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Abstract - In this paper, we examine a machine learning-based method aimed at improving the
accuracy of T-LES fields in the context of highly anisothermal flows. We compare this method with an
already existing super-resolution method. We train our convolutional neural network by filtering Direct
Numerical Simulation (DNS) snapshots into T-LES ones, and optimize our network to reconstruct DNS
small scales from T-LES snapshots. Our results show that the neural network outperforms the classical
reconstruction method in terms of the quality of the reconstructed coherent structures, but ends up
increasing the Root Mean Square (RMS) values over the DNS ones.

Nomenclature

T temperature, K
· large eddy simulation filter
h half height of the canal, m
Greek symbols
∆i mesh length in the i direction, m
θ neural network weights

Index and exponent
f fine mesh
c coarse mesh
r reconstructed field

1. Introduction

Solar receivers used in gas-pressurized concentrated solar power plants are subject to ex-
tremely high temperatures and heat fluxes, as well as intense turbulence and asymmetrical heat-
ing. These conditions present a significant challenge when it comes to the simulation of the
system using Direct Numerical Simulation (DNS) due to the large size of the receiver com-
pared to the smallest turbulent structures. Thermal Large Eddy Simulation (T-LES) is a good
alternative to overcome this challenge. T-LES models the effect of the smallest turbulence struc-
tures and reduces computational costs. However, the high heat fluxes present in solar receivers
can affect the turbulence, and existing sub-grid models developed for isothermal or weakly
anisothermal flows may not be suitable under such operating conditions [1]. Some types of
sub-grid closure models use convolutions to filter local quantities like the scale similarity Bar-
dina et al. model [2]. T-LES inherently does not contain enough information for a precise
assessment of simulation quantities. To predict thermomechanical constraints within a solar
receiver, it is crucial to enhance the accuracy of the filtered data by inverting the T-LES filter
and enabling the recovery of RMS temperature values and RMS heat flux values, which are
important for understanding the thermal behavior of the system. Some Deep Learning (DL)
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approaches exist, most notably Bode et al. [3], Fukami et al. [4], Kim et al. [5], all with differ-
ent types of convolutional neural networks (CNN) architectures to reconstruct the small scales
from LES simulations. These techniques aim to be included in CFD solvers to more accurately
estimate simulation quantities like velocity fields, or passive scalar quantities in reactive flows.
In this work, we will adopt a neural network-based approach and revisit the architecture used
in Lapeyre et al. [6] by adapting it and learning to reconstruct fine scale temperature fields. We
will compare the results of the neural network-based reconstruction against the scale similarity
method developed by Stolz and Adams [7].

2. Supporting data

The simulation used for this work assumes a constant Prandtl number of Pr = 0.76. The
flow is charactarized by its friction Reynolds number defined as

Reτ,w =
Uτh

νw
, (1)

where h is the half-height of the channel, νw the wall kinematic viscosity and Uτ the friction
velocity. In our anisothermal channel flow, the two walls have different friction Reynolds num-
bers. We define the mean friction Reynolds number at the hot and cold sides as

Reτ =
1

2

(
Reτ,1 +Reτ,2

)
. (2)

We consider the DNS data generated in Dupuy et al. [8] for a channel flow at Reτ = 180,
periodic both in the streamwise (x) and spanwise (z) directions, with lower and upper wall
temperatures fixed at T1 = 293K and T2 = 586K; we filter the data using a top-hat filter. The
mesh is regular both in the streamwise and spanwise directions, and grows in size according to
a hyperbolic tangent law along the wall-normal direction. We use cubic spline interpolation to
coarsen the DNS temperature data T to the LES grid. This operation shrinks the data from a
384 × 266 × 384 grid to a 48 × 50 × 48 grid. We then use a top-hat filter that spreads over 3
cells in each direction, and re-interpolate the filtered temperature field T

c
to the DNS mesh T

f
.

The following sketch summarizes the work flow

T f Coarsening−−−−−→ T c Filtering−−−−→ T
c Cubic spline−−−−−−→

interpolation
T

f Reconstruction method−−−−−−−−−−−→ Tr. (3)

The top-hat filter approximation for 3 cells of a given quantity ϕ is given by

ϕ(xi, yk, zj, t) =
1

9(yk+1 − yk−1)

i+1,j+1,k+1∑

i′,j′,k′=i−1,j−1,k−1

ϕ(xi′ , yk′ , zj′ , t)(yk′+1 − yk′). (4)

This filter is weighted along the y axis because grid points in the wall-normal direction follow
a hyperbolic tangent transformation.

3. Common reconstruction methods

We test our approach against an already existing method developed by Adams et al. [7, 9, 10].
This method uses an iterative deconvolution procedure based on the Van Cittert method which



we now succinctly discuss. The inverse of a convolution filter G assumed invertible, writes

G−1 = (I − (I −G))−1, (5)

= lim
p→∞

p∑

i=0

(I −G)i. (6)

We take a p = 6 approximation to this converging Neumann series (Stolz and Adams [7]
recommend p = 5).

3.1. Reconstruction task in the context of our data

There are multiple ways of reconstructing using the above mentioned method. We kept two
of them:

• Reconstructing on the coarse grid, then interpolating

T
Coarsening−−−−−→ T c Filtering−−−−→ T

c Reconstruction method−−−−−−−−−−−→ T c
r

Cubic spline−−−−−−→
interpolation

T f
r . (7)

• Interpolating then reconstructing on the fine grid

T
Coarsening−−−−−→ T c Filtering−−−−→ T

c Cubic spline−−−−−−→
interpolation

T
f Reconstruction method−−−−−−−−−−−→ Tr. (8)

A visual representation using real data is provided in Figure 1.

In the case of process 8, because of the filtering and interpolation processes, we are unable
to estimate an accurate filter size on the DNS mesh. On the other hand, we know the filter size
on the coarse mesh. The T-LES mesh was chosen so that the homogeneous directions (x) and
(z) are 8 times coarser on the T-LES, but the mesh coarsening coefficient in the wall normal
direction (y) is not constant. Because of this, we have to estimate the filter size in this direction.
This coarsening coefficient fluctuates between 5.2 and 6.1.

4. Deep Learning method

To improve upon the conditioning of the learning task, we make the neural network fNN(·, θ)
learn the residual, and not the reconstruction itself

Tr = T
f
+ fNN(T

f
; θ), (9)

with θ the network weights. The architecture is detailed in Lapeyre et al. [6].

4.1. Data acquisition

As discussed in Section 2, DNS simulation data are sampled every ∆+
t = 7.76 × 10−3.

The training set is composed of 13 snapshots, and the validation set of 4 snapshots for a total of
17. These snapshots are taken into a contiguous interval t+max− t+min = 1.32× 10−1 for training
and validation. Full convergence of statistics is achieved prior to taking snapshots, which are
spaced out in time to ensure that they are uncorrelated.



4.2. Learning procedure

We perform a learning procedure where data are taken from a fixed height in the canal close
to the hot boundary, with a crop height of 16 pixels.

On this fixed height, we randomly sample one subdomain per training snapshot at each step
of the mini-batch training. These subdomains are of size 16×16×16, and we do this 500 times
per epoch. This training procedure is done on the coarse mesh to have a similar structure as in
process 7. The loss function is defined as

L(T, Tr) =

√√√√
N∑

i=1

(T [i]− Tr[i])2,

where [i] is the ith training example, and N the total number of patches in the current batch,
results are shown with N = 13.

We optimize our neural network using a stochastic gradient optimization technique (ADAM,
Kingma and Ba [11]) for a total of 150 epochs with a learning rate fixed at 10−2 at the beginning
and decreasing by 20% each 10 epoch. Data are augmented via random 90° flips and mirror op-
erations, similarly as Lapeyre et al. [6]. We do not allow flips and mirroring that would change
the asymmetry of the wall-normal direction. The training takes approximately 20 minutes on
an Nvidia RTX A3000 GPU.

5. Results

In the following section, we will compare temperature profiles, RMS profiles
√

⟨T ′2⟩ =√
⟨T 2⟩ − ⟨T ⟩2, where ⟨·⟩ is the spacial averaging over periodic directions (x) and (z), and prob-

ability distributions functions (PDF) as obtained by running the DNS, LES and reconstruction
methods for a given snapshot. This snapshot is taken from the same simulation as the training
snapshots, and is filtered in the same way as is explained in Section 2, but at a much earlier
point in the simulation, at t+train − t+test = 25.36 before the training snapshots. Mean temperature
profiles correspond to the mean of the temperature over the periodic directions.

The filter and the cubic spline interpolation do not affect the mean temperature profile, on
the other hand the profile of the RMS

√
⟨T ′2⟩, plotted in Figure 2 shows that the LES filter

under–predicts the RMS values of the DNS temperature field. Visual slices of the domain are
taken around the point of maximum RMS on planes parallel to the walls.

5.1. Scale similarity method

As discussed in Section 3.1, we consider two methods for the scale similarity, labeled coarse
and fine, for the reconstruction respectively performed on the coarse grid (with the correct LES
filter size), and the fine grid (for the estimated LES filter size). In Figure 3, we can see the
RMS quantities closely line up with the DNS ones. Figure 4, on the two right most columns,
demonstrates qualitatively the 2 types of reconstruction against the DNS and the LES. One can
clearly see that the scale similarity method adds smaller structures. Finally, in Figure 5, at the
slice where RMS is maximum along the wall-normal direction, the probability density function
of the reconstructed temperature manages to get close to the DNS ones.



5.2. Machine learning method

The result of the learning procedure described in Section 4.2 shows the neural network’s loss
converges around 150 epochs as seen in Figure 6. While the mean temperature profile closely
lines up with the DNS one, we can see in Figure 7 the neural network adds too much detail to
the reconstructed snapshots the further we are from the boundary. This can also be qualitatively
appreciated in Figure 4, although the added structures are the same size as the DNS ones, unlike
the scale similarity. Finally, in Figure 5, it can be observed that the CNN aligns almost perfectly
with the DNS, indicating its ability to accurately reproduce the temperature distribution.

6. Conclusion

In this work, we demonstrated the capability of a neural network residual-based formula-
tion to mimic DNS fields from LES ones in terms of statistics and visual evaluation of the
reconstructed fields and have compared its performances against an established reconstruction
method. Results show that the scale similarity method works to recover statistics such as the
RMS quantities or the PDF, but somewhat fails in qualitative assessments. On the other hand,
the CNN shows good results with respect to the qualitative assessment and reasonable results
on the RMS profile. The machine learning approach has yielded promising results. Future work
will aim at reconstructing the whole domain, not just a fixed-height sub-domain, learn over dis-
tribution of outputs, as opposed to learning a point to point image, and finally, be trained to
accurately invert unknown filters from simulated T-LES, not just filtered DNS snapshots.
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Figure 1: Data preparation process for reconstruction algorithm assessment. The top process corre-
sponds to equation 8, and the bottom one corresponds to equation 7.
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Figure 3: RMS temperature profiles of T f , T f ,
Tr scale sim coarse, and Tr scale sim fine
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0.85 0.90 0.95 1.00
y/2h

0

5

10

15

20

√
〈T

′ 2
〉(
K

)

DNS
LES
CNN

Scale sim fine
Scale sim coarse

Figure 7: RMS profile with T c, T c, T c
r neural

network , T f
r scale sim fine, and T f

r scale sim
coarse



References

[1] D. Dupuy, A. Toutant, and F. Bataille. A priori tests of subgrid-scale
models in an anisothermal turbulent channel flow at low mach num-
ber. International Journal of Thermal Sciences, 145:105999, 2019. ISSN
1290-0729. doi: https://doi.org/10.1016/j.ijthermalsci.2019.105999. URL
https://www.sciencedirect.com/science/article/pii/S1290072918306719.

[2] J. Bardina, J. Ferziger, and W. Reynolds. Improved subgrid-scale models for large-eddy
simulation. In 13th Fluid and Plasma Dynamics Conference, Fluid Dynamics and Co-
Located Conferences. American Institute of Aeronautics and Astronautics, 1980.

[3] M. Bode, M. Gauding, K. Kleinheinz, and H. Pitsch. Deep learning at scale for subgrid
modeling in turbulent flows, 2019. URL https://arxiv.org/abs/1910.00928.

[4] K. Fukami, K. Fukagata, and K. Taira. Machine-learning-based spatio-temporal super
resolution reconstruction of turbulent flows. Journal of Fluid Mechanics, 909:A9, 2021.
doi: 10.1017/jfm.2020.948.

[5] H. Kim, J. Kim, S. Won, and C. Lee. Unsupervised deep learning for super-resolution
reconstruction of turbulence. Journal of Fluid Mechanics, 910:A29, 2021. doi:
10.1017/jfm.2020.1028.

[6] C. J. Lapeyre, A. Misdariis, N. Cazard, D. Veynante, and T. Poinsot. Training convo-
lutional neural networks to estimate turbulent sub-grid scale reaction rates. Combustion
and Flame, 203:255–264, May 2019. doi: 10.1016/j.combustflame.2019.02.019. URL
https://hal.archives-ouvertes.fr/hal-02072920.

[7] S. Stolz and N.A. Adams. An approximate deconvolution procedure for large-eddy simu-
lation. Phys. Fluids, 11(7):1699–1701, 1999.

[8] D. Dupuy, A. Toutant, and F. Bataille. Study of the large-eddy simulation subgrid terms
of a low Mach number anisothermal channel flow. International Journal of Thermal Sci-
ences, 135:221–234, 2019. ISSN 1290-0729.

[9] R von Kaenel, N.A Adams, L Kleiser, and J.B Vos. The approximate deconvolution model
for large-eddy simulation of compresible flows with finite volume schemes. J. Fluids
Engng, 125:375–381, 2003.

[10] R. von Kaenel, N.A. Adams, L. Kleiser, and J.B. Vos. Effect of artificial dissipation on
large-eddy simulation with deconvolution modeling. AIAA J, 41(8):1606–1609, 2003.

[11] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.


