Résolution de l' ETR par une méthode de volumes finis modifiés - application à la détection de tumeurs cancéreuses

Fatmir Asllanaj ${ }^{(1)}$, CR CNRS HDR

Sylvain Contassot-Vivier ${ }^{(2)}$, Ahmad Addoum ${ }^{(1)}$, Olivier Farges ${ }^{(1)}$
(1)LEMTA, (2)LORIA

SFT, 22 Novembre 2017

Outline

\square Introduction
\square The Modified Finite Volume Method
\square The reconstruction algorithm and results

- with diffuse light
- with fluorescence light

Conclusions, future works

Motivation

Skin has a complex structure

Layers of the Epidermis

 Stratum corneum
 Stratum lucidum
 Epidermis
 Dermis

How a cancer tumor can be detected?

- The cancer leads to physiological changes that affect the optical properties (scattering, absorption, asymmetry factor,...) of biological tissues
- A tumor is highly vascularized: change in absorption coefficients
- Change in size of nucleus of cancer cells: change in scattering coefficients

Healthy liver Metastatic liver

Absorption coefficient $\mu_{a}\left(\mathrm{~mm}^{-1}\right)$	0.1	0.06
Scattering coefficient $\mu_{s}\left(\mathrm{~mm}^{-1}\right)$	20.4	10.8
Asymmetry factor g	0.955	0.902
Optical penetration depth (mm)	1.8	2.3

Different methods for solving the RTE

Statistical method, Monte Carlo (accurate, complex geometries, fast with GPU/MPI)

Inverse MC: difficult convergence

" false scattering " (spatial discretization)
"ray-effect " (angular discretization)

Angular discretization

- Discrete direction $\mathbf{\Omega}^{\mathbf{k}}$ with an azimutal angle $\theta \in[0,2 \pi]$ and a polar angle $\varphi \in[0, \pi]$
- Constant step

Applying the angular discretization to the RTE

$$
\begin{aligned}
& \frac{n_{\lambda}(s)}{c} \frac{\partial \psi_{\lambda}\left(s, \mathbf{\Omega}^{\mathbf{k}}, t\right)}{\partial t}+\mathbf{\Omega}^{\mathbf{k}} \cdot \nabla \psi_{\lambda}\left(s, \mathbf{\Omega}^{\mathbf{k}}, t\right)=-\mu_{t \lambda}(s) \psi_{\lambda}\left(s, \mathbf{\Omega}^{\mathbf{k}}, t\right) \\
& +\mu_{s \lambda}(s) \sum_{k=1}^{N} p_{\lambda}\left(\mathbf{\Omega}^{\mathbf{k}^{\prime}}, \mathbf{\Omega}^{\mathbf{k}}\right) \psi_{\lambda}\left(s, \mathbf{\Omega}^{\mathbf{k}^{\prime}}, t\right) \omega^{k^{\prime}}+S_{\lambda}\left(s, \mathbf{\Omega}^{\mathbf{k}}, t\right)
\end{aligned}
$$

Applying the angular discretization to the RTE

$$
\begin{aligned}
& \frac{n_{\lambda}(s)}{c} \frac{\partial \psi_{\lambda}\left(s, \boldsymbol{\Omega}^{\mathbf{k}}, t\right)}{\partial t}+\boldsymbol{\Omega}^{\mathbf{k}} \cdot \nabla \psi_{\lambda}\left(s, \boldsymbol{\Omega}^{\mathbf{k}}, t\right)=-\mu_{t \lambda}(s) \psi_{\lambda}\left(s, \mathbf{\Omega}^{\mathbf{k}}, t\right) \\
& +\mu_{s \lambda}(s) \sum_{t=1}^{N} p_{\lambda}\left(\boldsymbol{\Omega}^{\mathbf{k}^{\prime}}, \boldsymbol{\Omega}^{\mathbf{k}}\right) \psi_{\lambda}\left(s, \boldsymbol{\Omega}^{\mathbf{k}}, t\right) \omega^{k^{\prime}}+S_{\lambda}\left(s, \boldsymbol{\Omega}^{\mathbf{k}}, t\right)
\end{aligned}
$$

- First, the simplified equation (steady-state, wavelength indepedent properties, non-scattering) has to be solved:

$$
\mathbf{\Omega}^{\mathbf{k}} \cdot \nabla \psi\left(s, \boldsymbol{\Omega}^{\mathbf{k}}\right)=-\mu_{a}(s) \psi\left(s, \boldsymbol{\Omega}^{\mathbf{k}}\right)+S\left(s, \boldsymbol{\Omega}^{\mathbf{k}}\right)
$$

- The sum with scattering and BC are taken into account by iterations

Applying the angular discretization to the RTE

$$
\begin{aligned}
& \frac{n_{\lambda}(s)}{c} \frac{\partial \psi_{\lambda}\left(s, \mathbf{\Omega}^{\mathbf{k}}, t\right)}{\partial t}+\mathbf{\Omega}^{\mathbf{k}} \cdot \nabla \psi_{\lambda}\left(s, \boldsymbol{\Omega}^{\mathbf{k}}, t\right)=-\mu_{t \lambda}(s) \psi_{\lambda}\left(s, \mathbf{\Omega}^{\mathbf{k}}, t\right) \\
& +\mu_{s \lambda}(s) \sum_{k=1}^{N} p_{\lambda}\left(\boldsymbol{\Omega}^{\mathbf{k}^{\prime}}, \boldsymbol{\Omega}^{\mathbf{k}}\right) \psi_{\lambda}\left(s, \mathbf{\Omega}^{\left.\mathbf{k}^{\mathbf{}}, t\right) \omega^{k^{\prime}}+S_{\lambda}\left(s, \boldsymbol{\Omega}^{\mathbf{k}}, t\right)}\right.
\end{aligned}
$$

- First, the simplified equation (steady-state, wavelength indepedent properties, non-scattering) has to be solved:

$$
\mathbf{\Omega}^{\mathbf{k}} \cdot \nabla \psi\left(s, \mathbf{\Omega}^{\mathbf{k}}\right)=-\mu_{a}(s) \psi\left(s, \mathbf{\Omega}^{\mathbf{k}}\right)+S\left(s, \mathbf{\Omega}^{\mathbf{k}}\right)
$$

- The sum with scattering and BC are taken into account by iterations
- The normalization technique is applied to the H-G phase function:

$$
\begin{equation*}
\widetilde{p}^{m \rightarrow n}=\frac{\int_{\Omega^{m}} \int_{\Delta \Omega^{n}} p\left(\mathbf{\Omega}^{\prime} \cdot \boldsymbol{\Omega}\right) d \mathbf{\Omega}^{\prime} d \boldsymbol{\Omega}}{\Delta \boldsymbol{\Omega}^{m} \Delta \boldsymbol{\Omega}^{n}} \quad p\left(\mathbf{\Omega}^{\prime} \cdot \mathbf{\Omega}\right)=\frac{1}{4 \pi} \frac{1-g^{2}}{\left(1+g^{2}-2 g \mathbf{\Omega}^{\prime} \cdot \boldsymbol{\Omega}\right)^{3 / 2}} \tag{10}
\end{equation*}
$$

2D control volume with a cell-vertex formulation

- The RTE has to be solved at each node of the mesh

Integration point lying at the center of the panelf

(Classical) FVM applied to the RTE

Applying Gauss divergence theorem:
$\int_{\Gamma_{P}} \int_{\Delta \Omega^{k}} \psi(s, \boldsymbol{\Omega})\left(\boldsymbol{\Omega} \cdot \mathbf{n}_{\text {out }}\right) d \boldsymbol{\Omega} d S=\int_{V_{P}} \int_{\Delta \Omega^{k}}-\mu_{a}(s) \psi(s, \boldsymbol{\Omega})+S(s, \boldsymbol{\Omega}) d \boldsymbol{\Omega} d V$

- If one considers:
- an average value ψ_{P}^{k} in V_{P}
- an average value $\psi_{i_{f}}^{k}$ on a panel f A_{f} is the length of the panel f

$$
\Delta_{f}^{k}=\int_{\Delta \Omega^{k}}\left(\boldsymbol{\Omega} \cdot \mathbf{n}_{f}\right) d \boldsymbol{\Omega}
$$

- The FVM gives: $\sum_{f=1}^{N_{f}} \psi_{i_{f}}^{k} A_{f} \Delta_{f}^{k}=\left[-\mu_{a, P} \psi_{P}^{k}+S_{P}^{k}\right] \Delta \Omega^{k} V_{P}$

Conservation of energy

(Classical) FVM applied to the RTE

Applying Gauss divergence theorem:
$\int_{\Gamma_{P}} \int_{\Delta \Omega^{k}} \psi(s, \boldsymbol{\Omega})\left(\boldsymbol{\Omega} \cdot \mathbf{n}_{\text {out }}\right) d \boldsymbol{\Omega} d S=\int_{V_{P}} \int_{\Delta \Omega^{k}}-\mu_{a}(s) \psi(s, \boldsymbol{\Omega})+S(s, \boldsymbol{\Omega}) d \boldsymbol{\Omega} d V$

- If one considers:
- an average value ψ_{P}^{k} in V_{P}
- an average value $\psi_{i_{f}}^{k}$ on a panel f A_{f} is the length of the panel f

$$
\Delta_{f}^{k}=\int_{\Delta \Omega^{k}}\left(\boldsymbol{\Omega} \cdot \mathbf{n}_{f}\right) d \boldsymbol{\Omega}
$$

- The FVM gives: $\sum_{f=1}^{N_{f}} \dot{\psi_{i_{f}}^{k}} A_{f} \Delta_{f}^{k}=\left[-\mu_{a, P} \psi_{P}^{k}+S_{P}^{k}\right] \Delta \Omega^{k} V_{P}$

Exponential scheme for the closure relations

- Integral form of the RTE
$\psi_{i_{f}}^{k}=\psi_{u_{f}}^{k} \exp \left(-\int_{u_{f}}^{j_{f}} \mu_{a}(s) d s\right)+\int_{u_{f}}^{j_{f}} S^{k}(s) \exp \left(-\int_{s}^{j_{f}} \mu_{a}(u) d u\right) d s$

- $\psi_{u_{f}}^{k}$ has to be determined according to the radiances given at the nodes of the mesh

2D projections and interpolations

- for a reference triangle

$$
\begin{aligned}
& \psi_{u_{1}}^{k} \cong \psi_{P_{1}}^{k} \\
& \psi_{u_{2}}^{k} \cong \psi_{P_{1}}^{k}
\end{aligned}
$$

$$
\psi_{u_{3}}^{k} \cong \frac{\left|u_{3} P_{2}\right|}{\left|P_{1} u_{3}\right|+\left|u_{3} P_{2}\right|} \psi_{P_{1}}^{k}
$$

$$
+\frac{\left|P_{1} u_{3}\right|}{\left|P_{1} u_{3}\right|+\left|u_{3} P_{2}\right|} \psi_{P_{2}}^{k}
$$

Exponential scheme

Solution for the radiative intensity

Explicit solution: $I_{P}^{k}=f\left(I_{P_{a}}^{k}, I_{P_{b}}^{k}, I_{P_{c}}^{k}\right)$

Marching order map

Initial mesh
Renumbered mesh according to the given direction

3D control volume

3D projections and interpolations

- for a reference tetrahedron

Validation of the 2D/3D MFVM

- Relative differences $<1 \%$ on the reflectances or transmittances with a suitable mesh (comparison with MC or "analytical solutions")

Conditions: homogeneous and two layered media, semi-transparent boundaries (with Fresnel reflections at the interface), steady-state and time domains

Asllanaj et al. (2014), J Biomedical Optics
Asllanaj et al. Fluorescence and diffuse light propagation in biological tissue based on the 3D radiative transport equation. Part I: computational method Asllanaj et al. Part II: simulations

Asllanaj and Fumeron (2012), J Biomedical Optics Asllanaj et al. (2015), JQSRT

The RTE in the frequency domain

$$
\underbrace{\frac{i \omega}{c / n} \psi(\boldsymbol{r}, \mathbf{\Omega}, \omega)}_{\text {requential variations }}+\underbrace{\mathbf{\Omega} \cdot \nabla \psi(\boldsymbol{r}, \mathbf{\Omega}, \omega)}_{\text {Spatial variations }}=\underbrace{-\left(\mu_{s}(\boldsymbol{r})+\mu_{a}(\boldsymbol{r})\right) \psi(\boldsymbol{r}, \mathbf{\Omega}, \omega)}_{\text {Loss by extinction }}
$$

- refractive index $n(=1.4)$
- absorption and scattering coefficients $\quad \mu_{s}, \mu_{a}$
- asymmetry factor (Henyey-Greenstein) g
- Henyey-Greenstein (H-G): $p(\boldsymbol{\Omega} \cdot \mathbf{\Omega})=\frac{1}{4 \pi} \frac{1-g^{2}}{\left(1+g^{2}-2 g \boldsymbol{\Omega} \cdot \mathbf{\Omega}\right)^{3 / 2}}$

The RTE in the frequency domain

$$
\underbrace{\frac{i \omega}{c / n} \psi(\boldsymbol{r}, \mathbf{\Omega}, \omega)}_{\text {requential variations }}+\underbrace{\boldsymbol{\Omega} \cdot \nabla \psi(\boldsymbol{r}, \mathbf{\Omega}, \omega)}_{\text {Spatial variations }}=\underbrace{-\left(\mu_{s}(\boldsymbol{r})+\mu_{a}(\boldsymbol{r})\right) \psi(\boldsymbol{r}, \mathbf{\Omega}, \omega)}_{\text {Loss by extinction }}
$$

$$
+\underbrace{\mu_{s}(\boldsymbol{r}) \int_{\Omega^{\prime}=4 \pi} p\left(\mathbf{\Omega}^{\prime}, \boldsymbol{\Omega}\right) \psi\left(\boldsymbol{r}, \mathbf{\Omega}^{\prime}, \omega\right) d \boldsymbol{\Omega}^{\prime}}_{\text {Reinforcement by scattering }}+\underbrace{S(\boldsymbol{r}, \boldsymbol{\Omega}, \omega)}_{\text {Source term }}
$$

- refractive index $n(=1.4)$
- absorption and scattering coefficients
- asymmetry factor (Henyey-Greenstein)

coefficients usually estimed or the most sensitive parameter * reconstructed
- reduced scattering coefficient $\left(=\mu_{s}(1-g)\right)$
*Marin, Asllanaj, Maillet (2014), JQSRT

Reconstruction of the optical properties

- PhD thesis of Ahmad Addoum (2014-2017)
- From boundary data (reflectance)

$$
J(\theta)=\frac{1}{2}\left\|R(\theta)-d_{o b s}\right\|^{2}
$$

Reconstruction of the optical properties

- PhD thesis of Ahmad Addoum (2014-2017)
- From boundary data (reflectance)

$$
J(\theta)=\frac{1}{2}\left\|R(\theta)-d_{o b s}\right\|^{2}
$$

- The reconstruction algorithm is based on an iterative solution of the RTE (forward model) and his adjoint state (solved also with the MVFM)

$$
\begin{aligned}
& \frac{\ominus i \omega}{c / n} \phi(\boldsymbol{r}, \boldsymbol{\Omega}, \omega) \Theta \boldsymbol{\Omega} \cdot \nabla \phi(\boldsymbol{r}, \boldsymbol{\Omega}, \omega)=-\left(\mu_{s}(\boldsymbol{r})+\mu_{a}(\boldsymbol{r})\right) \phi(\boldsymbol{r}, \boldsymbol{\Omega}, \omega) \\
&+\mu_{s}(\boldsymbol{r}) \int_{\Omega^{\prime}=4 \pi} p\left(\mathbf{\Omega}^{\prime}, \boldsymbol{\Omega}\right) \phi\left(\boldsymbol{r}, \mathbf{\Omega}^{\prime}, \omega\right) d \mathbf{\Omega}^{\prime}+\underbrace{H(\boldsymbol{r}, \boldsymbol{\Omega}, \omega)}_{\text {Adjoint source term }}
\end{aligned}
$$

- Update reconstructed parameters with Lm-BFGS using an efficient calculation of $\nabla J(\theta)$

2D reconstruction of the optical properties

4 illuminated boundaries, 10 frequencies on [100 MHz; 1 GHz]

Outside the inclusions:

$$
\begin{aligned}
& \mu_{s}=5 \mathrm{~mm}^{-1} \\
& \mu_{a}=0.05 \mathrm{~mm}^{-1} \\
& g=0.9
\end{aligned}
$$

Reconstruction of us for skin

Top boundary illuminated

$$
\mu_{a}=0.05 \mathrm{~mm}^{-1}, g=0.8
$$

Addoum et al. (2018), JQSRT

3D reconstruction

100000 nodes (spatial mesh), 64 directions
(simulated boundary data obtained with this mesh)

Reconstruction of us

5 frequencies in [100 MHz, 1 GHz]

Reconstruction of $\mu \mathrm{S}$

600 MHz
$\mathrm{L}=4 \mathrm{~mm}$
$\mathrm{D}=1 \mathrm{~mm}$ depth $=1 \mathrm{~mm}$

$$
\mu_{s}=4 \mathrm{~mm}^{-1}
$$

2

1

0
$\mu_{s}=2 \mathrm{~mm}^{-1}$
$g=0.8$

Simultaneously reconstruction of 2 coefficients

$600 \mathrm{MHz}, 3 \%$ of noise $\quad \mathrm{C}=(4,0,0), \mathrm{D}=4 \mathrm{~mm}$

Challenge

- EXPLOR project, Nancy
- To test the reconstruction with a large amount of data: 1,5 million of nodes (for the spatial mesh)
- Parallel computing (in frequency and direction) with MPI and Open MP, running on a set of multi-core machines (collab with LORIA Nancy)

- 256 directions

- 8 frequencies in [$500 \mathrm{MHz}, 1 \mathrm{GHz}$] (allows to be rich in information and to raise the under-determined character of the inverse problem)
- calculation during 1 week (21/11-27/11) on a cluster of 2048 cores

Diagnosis with Fluorescence

Collab with

- Pr Kienle (Germany)
- Institut de Cancérologie de Lorraine

Tissu tumoral

Diagnosis with Fluorescence

Collab with

- Pr Kienle (Germany)
- Institut de Cancérologie de Lorraine

Tissu tumoral

Fluorescence light model

- Excitation at λ^{x}
$\left(\boldsymbol{\Omega} \cdot \nabla+\frac{i \omega_{m}}{v^{x}}+\mu_{t}^{x}(\boldsymbol{r})+\mu_{a}^{x \rightarrow m}(\boldsymbol{r})\right) \psi^{x}\left(\boldsymbol{r}, \boldsymbol{\Omega}, \omega_{m}\right)=\mu_{s}^{x}(\boldsymbol{r}) \int_{\Omega=4 \pi} p^{x}\left(\mathbf{\Omega}^{\mathbf{\prime}}, \boldsymbol{\Omega}\right) \psi^{x}\left(\boldsymbol{r}, \mathbf{\Omega}^{\mathbf{\prime}}, \omega_{m}\right) d \mathbf{\Omega}^{\prime}$
- Emission at λ^{m}

$$
\begin{array}{r}
\left(\boldsymbol{\Omega} \cdot \nabla+\frac{i \omega_{m}}{v^{m}}+\mu_{t}^{m}(\boldsymbol{r})\right) \psi^{m}\left(\boldsymbol{r}, \boldsymbol{\Omega}, \omega_{m}\right)=\mu_{s}^{m}(\boldsymbol{r}) \int_{\Omega=4 \pi} p^{m}\left(\mathbf{\Omega}^{\prime}, \boldsymbol{\Omega}\right) \psi^{m}\left(\boldsymbol{r}, \mathbf{\Omega}^{\prime}, \omega_{m}\right) d \mathbf{\Omega}^{\prime} \\
+\frac{\eta(\boldsymbol{r}) \mu_{a}^{x \rightarrow m}(\boldsymbol{r})}{1+i \omega_{m} \tau(\boldsymbol{r})} \int_{\Omega=4 \pi} \psi^{x}\left(\boldsymbol{r}, \mathbf{\Omega}, \omega_{m}\right) d \boldsymbol{\Omega}
\end{array}
$$

Fluorescence light model

- Excitation at $\lambda^{x} \quad=\varepsilon C$ ($=$ concentration $)$
$\left(\boldsymbol{\Omega} \cdot \nabla+\frac{i \omega_{m}}{v^{x}}+\mu_{t}^{x}(\boldsymbol{r})+\boldsymbol{\mu}_{a}^{x \rightarrow m}(\boldsymbol{r})\right) \psi^{x}\left(\boldsymbol{r}, \boldsymbol{\Omega}, \omega_{m}\right)=\mu_{s}^{x}(\boldsymbol{r}) \int_{\Omega=4 \pi} p^{x}\left(\mathbf{\Omega}^{\mathbf{\prime}}, \boldsymbol{\Omega}\right) \psi^{x}\left(\boldsymbol{r}, \mathbf{\Omega}^{\mathbf{\prime}}, \omega_{m}\right) d \boldsymbol{\Omega}^{\prime}$
- Emission at $\lambda^{m} \quad$ absorption coefficient of fluorophores

$$
\begin{aligned}
\left(\boldsymbol{\Omega} \cdot \nabla+\frac{i \omega_{m}}{v^{m}}+\mu_{t}^{m}(\boldsymbol{r})\right) \psi^{m}\left(\boldsymbol{r}, \boldsymbol{\Omega}, \omega_{m}\right) & =\mu_{s}^{m}(\boldsymbol{r}) \int_{\Omega=4 \pi} p^{m}\left(\mathbf{\Omega}^{\prime}, \boldsymbol{\Omega}\right) \psi^{m}\left(\boldsymbol{r}, \mathbf{\Omega}^{\prime}, \omega_{m}\right) d \mathbf{\Omega}^{\prime} \\
& +\frac{\left.\eta(\boldsymbol{r}) \boldsymbol{u}_{a \rightarrow m}^{x \rightarrow \boldsymbol{r}}\right)}{1+i \omega_{m} \tau(\boldsymbol{r})} \int_{\Omega=4 \pi} \psi^{x}\left(\boldsymbol{r}, \mathbf{\Omega}, \omega_{m}\right) d \boldsymbol{\Omega}
\end{aligned}
$$

Fluorescence light model

- Excitation at $\lambda^{x} \quad=\varepsilon C$ ($=$ concentration $)$
$\left(\boldsymbol{\Omega} \cdot \nabla+\frac{i \omega_{m}}{v^{x}}+\mu_{t}^{x}(\boldsymbol{r})+\mu_{a}^{x \rightarrow m}(\boldsymbol{r})\right) \psi^{x}\left(\boldsymbol{r}, \boldsymbol{\Omega}, \omega_{m}\right)=\mu_{s}^{x}(\boldsymbol{r}) \int_{\Omega=4 \pi} p^{x}\left(\mathbf{\Omega}^{\mathbf{\prime}}, \boldsymbol{\Omega}\right) \psi^{x}\left(\boldsymbol{r}, \mathbf{\Omega}^{\mathbf{\prime}}, \omega_{m}\right) d \mathbf{\Omega}^{\prime}$
- Emission at $\lambda^{m} \quad$ absorption coefficient of fluorophores

$$
\begin{aligned}
&\left(\boldsymbol{\Omega} \cdot \nabla+\frac{i \omega_{m}}{v^{m}}+\mu_{t}^{m}(\boldsymbol{r})\right) \psi^{m}\left(\boldsymbol{r}, \boldsymbol{\Omega}, \omega_{m}\right)=\mu_{s}^{m}(\boldsymbol{r}) \int_{\Omega=4 \pi} p^{m}\left(\mathbf{\Omega}^{\prime}, \boldsymbol{\Omega}\right) \psi^{m}\left(\boldsymbol{r}, \mathbf{\Omega}^{\prime}, \omega_{m}\right) d \mathbf{\Omega}^{\prime} \\
&+\frac{\left.\eta(\boldsymbol{r}) \boldsymbol{u}_{a \rightarrow m}^{x \rightarrow \boldsymbol{r}}\right)}{1+i \omega_{m} \boldsymbol{\tau}(\boldsymbol{r})} \int_{\Omega=4 \pi} \psi^{x}\left(\boldsymbol{r}, \boldsymbol{\Omega}, \omega_{m}\right) d \boldsymbol{\Omega}
\end{aligned}
$$

- Adjoint in fluorescence (collab with a mathematician of Nancy)

Emission $\left(\boldsymbol{\Omega} \cdot \nabla-\frac{i \omega_{m}}{v^{m}}+\mu_{t}^{m}(\boldsymbol{r})\right) \phi^{m}\left(\boldsymbol{r},-\boldsymbol{\Omega}, \omega_{m}\right)=\mu_{s}^{m}(\boldsymbol{r}) \int_{\boldsymbol{\Omega}=4, \pi} p^{m}\left(\boldsymbol{\Omega}^{\prime},-\boldsymbol{\Omega}\right) \phi^{m}\left(\boldsymbol{r}, \boldsymbol{\Omega}^{\prime}, \omega_{m}\right) d \boldsymbol{\Omega}^{\prime}$
Diffuse excitation, $\phi_{s}^{x}\left(\boldsymbol{r},-\boldsymbol{\Omega}, \omega_{m}\right)$ depending on ϕ^{m}
Collimated excitation, $\phi_{c}^{x}\left(\boldsymbol{r}, \omega_{m}\right)$ depending on ϕ^{m} and ϕ_{s}^{x}

+ adjoint BC
Analytical expression of $\nabla J\left(\mu_{a}^{x \rightarrow m}\right)$

2D reconstruction of the absorption of fluorophore

$100 \mathrm{MHz} \quad \mu_{a}^{x}=\mu_{a}^{m}=0.1 \mathrm{~cm}^{-1} ; \mu_{s}^{x}=\mu_{s}^{m}=100 \mathrm{~cm}^{-1} ; g^{x}=g^{m}=0.9$

$$
\eta=0.012 ; \tau=0.52 \mathrm{~ns} \text { (Indocyanine Green) }
$$

Asllanaj et al. (2017, submitted), Inverse Problems

Conclusions on the MFVM

- Advantages

- Suitable for predicting fluorescence and diffuse light propagation in absorbing and highly forward-scattering media subjected to a collimated laser beam
- Good level of accuracy; a relative difference < 1% can be obtained when compared to MC or analytical solutions
- Explicit solution of the radiance (without solving a linear system)
- Use of unstructured meshes

Conclusions on the MFVM

- Advantages

- Suitable for predicting fluorescence and diffuse light propagation in absorbing and highly forward-scattering media subjected to a collimated laser beam
- Good level of accuracy; a relative difference < 1% can be obtained when compared to MC or analytical solutions
- Explicit solution of the radiance (without solving a linear system)
- Use of unstructured meshes
- (Actual) disadvantage: time consuming
- 256 (or more) RTEs have to be solved (in the multiple scattering regime). Several iterations (100-1000) are needed to compute the different orders of scattering

Conclusions on the optical tomography software

- Based on an accurate deterministic forward model
- Can reconstruct (in 2D/3D):
- $\mu_{a}(\boldsymbol{r}), \mu_{s}(\boldsymbol{r}), g(\boldsymbol{r})$

Actually, 2 coefficients can be reconstructed simultaneously but not 3

- $\mu_{a}^{x \rightarrow m}(\boldsymbol{r})$
- The 3D computational times are actually too high for a (pre)clinical application
- Probably, we can optimize the MVFM and the inverse algorithm..., couple MVFM and MC,

Future works

- Optical imaging
- Applications:
- Validation on (epoxy resin) phantoms (with Pr Kienle, Germany)
- Project with the Institut de Cancérologie de Lorraine on the study of fluorophore diffusion (used in Photodynamic Therapy) in a preclinical model (multicellular tumor spheroid model)

Future works

- Optical imaging
- Applications:
- Validation on (epoxy resin) phantoms (with Pr Kienle, Germany)
- Project with the Institut de Cancérologie de Lorraine on the study of fluorophore diffusion (used in Photodynamic Therapy) in a preclinical model (multicellular tumor spheroid model)
- Photoacoustic imaging (take advantage of optic and acoustic for a high spatial resolution and a deeper penetration)

Future works

- Optical imaging
- Applications:
- Validation on (epoxy resin) phantoms (with Pr Kienle, Germany)
- Project with the Institut de Cancérologie de Lorraine on the study of fluorophore diffusion (used in Photodynamic Therapy) in a preclinical model (multicellular tumor spheroid model)
- Photoacoustic imaging (take advantage of optic and acoustic for a high spatial resolution and a deeper penetration)
- Coupled heat transfers in biological tissues: study of the tissue denaturation mechanism

Thank you for your attention!

Collaborations

Pr Kienle

01101100
01101111
01110910
01191601
01100081
01101180
01191111
01116010
91101681,
311006010111

110110001" Laboratoire lorrain de recherche
"01111011t en informatique et ses applications
Pr Contassot-Vivier
(5)

Institut for Laser Technology in

Angewandte Photonik (stay of 10 months)

Pr J. R. Roche
Institute of Mathematics, Lorraine

Pr L. Bolotine S. Marchal, CR

Institut de Cancérologie de Lorraine

Ensemble, construisons I'avenir

Semitransparent boundaries

- Specular reflection

$$
\psi(s, \boldsymbol{\Omega}, t)=(1-\rho(\Theta)) \Upsilon(s, \boldsymbol{\Omega}, t)+\rho(\Theta) \psi\left(s, \boldsymbol{\Omega}_{\boldsymbol{i n c}}, t\right) \quad \text { for } \quad \boldsymbol{\Omega} \cdot \boldsymbol{n}>0
$$

where $\boldsymbol{\Omega}$ is the specular reflection of $\boldsymbol{\Omega}_{\boldsymbol{i n c}}: \boldsymbol{\Omega}_{\boldsymbol{i n c}}=\boldsymbol{\Omega}-2(\boldsymbol{\Omega} \cdot \boldsymbol{n}) \boldsymbol{n}$. The angle Θ satisfies $\cos \Theta=\boldsymbol{\Omega}_{\boldsymbol{i n c}} \cdot \boldsymbol{n}_{\boldsymbol{o u t}}>0$ where $\boldsymbol{n}_{\text {out }}$ is local unit outward normal vector. The directional reflection $\rho(\Theta)$ is given by Snell-Descartes laws. Considering that $n^{2} \ll k^{2}$ (n, k being the real and imaginary parts of the complex refractive index, respectively):

$$
\rho(\Theta)= \begin{cases}\frac{1}{2}\left(\frac{\cos \Theta-n_{r} R(\Theta)}{\cos \Theta+n_{r} R(\Theta)}\right)^{2}+\frac{1}{2}\left(\frac{n_{r} \cos \Theta-R(\Theta)}{n_{r} \cos \Theta+R(\Theta)}\right)^{2} & \text { if } \quad \Theta<\Theta_{c r i t} \\ 1 & \text { otherwise },\end{cases}
$$

with $R(\Theta)=\sqrt{1-n_{r}^{2} \sin ^{2} \Theta}$ and $n_{r}=\frac{n}{n_{\text {out }}}$ is the relative refractive index between the two media. The critical angle satisfies Snell's law: $\sin \Theta_{\text {crit }}=n_{r}^{-1}$. In our application, $n_{\text {out }}=1, n_{r}=n=1.4$ and $\Theta_{\text {crit }}=45.58^{\circ}$.

- Diffuse reflection

Change $\rho(\Theta) \psi\left(s, \mathbf{\Omega}_{\mathrm{inc}}, t\right)$ by $\frac{1}{\pi} Q_{\text {out }}(s, t)$

Biomedical diagnosis

- An important issue in Optical Tomography is to have an efficient forward solver (accurate, fast, suitable for irregular geometries) combined with an efficient inverse method for reconstructing the mesoscopic optical properties

Different methods for solving the RTE

Diffusion Equation

- Approximate model (deduced from the RTE) yet widely used
- 3 assumptions:
(1) low absorption, $\mu_{a} \ll \mu_{s}$
(2) large spatial and time scales, $l_{t r} \ll L$ and $\frac{l_{t r}}{c} \ll T$
$l_{t r}=1 / \mu_{s}^{*}$: transport length with $\mu_{s}^{*}=\mu_{s}(1-g)$
$=$ path taken by a collimated beam before it becomes isotropic
T : observation time. L: characteristic length of the medium
(3) does not correctly model the BC with a collimated (laser) beam

Reconstruction of $\mu \mathrm{s}$

600 MHz

3D

Perpendicular incident beam

$L_{y}=L_{z}=12 \mathrm{~mm}$
$L_{x}=10 \mathrm{~mm}$
$n_{\text {air }}=1 ; n=1.4$

Semi-transparent boundaries

Elastically scattered light

- Incident beam

The spatial mesh (in the plane (Oyz)) was refined around the strong variation of the Gaussian function

$1^{\text {st }}$ case

$2^{\text {nd }}$ case

$3^{\text {rd }}$ case

