatch Model)
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The classical virtual interface paradox
 infinite ITC for an imaginary interface in the same 

material > ballistic case

Extreme cases: virtual interface

 It gives a link between T, T+ and T-
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3 New thermal parameters

GInter =Q.ΔTlocal
I      with Δ𝑇 = 𝑇 𝑥 − 𝜖 − 𝑇 𝑥 + 𝜖

Size dependent conductivity

New interface conductivity

Ballistic conductivity
(only material dependent)

𝑄 = 𝜅  with Δ𝑇 = 𝑇 0 − 𝑇 𝐿

𝜅 =
Ω

2𝜋
ℏ𝜔  𝑣 ,  

𝐿

2
 
𝜕𝑓

𝜕𝑇
𝜔 , 𝑇 = 𝐿 𝐺

This work: (IJMHT, Davier, 2022)

𝑄 =
/

/ Δ𝑇
/

= 𝐺 . Δ𝑇 = 𝑮𝒃𝒂𝒍𝒍𝒊𝒔𝒕𝒊𝒄
𝑳/𝑹

. 𝚫𝑻𝒍𝒐𝒄𝒂𝒍
𝑳/𝑹
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3 resistances in series:

This work: (IJMHT, Davier, 2021)

Application in analytical modeling: Standard vs. New approaches

𝑄 =
/

/ Δ𝑇
/

= 𝐺 . Δ𝑇 = 𝐺
/

. Δ𝑇
/
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Homojunction

 Good agreement between MC and analitycal model

 3 resistance in series using keffective is very disappointing

𝐺 =
𝐿

𝜅
+

1

𝐺
+

𝐿

𝜅
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Simple and double Si/Ge heterostructures
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 Good agreement between MC and analitycal model

(IJMHT, Davier, 2022)



Conclusion

At thermal interface, the use of temperatures T+ and T- considering incident phonons  
is relevant

It could be used to define a new set of 3 thermal parameters

The resulting analytical model is efficient to reproduce advanced Monte Carlo results 
in all phonon transport regimes even in complex structures
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cf. Davier at al, International Journal of Heat and Mass Transfer 
Volume 183, Part A, February 2022, 122056


