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Accurate prediction of wall heat transfer coupling turbulent reactive flows with radiation and conduction 
heat transfer.

Multiphysics: Combustion, conduction and radiation

Combustion-radiation simulations:

RANS +  DOM: 
Coelho et al. Combustion and Flame 2003 

RANS + MC: 
Tessé et al. Intl. J. Heat Mass Transfer 2004 
Whang et al. JQSRT 2008 
Mehta et al. Computational Thermal Sciences 2009 

LES/DNS +  DOM:  
Amaya et al. JQSRT 2010 
Poitou et al. Combustion an flame 2012 
Berger et al. Applied Thermal Engineering 2016 

LES/DNS +  MC:  
Zhang et al. Journal of Fluid Mechanics 2014 
Koren et al. ASME TurboExpo 2017 
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High computational cost:  
Coupled radiation-combustion simulation10 times more expensive than an 
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• Non-scattering medium

• Radiative properties model:  C-K model for gas[1][2]

Numerical Set-up Accuracy CPU cost

Line by Line calculations 

Narrow band models 

Global models

Radiative heat transfer simulations
5

Set-up

• Parallel Monte Carlo radiation code to solve the Radiative Transfer Equation:

Rainier (code developed at EM2C laboratory)
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[1]  R. Goody, R. West, L. Chen, D. Crisp, J. Quant. Spectrosc. Radiat. Transfer 42 (1989) 
[2] A.Soufiani, J. Taine. International journal of heat and mass transfer 40.4 (1997) 

Data exchanged by the solvers

LES 
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Radiation  
solver 

Srad

P, T, Xk



Outline
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• Two strategies are investigated in order to reduce the MC error: 

• Importance sampling 

• Quasi-Monte Carlo methods
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[2]  Tessé, L., Dupoirieux, F., Zamuner, B., and Taine, J., 2002. “Radiative transfer in real gases using reciprocal and forward monte carlo  

       methods and a correlated-k approach”. IJHMT

• Rays followed in a reverse 
direction: from detector to source 

Optimized[1] Emission-based Reciprocity Method[2] (OERM)

Existing Monte Carlo method for radiation

node i

node j1

node j2
node j3

node jN

node j4

Scheme of photons bundles departing from the nodes 

of the domain

• Reciprocity principle respected for every path

[1]  Zhang, Y., Gicquel, O., and Taine, J., 2012. “Optimized emission-based reciprocity Monte Carlo method to speed up computation in complex systems”. IJHMT.
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Importance sampling
Monte Carlo OERM

How? Sampling in the most important regions of the integration domain 

IMPORTANCE SAMPLING: One of variance reduction methods to accelerate MC convergence 

Widely studied topic [1,2,3] 
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Monte Carlo error                       One way to reduce the MC error: reduce
✏ ⇡ �p
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Application: combustion chamber
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Instantaneous snapshots of 
unsteady 3D LES [2]

Semi-industrial burner[1]

[1] Guiberti, T. (2015, February). Analysis of the topology of premixed swirl-stabilized confined flames. Theses, Ecole Centrale Paris. 

[2]  Koren, C., Vicquelin, R., and Gicquel, O., 2017. “Highfidelity multiphysics simulation of a confined premixed swirling flame combining large-

eddy simulation, wall heat conduction and radiative energy transfer”. ASME Turbo EXPO 2017.

Premixed  
CH4/H2/Air

P = 1 atm

Premixed swirled flame of CH4 H2 and air

250 mm

92 mm

RadiationCombustion
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Instantaneous field of radiative power. Black line is the iso-contour for radiative power = 0.

Radiative heat transfer simulations

Application: combustion chamber
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Instantaneous field of radiative power. Black line is the iso-contour for radiative power = 0.

Imposed convergence criteria:
• Relative error = 3%

• Absolute error = 3% of Pmax

Radiative heat transfer simulations

Application: combustion chamber
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Instantaneous field of radiative power. Black line is the iso-contour for radiative power = 0.

Imposed convergence criteria:
• Relative error = 3%

• Absolute error = 3% of Pmax

Radiative heat transfer simulations

Application: combustion chamber

Computations with a 
fixed rays number

Rays number : 10 000

Relative error
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• Two strategies are investigated in order to reduce the MC error: 

• Importance sampling 

• Quasi-Monte Carlo methods
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QMC in radiative heat transfer 

Simple 2-D configurations
➡ O'Brien, D. M. 1992 “Accelerated quasi Monte Carlo integration of the radiative transfer equation”. 
➡  Kersch, A., Morokoff, W., and Schuster, A., 1994. “Radiative heat transfer with quasi-monte carlo methods”

First time applied in 
a real 3-D application

Quasi Monte Carlo methods
12
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Quasi-Monte Carlo:

Monte Carlo:

Quasi-Monte Carlo can be combined with any method 

Here: QMC-OERM compared to Monte Carlo-OERM

Computations with a 
fixed rays number

Rays number : 10 000

Relative error

Computations with 
controlled convergence

Relative error : 5%

Absolute error : 10% (of Pmax)

# rays



CPU efficiency of MC and QMC methods
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Efficiency ratio ( QMC / MC )

Ratio bigger than 1 in almost the whole domain

• Local efficiency of methods[1]: 

     

  = Local variance

 = computational time 

 

⌘i =
1

�2
i TCPU,i

[1]  Lemieux, C., 2009. Monte carlo and quasi-monte carlo sampling. Springer Science & Business Media.

⌘QMC

⌘MC
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Ratio bigger than 1 in almost the whole domain

• Local efficiency of methods[1]: 

     

  = Local variance

 = computational time 

 

TCPU,MC

TCPU,QMC
= 2.7

Ratio of CPU time

• MC and QMC computational time:

•     QMC 3 times faster than MC!

Such an improvement makes coupled simulations more affordable

⌘i =
1

�2
i TCPU,i

[1]  Lemieux, C., 2009. Monte carlo and quasi-monte carlo sampling. Springer Science & Business Media.

⌘QMC

⌘MC
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Conclusions and perspectives
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Monte Carlo methods: accurate but computationally expensive

Need to reduce CPU time to afford coupled 3D simulations of reactive flows

• Scalable Monte Carlo method 

• High scalability up to 2000 cores 

• Control of local convergence

• 3 times more efficient than Monte Carlo 

• Next step:  Towards coupled multi-physics simulations 

• Quasi-Monte Carlo methods: second way for error reduction

• OERM applied to industrial configuration 

• Importance sampling: one way for error reduction
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Quasi-Monte Carlo convergence
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• The approximation error of the quasi-Monte Carlo method is: 

" ⇡ (logN)s

N

• where s is the number of dimension  



Computational time
18

Table of computational time of radiative heat transfer simulations for the retained configurations

• Controlled convergence computations criteria:

Relative error : 3% 

Absolute error : 3 % (of Pmax)

Quasi-Monte Carlo

Combustion chamber 190

• Number of cores: 168

• Optimized-ERM



Reciprocity principle
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• The energy emitted by the differential volume element dVi and 
absorbed by dVj ( = dAj x dsj) is:

Radiative exchange between two 
differential volume elements

• The equation can be recast as:

dP ea
⌫,ji

I0⌫ (Tj)
= ⌧⌫,r⌫(Ti)⌫(Tj)

dVidVj

r2

dP ea
⌫,ij

I0⌫ (Ti)
= ⌧⌫,r⌫(Ti)⌫(Tj)

dVidVj

r2

dP ea
⌫,ij = [4⇡⌫(Ti)I

0
⌫ (Ti)dVi]⇥

✓
dAj

4⇡r2

◆
⇥ ⌧⌫,r ⇥ ⌫(Tj)dsj ]

• Similarly, in terms of the energy emitted by i and absorbed by j:

• Reciprocity principle: the ratio between dPeaij and dPeaji is equal to the corresponding 
equilibrium spectral intensity ratio

dP ea
⌫,ij

I0⌫ (Ti)
=

dP ea
⌫,ji

I0⌫ (Tj)


