

Éléments finis et équation de transfert radiatif

Yann Favennec avec aussi B. Rousseau, D. Le Hardy, A. Badri, P. Jolivet, O. Balima, F. Dubot, D. Rousse, H. Digonnet, S. Guévelou, ...

(22 novembre 2017)

Journée SFT "Méthodes numériques pour la résolution de l'équation de transfert radiatif", espace Hamelin, Pais 🚽 🖓 🖓

Objectif¹

1. Le Hardy et al. "3D numerical modelling of the propagation of radiative intensity through a X-ray tomographied ligament." Journal of Quantitative Spectroscopy and Radiative Transfer 194 (2017): 86-97. = 300

Problème radiatif

search
$$I(\boldsymbol{x}, \boldsymbol{s}) : \mathcal{D} \times \mathcal{S}^{n-1} \mapsto \mathbb{R}^+$$

 $\boldsymbol{s} \cdot \nabla I(\boldsymbol{x}, \boldsymbol{s}) + (\kappa + \sigma_s)I(\boldsymbol{x}, \boldsymbol{s}) = \sigma_s \int_{\mathcal{S}^{n-1}} \Phi(\boldsymbol{s}, \boldsymbol{s}')I(\boldsymbol{x}, \boldsymbol{s}') \, \mathrm{d}\boldsymbol{s}' + \kappa I_b(T)$
+ B.C.

Features :

- Advection (transport)
- Reaction
- no "diffusion"
- ▶ integro-difff eq.

Regularité

$$I(\boldsymbol{x}, \boldsymbol{s}) \in H^1(\mathcal{D}) \times L^2(\mathcal{S}^{n-1})$$

◆□▶ ◆御▶ ◆注▶ ◆注▶ … 注…

Éléments finis

Ingrédients

- Introduction d'une formulation variationnelle
- Approximation de l'espace fonctionnel / maillage
- Intégrales
- Résolutuion d'un système linéaire

Historique

- Reddy, 1978 : 1D
- Fiveland, 1994 : DOM-FEM

Versions

- Galerkin moindres carrés SUPG
- Espace / Angulaire
- coulage EF avec DOM harmniques sphériques …

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

discrétisation angulaire

Quadrature :

$$\int_{\mathcal{S}} I(\boldsymbol{x}, \boldsymbol{s}) \, \mathrm{d}\boldsymbol{s} = \sum_{m=1}^{N_d} I_m(\boldsymbol{x}) w_m,$$

ETR semi-discrète

$$\mathcal{R}_m\left(\{I_n\}_{n=1}^{N_d}\right) = \left(\boldsymbol{s}_m \cdot \nabla + \beta(\boldsymbol{x})\right) I_m(\boldsymbol{x}) - \sigma_s(\boldsymbol{x}) \sum_{n=1}^{N_d} \boldsymbol{w}_n I_n(\boldsymbol{x}) \Phi_{m,n} - \kappa(\boldsymbol{x}) I_b(\boldsymbol{x}) = 0$$

◆□ > < 個 > < E > < E > E の < @</p>

couples (s_m, w_m)

у • s_m • ek S_8 T_6 SqT_{83} icosahedron niveau 2 maillage de la sphère

FEM DD SUPG & DG

Streamline Upwind Petrov-Galerkin²

Espace fontionnel

$$\mathcal{V}_m^h = \{ v \in L^2(\Omega^h) \text{ and } \boldsymbol{s}_m \cdot \nabla v \in L^2(\Omega^h) \}.$$

• Multiplication de (E_m) par la fonction de fonction test

$$f_m(v_h) = v_h + \gamma \; \boldsymbol{s_m} \cdot \nabla v_h \qquad v_h \in V_h^{\mathsf{SUPG}}$$

avec $\gamma(\boldsymbol{x}) = \gamma(h_i, N_d, \kappa, \sigma_s)^3$

- Intégration en espace sur tout le domaine D
- Inclusion des conditions aux limites par la méthode de Green.

2. G. Kanschat et al., eds. Numerical methods in multidimensional radiative transfer. Springer, 2009

3. M. Avila et al., CMAME, 2011

FEM DD Variational formulation

Find
$$\{I_m^h \in \mathcal{V}_m^h\}_{m=1}^{N_d}$$
 such that
 $a_{m,m}(I_m^h, w^h) + \sum_{\substack{n=1\\n \neq m}}^{N_d} a_{m,n}(I_n^h, w^h) = l_m(w^h) \quad \forall w^h \in \mathcal{V}_m^h(w^h), \; \forall m = 1, \dots, N_{d_m}$

avec

$$\begin{aligned} a_{m,m}(I_m^h, w^h) &= -\int_{\Omega^h} \boldsymbol{s}_m \cdot \nabla w^h (I_m^h - \gamma \boldsymbol{s}_m \cdot \nabla I_m^h) \, \mathrm{d}\boldsymbol{x} + \int_{\partial \Omega_m^+} \boldsymbol{s}_m \cdot \boldsymbol{n} \, w^h I_m^h \, \mathrm{d}\boldsymbol{x} \\ &+ \int_{\Omega^h} (\beta I_m^h - \boldsymbol{w}_m \Phi_{m,m} \sigma_s I_m^h) (w^h + \gamma \boldsymbol{s}_m \cdot \nabla w^h) \, \mathrm{d}\boldsymbol{x}, \\ a_{m,n \neq m}(I_n^h, w^h) &= -\int_{\Omega^h} \boldsymbol{w}_n \Phi_{m,n} \sigma_s I_n^h (w^h + \gamma \boldsymbol{s}_m \cdot \nabla w^h) \, \mathrm{d}\boldsymbol{x}, \\ l_m(w^h) &= -\int_{\partial \Omega_m^-} \boldsymbol{s}_m \cdot \boldsymbol{n} \, w^h I_{\text{in}} \, \mathrm{d}\boldsymbol{x} + \int_{\Omega^h} \kappa I_b (w^h + \gamma \boldsymbol{s}_m \cdot \nabla w^h) \, \mathrm{d}\boldsymbol{x}. \end{aligned}$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ● < ① へ ○</p>

FEM DD Matrice

solveurs

block-based : Source itérée (Jacobi), Gauss-Seidel, SOR

(日) (四) (三)

matrice complète : GMRES, BICGStab

Éléments finis pour l'ETR

1 Les bases

Discrétisation angulaire Discrétisation spatiale : SUPG

2 Allons plus loin

HPC : EF Vectoriels & calcul // Gestion de la spécularité

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

3 Applications

Matériaux hétérogènes Inversion géeométrie complexe

4 conclusiosn

Condition de reflection

par ex. spéculaire :

$$I_{m}^{\vee}(\boldsymbol{x}) = \rho(\boldsymbol{s}_{m} \cdot \boldsymbol{n}) \sum_{i=1}^{N_{d}} \delta_{m,j}(\boldsymbol{n}) I_{j}(\boldsymbol{x})$$
$$\Longrightarrow \sum_{j \neq m} \left[\dots + \int_{\partial \mathcal{D}^{m-}} \delta_{m,j}(\boldsymbol{n}) I_{j} v(\boldsymbol{s}_{m} \cdot \boldsymbol{n}) \, \mathrm{d}\Gamma \right]$$

Méthode de partitionnement : $\delta_{m,j}(n) = rac{{\sf mes}\;(\Omega_m\cap\Omega_j)}{{\sf mes}(\Omega_m)}$

Specularity DD Partitioning method⁴

1. reflexion of solid angles

2. computation of intersection points

3. computation of the intersection area with nodes reordering

Mixed (vectorial) Finite Elements

From :

- Solid mechanics⁵
- CFD with FEM

Problem in vectorial aspect

▶ search for vector of Intensity I using RTE in vectorial form :

 $\mathbb{S} \cdot \nabla \mathbb{I} + \beta \mathbb{I} - \Theta \mathbb{I} = \kappa I_b \mathbb{1}$

utilizing vectorial trial function $\mathbb{V} + \gamma \mathbb{S} \cdot \nabla \mathbb{I}$

weak form based on tensor product :

$$\int_{\mathcal{D}} [\mathbb{S} \cdot \nabla \mathbb{I} + \beta \mathbb{I} - \Theta \mathbb{I} - \kappa I_b \mathbb{1}]^\top (\mathbb{V} + \gamma \mathbb{S} \cdot \nabla \mathbb{I}) = 0$$

Output is single equation unlike normal SUPG where we had N_d equations.

^{5.} L. R. Herrmann(1967): Finite-element bending analysis for plates Journal of the Engineering Mechanics Division

Mixed (vectorial) Finite Elements⁶

Permutation of unknowns :

 $\mathbb{I}(\boldsymbol{x}_n, \boldsymbol{s}_k) \ \forall n, \ \forall k \implies \mathbb{I}(\boldsymbol{x}_n, \boldsymbol{s}_k) \ \forall k, \ \forall n$

≣ ୬९९

・ロト ・ 日本 ・ 日本 ・ 日本

Weakens the coupling : short banded matrix

One step building + one step solving

^{6.} Badri et al., Acomen conference, 2017

Méthode de décomposition DD (de) domaine

Méthode de décomposition DD angulaire

e.g. $N_d = 4$

୶ୡୡ

Scaling⁷

 $3D - 320 \text{ dir} - 107 484 \text{ nodes} - P1 \Rightarrow \text{ndof}=34 10^6$

7. Badri et al., CHT conference, 2017. Calculs sur LIGER – ICI – ECIN - CE - E

Contents

1 Les bases

Discrétisation angulaire Discrétisation spatiale : SUPG

2 Allons plus loin

HPC : EF Vectoriels & calcul // Gestion de la spécularité

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

3 Applications

Matériaux hétérogènes Inversion géeométrie complexe

4 conclusiosn

Application DD Heterogeneous material

▷ Test case meshes and geometery, radiative property σ = 0.1 = 10.0, radiative property κ = 10.0 = 0.1.

イロト イヨト イヨト

Application >> Optical tomography (Inverse problem)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへで

Application DD Complex geometry

> The k-cell and the immersed mesh with collimated boundary conditions. Left: the k-cell skeleton, right: the k-cell with air mesh and boundary conditions.

Application DD Complex geometry

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 - のへで

Application DD Specular reflections taken into account 89

8. X-Ray tomography performed at the European Synchrotron Radiation Facilities (Grenoble, France) on the ID19 beamline ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

9. Le Hardy et al., JQSRT, 2017

Travaux en cours et futurs

- adaptation de maillage pour x et pour s
- angular FEM
- réflections internes et réfraction

Avantages et inconvénients

- approche systématique
- utilisation de librairies
 - **EF** : FreeFem++, deal.II, Fenics
 - solveurs : PETSc
 - mailleurs et remailleurs : gmsh, mmg
 - decomposition domaine : METIS, ...
- communauté scientifique
- couplages
- système linéaire
- inversion : prop(x)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●