Monte Carlo et transfert radiatif en géométrie complexe : comment penser le couplage avec les autres modes de transfert

Blanco S., Caliot C., El Hafi M., Fournier R.

Université de Toulouse ; UPS, INPT, CNRS ; LAPLACE (Laboratoire Plasma et Conversion d'Energie) ; 118 route de Narbonne, F-31062 Toulouse cedex 9, France. richard.fournier@laplace.univ-tlse.fr RAPSODEE, Albi PROMES, Odeillo

November 21, 2017

Plan

Rayonnement en géométrie complexe et synthèse d'image

- S'inspirer des choix de l'industrie du cinéma pour gérer "l'infinité" des rapports d'échelle
- Exemple : une ville
- Les algorithmes à collisions nulles
- Exemple : une scène nuageuse

2 Un exemple de couplage avec la conduction en régime stationnaire

3 Généralisation : couplage rayonnement/conduction/convection en régime instationnaire

Simuler numériquement l'infini des rapports d'échelle

• Abandonner l'idée d'un "calcul exact"

 \longrightarrow choisir une approche statistique

- Mesurer l'incertitude
- Assurer une orthogonalité entre la donnée et l'algorithme

 \longrightarrow L'exemple de la synthèse d'image : "Teapot in the stadium"

Simuler numériquement l'infini des rapports d'échelle

< 4 → <

Simuler numériquement l'infini des rapports d'échelle

< 4 → <

Exemple : transfert radiatif dans une ville ...

... à toutes ses échelles

LAPLACE/RAPSODEE/PROMES

Monte Carlo & complexité

Cumul sur 20 ans de l'énergie solaire incidente sur la ville

Donnée : un point par minute $\rightarrow 10$ millions de mesures. Calcul : 10000 tirages aléatoires.

November 21, 2017 8 / 25

Cumul sur 20 ans de l'énergie solaire captée par la ville

... mais à ce stade, le rayonnement n'est que surfacique.

イロト 不得下 イヨト イヨト

Gestion de la donnée volumique

LAPLACE/RAPSODEE/MESO-STAR 7 Juin 2017, Météo France. Les outils de la complexité : « l'énergie dans la ville », XSYS, Madeeli.

LAPLACE/RAPSODEE/PROMES

Monte Carlo & complexité

November 21, 2017

10 / 25

Gestion de la donnée volumique

Algorithme à Collisions Nulles : on ajoute un processus de collisions fictives

 $k = k_{a}(x) + k_{a}(x)$

- Skullerud, Journal of Physics D : Applied Physics, 1968.

- M. Galtier, S. Blanco, C. Caliot, C. Coustet, J. Dauchet, M. El Hafi, V. Eymet, R. Fournier, J. Gautrais, A. Khuong, B. Piaud, and G. Terrée, JQSRT, 2013.

- V. Eymet, D. Poitou, M. Galtier, M. El Hafi, G. Terrée, and R. Fournier. JQSRT, 2013.

- M. Galtier, S. Blanco, J. Dauchet, M. El Hafi, V. Eymet, R. Fournier, M. Roger, C. Spiesser, and G. Terrée. JQSRT, 2016.

LAPLACE/RAPSODEE/MESO-STAR 7 Juin 2017, Météo France. Les outils de la complexité : « l'énergie dans la ville », XSYS, Madeeli.

LAPLACE/RAPSODEE/PROMES

Monte Carlo & complexité

Gestion de la donnée volumique

Kutz, Habel, Li and Novak, SIGGRAPH 2017

« We derived both approaches directly from the RTE using the recently proposed integral formulation of null-collision algorithms. We believe that importing this **framework** into computer graphics will stimulate further explorations in applications that are unique to rendering, but also increase the permeability between fields by enabling easy exchange of novel ideas. »

LAPLACE/RAPSODEE/MESO-STAR 7 Juin 2017, Météo France. Les outils de la complexité : « l'énergie dans la ville », XSYS, Madeeli

LAPLACE/RAPSODEE/PROMES

Monte Carlo & complexité

 \rightarrow des outils aujourd'hui disponibles pour gérer la complexité géométrique des surfaces et des volumes

Combustion

• Climatologie

Monte Carlo & complexite

Thèse de Najda Villefranque, CNRM/LAPLACE

Thu Oct 19 17:53:02 2017

(人間) トイヨト イヨト

LAPLACE/RAPSODEE/PROMES

Thèse de Najda Villefranque, CNRM/LAPLACE

- grandeurs locales / grandeurs intégrées (spatialement, temporellement, fréquentiellement)
- calculs de sensibilités

- 一司

Plan

- S'inspirer des choix de l'industrie du cinéma pour gérer "l'infinité" des rapports d'échelle
- Exemple : une ville
- Les algorithmes à collisions nulles
- Exemple : une scène nuageuse

2 Un exemple de couplage avec la conduction en régime stationnaire

3 Généralisation : couplage rayonnement/conduction/convection en régime instationnaire

Modèle et algorithme Monte Carlo

Ex. : profil de T dans un milieu poreux

Objectif: calcul de la température moyenne sur un plan

Code Monte Carlo : C++ code Startherm (GPL)

 $\delta_b = 0.1 \ mm$; $\delta_{diff} = rac{\delta_b}{2}$

Methode volumes finis : ANSYS Fluent

- Energy balance eq.
 2nd order upwind
 - Radiative transfer eq. Discrete ordinates 1st order upwind, 6*6 disc. Octant, pixelation 6*6

Case	λ, W.m ⁻¹ .K ⁻¹	<i>p_{diff}</i>	T _{min} -T _{max} , K
1	40	~1	300-310
2	3.765 10 ⁻²	0.9	1000-1500

Resultats

Résolution de la conduction par Monte Carlo

y

0

• Fixed random walk

(Curtiss IBM Corp. 1949 ; Emery and Carson ASME JHT 1968)

• <u>Semi floating random walk</u>

(Talebi et al. Prog. Nuc. E. 2017)

• Floating random walk (spherical processes)

(Haji-Sheikh and Sparrow ASME JHT 1966, Grigoriu ASME JHT 2000) **λ hétérogène** (Burmeister ASME JHT 2002 ; Bahadori *et al.* IJHMT 2017)

• Brownian motion (Itô processes) (Grigoriu ASCE JEM 1997, ASME JHT 2000)

Monte Carlo pour les transferts couplés Cond-Ray

 $\frac{\partial T}{\partial t} + \Delta T = f \qquad + \text{ETR dans des milieux semi-transparents et CI + CL}$

- Calcul de la conductivité effective (cond-ray) dans un milieu poreux solidegaz au stationnaire
 - Conduction (Itô-Taylor) et MC pour ETR
 - Solide <u>opaque</u> : Vignoles IJHMT 2016 *CL avec linéarisation du transfert radiatif*
 - Solide <u>semi-transparent</u> : Dauvois *Thèse 2016 Couplage non-linéaire de la conduction et du rayonnement : itérations*
- Calcul de T locale dans un solide :
 - Transitoire, cond-conv-ray : Fournier *et al.* Eurotherm 2015
 - Stationnaire, cond-ray (Caliot et al. SFT 2017)

Plan

- S'inspirer des choix de l'industrie du cinéma pour gérer "l'infinité" des rapports d'échelle
- Exemple : une ville
- Les algorithmes à collisions nulles
- Exemple : une scène nuageuse

2 Un exemple de couplage avec la conduction en régime stationnaire

3 Généralisation : couplage rayonnement/conduction/convection en régime instationnaire

E 5 4 E

Des idées anciennes ...

1949 M Kac

1956

Formule de Feynman-Kac : équivalence entre EDP paraboliques et processus stochastiques (marches aléatoires, mouvement Brownien)

1928 R Courant, K O Friedrichs, and H Lewy.

Thermique et espace de chemins

Some Continuous Monte Carlo Methods for the Dirichlet Problem

Mervin E. Muller

The Annals of Mathematical Statistics, Vol. 27, No. 3 (Sep., 1956), 569-589.

Stable URL: http://links.jstor.org/sici?sici=0003-4851%28195609%2927%3A3%3C569%3ASCMCMF%3E2.0.CO%3B2-2

The Annals of Mathematical Statistics is currently published by Institute of Mathematical Statistics.

Références :

(1) Muller, M. E. (1956). Some Continuous Monte Carlo Methods for the Dirichlet Problem

(2) Haji-Sheikh, A. and Sparrow, E. M. (1967). The Solution of Heat Conduction Problems by Probability Methods. Journal of Heat Transfer, 89(2):121–130

(3) Sabelfeld, K. and Talay, D. (1995). Integral formulation of the boundary value problems and the method of random walk on spheres.

Monte Carlo Methods and Applications, 1(1):1-34

(4) Mascagni, M. and Hwang, C.-O. (2003). epsilon-Shell error analysis for Walk on Spheres algorithms. Mathematics and Computers in Simulation, 63(2):93–104

LAPLACE/RAPSODEE/PROMES

Monte Carlo & complexité

Le modèle physique

$$\rho C \frac{\partial \theta}{\partial t} = -\vec{\nabla} \cdot \left(-\lambda \vec{\nabla} \theta\right) + \zeta(\theta_R - \theta) \\ \theta = \theta_I \\ -\lambda \vec{\nabla} \theta \cdot \vec{n} = h(\theta_F - \theta) \end{cases} \quad \text{solid} \quad (1)$$

$$\rho C \mathcal{V}_{F} \frac{\partial \theta}{\partial t} = \rho C \phi(\theta_{N} - \theta) + \zeta \int_{\mathcal{D}_{F}} (\theta_{R}(\vec{x}_{R}, t) - \theta) d\vec{x}_{R} + \int_{\partial \mathcal{D}_{S}} h(\vec{y}_{C}, t)(\theta_{S}(\vec{y}_{C}, t) - \theta) d\vec{y}_{C} + \int_{\partial \mathcal{D}_{S}} h(\vec{y}_{C}, t)(\theta_{S}(\vec{y}_{C}, t) - \theta) d\vec{y}_{C} + \int_{\partial \mathcal{D}_{S}} h(\vec{y}_{C}, t)(\theta_{S}(\vec{y}_{C}, t) - \theta) d\vec{y}_{C} + \int_{\partial \mathcal{D}_{S}} h(\vec{y}_{C}, t)(\theta_{S}(\vec{y}_{C}, t) - \theta) d\vec{y}_{C} + \int_{\partial \mathcal{D}_{S}} h(\vec{y}_{C}, t)(\theta_{S}(\vec{y}_{C}, t) - \theta) d\vec{y}_{C} + \int_{\partial \mathcal{D}_{S}} h(\vec{y}_{C}, t)(\theta_{S}(\vec{y}_{C}, t) - \theta) d\vec{y}_{C} + \int_{\partial \mathcal{D}_{S}} h(\vec{y}_{C}, t)(\theta_{S}(\vec{y}_{C}, t) - \theta) d\vec{y}_{C} + \int_{\partial \mathcal{D}_{S}} h(\vec{y}_{C}, t)(\theta_{S}(\vec{y}_{C}, t) - \theta) d\vec{y}_{C} + \int_{\partial \mathcal{D}_{S}} h(\vec{y}_{C}, t)(\theta_{S}(\vec{y}_{C}, t) - \theta) d\vec{y}_{C} + \int_{\partial \mathcal{D}_{S}} h(\vec{y}_{C}, t)(\theta_{S}(\vec{y}_{C}, t) - \theta) d\vec{y}_{C} + \int_{\partial \mathcal{D}_{S}} h(\vec{y}_{C}, t)(\theta_{S}(\vec{y}_{C}, t) - \theta) d\vec{y}_{C} + \int_{\partial \mathcal{D}_{S}} h(\vec{y}_{C}, t)(\theta_{S}(\vec{y}_{C}, t) - \theta) d\vec{y}_{C} + \int_{\partial \mathcal{D}_{S}} h(\vec{y}_{C}, t)(\theta_{S}(\vec{y}_{C}, t) - \theta) d\vec{y}_{C} + \int_{\partial \mathcal{D}_{S}} h(\vec{y}_{C}, t)(\theta_{S}(\vec{y}_{C}, t) - \theta) d\vec{y}_{C} + \int_{\partial \mathcal{D}_{S}} h(\vec{y}_{C}, t)(\theta_{S}(\vec{y}_{C}, t) - \theta) d\vec{y}_{C} + \int_{\partial \mathcal{D}_{S}} h(\vec{y}_{C}, t)(\theta_{S}(\vec{y}_{C}, t) - \theta) d\vec{y}_{C} + \int_{\partial \mathcal{D}_{S}} h(\vec{y}_{C}, t)(\theta_{S}(\vec{y}_{C}, t) - \theta) d\vec{y}_{C} + \int_{\partial \mathcal{D}_{S}} h(\vec{y}_{C}, t)(\theta_{S}(\vec{y}_{C}, t) - \theta) d\vec{y}_{C} + \int_{\partial \mathcal{D}_{S}} h(\vec{y}_{C}, t)(\theta_{S}(\vec{y}_{C}, t) - \theta) d\vec{y}_{C} + \int_{\partial \mathcal{D}_{S}} h(\vec{y}_{C}, t)(\theta_{S}(\vec{y}_{C}, t) - \theta) d\vec{y}_{C} + \int_{\partial \mathcal{D}_{S}} h(\vec{y}_{C}, t)(\theta_{S}(\vec{y}_{C}, t) - \theta) d\vec{y}_{C} + \int_{\partial \mathcal{D}_{S}} h(\vec{y}_{C}, t)(\theta_{S}(\vec{y}_{C}, t) - \theta) d\vec{y}_{C} + \int_{\partial \mathcal{D}_{S}} h(\vec{y}_{C}, t)(\theta_{S}(\vec{y}_{C}, t) - \theta) d\vec{y}_{C} + \int_{\partial \mathcal{D}_{S}} h(\vec{y}_{C}, t)(\theta_{S}(\vec{y}_{C}, t) - \theta) d\vec{y}_{C} + \int_{\partial \mathcal{D}_{S}} h(\vec{y}_{C}, t)(\theta_{S}(\vec{y}_{C}, t) - \theta) d\vec{y}_{C} + \int_{\partial \mathcal{D}_{S}} h(\vec{y}_{C}, t)(\theta_{S}(\vec{y}_{C}, t) - \theta) d\vec{y}_{C} + \int_{\partial \mathcal{D}_{S}} h(\vec{y}_{C}, t)(\theta_{S}(\vec{y}_{C}, t) - \theta) d\vec{y}_{C} + \int_{\partial \mathcal{D}_{S}} h(\vec{y}_{C}, t)(\theta_{S}(\vec{y}_{C}, t) - \theta) d\vec{y}_{C} + \int_{\partial \mathcal{D}_{S}} h(\vec{y}_{C}, t)(\theta_{S}(\vec{y}_{C}, t) - \theta) d\vec{y}_{C} + \int_{\partial \mathcal{D}_{S}} h(\vec{y}_{C}, t)(\theta$$

$$\theta_{R} = \int_{\mathcal{D}_{\Gamma}} p_{\Gamma}(\gamma) d\gamma \ \theta(\vec{x}_{\gamma}, t) \bigg\} \text{ solid or fluid (3)}$$

3

3

3

3

3

3

3

3

3

3

3

3

LAPLACE/RAPSODEE/PROMES

Monte Carlo & complexité

November 21, 2017 21 / 25

Conduction en géométrie complexe

November 21, 2017 22 / 25

< 17 ▶

Couplage conducto-convecto-radiatif en géométrie complexe

Monte Carlo & complexité

Simulation : la ville dans son environnement climatique

Perte thermique intégrée sur la durée de vie (50 ans) $\frac{30.51 + -0.27GWh}{7}$ Temps de calcul : 94s

LAPLACE/RAPSODEE/PROMES

Monte Carlo & complexité

November 21, 2017 24 / 25

Haji-Sheikh, A. and Sparrow, E. M. (1967). The Solution of Heat Conduction Problems by Probability Methods. *Journal of Heat Transfer*, 89(2):121–130.

Mascagni, M. and Hwang, C.-O. (2003). epsilon-Shell error analysis for Walk on Spheres algorithms. *Mathematics and Computers in Simulation*, 63(2):93–104.

Muller, M. E. (1956).

Some Continuous Monte Carlo Methods for the Dirichlet Problem.

Sabelfeld, K. and Talay, D. (1995).

Integral formulation of the boundary value problems and the method of random walk on spheres.

Monte Carlo Methods and Applications, 1(1):1-34.

A B F A B F