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Abstract - This article deals design optimization of building walls. The boundary element method is
used to solve the problem due to its computational efficiency and accuracy. For a case study in summer
and winter configuration, the optimal shape of the outside boundary of the wall is retrieved. It enables
to increase significantly the energy efficiency compared to the flat wall.

Nomenclature

T temperature,
[
K
]

x horizontal space coordinate ,
[
m
]

y vertical space coordinate ,
[
m
]

H building facade height ,
[
m
]

L thickness of the wall ,
[
m
]

qL incident radiation flux ,
[
W .m−2

]

k heat conductivity ,
[
W .m−1 .K−1

]

γ boundary shape function ,
[
m
]

Γ boundary ,
[
−
]

ρ dimensionless flux ,
[
−
]

Φ fundamental solution ,
[
−
]

r distance ,
[
−
]

1. Introduction

Due to their environmental impacts, retrofit existing building is a crucial challenge for designers.
It requires an accurate prediction of the heat losses through the multi-layers walls to propose energy
efficient strategies. The challenge is even more important when considering the thermal stresses due
to climate change warming temperature and solar radiation. Buildings retrofitted today must adapt to
future extreme heat is crucial. However, despite all the building simulation programs developed for the
past 50 years, the building wall are often designed under the following assumption. The walls are plane
barriers created against the climatic varying outside conditions. It omits the fact that incident radiation
heat flux are not spread uniformly on the enclosure [1]. The scientific issue is the following: can the
energy efficiency be increased by carrying shape optimization of the wall? As mentioned in [2], new
numerical methods are required for the design of advanced wall with improved energy efficiency. In this
article, the boundary element method is developed to solve the two-dimensional steady state heat transfer
equation in walls with spatial varying incident flux. The method is then used to solve the design problem
to determine the optimal shape that increase the energy efficiency of the wall.

2. Mathematical model

2.1. Physical problem

The physical domain under investigations is illustrated in Figure 1. The domain is denoted by Ω with
space coordinates x =

(
x , y

)
. The height of the facade is H

[
m

]
. The boundary of the domain is

Γ = ∪4
i=1 Γi. The bottom, right and top boundaries are denoted as Γ2 , Γ3 and Γ4 , respectively. The

left boundary is Γ1 and is defined by:

Γ 1(p ) = {x ∈ R2 | x = γ (p , y) , y ∈ [ 0 , H] , p ∈ Ω p} , (1)
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Figure 1 : Illustration of the physical problem (a). Illustration of the approximation of the whole bound-
ary Γ (b).

where γ(p , y) is a parametrized mapping function, which shapes the form of the boundary Γ 1 depend-
ing on the N p parameters:

p =
(
p 1 , . . . , pN p

)
∈ Ω p .

Note that in the case γ (p , y) = 0 , we have a plane boundary Γ 1 and the facade is a classical rectan-
gular one. In such case, the length of the wall is denoted L

[
m
]

.

The two-dimensional steady-state heat diffusion transfer is assumed to represent the physical phe-
nomena in the building facade [3]:

∆T = 0 , ∀x ∈ Ω ,

where T
[
K
]

is the temperature inside the facade. The left boundary is in contact with the outside
environment of the building. A second-type boundary condition is assumed where the flux q

[
W .m−2

]

corresponds to the incident short-wave solar radiation:

k∇T n⃗ = qL (x ) , ∀x ∈ Γ1 ,

where k
[
W .m−1 .K−1

]
is the thermal conductivity of the wall. Also note that the incident flux qL

varies with the height of the facade due to the surrounding effects of the urban area and due to the shape
of the boundary that may induce local shadings. It is given by:

qL (x ) = β ( q dr (x ) + q df (x ) + q rf (x ) ),

where direct q dr
[
W .m−2

]
, diffusive q df

[
W .m−2

]
and reflective q rf

[
W .m−2

]
fluxes are compo-

nents of the incident short-wave radiation. β is the absorptivity of the wall.

The right boundary is in contact with the ambient air so a DIRICHLET boundary condition is assumed:

T = TR , ∀x ∈ Γ3 ,

where TR is the known inside ambient temperature. Last, the top and bottom boundaries of the facade
are assumed as adiabatic:

k∇T n⃗ = 0 , ∀x ∈ Γ2 ∪ Γ4 .



2.2. Dimensionless formulation

The space, time and temperature quantities are transformed into a dimensionless representation ac-
cording to:

x ⋆ =
(
x ⋆ , y ⋆

)
, x ⋆ =

x

H
, y ⋆ =

y

H
, u =

T

TR
.

With this transformations, the dimensionless problem is set on the new domain Ω ⋆ and the left boundary
Γ1 is now redefined as:

Γ⋆
1(p

⋆ ) = {x ⋆ | x ⋆ = γ⋆ (p⋆ , y⋆) , y⋆ ∈ [ 0 , 1] , p⋆ ∈ Ω⋆
p} .

Then, the governing equations is:

∆ ⋆ u = 0 , (2)

with the boundary conditions:

∇ ⋆ u n⃗ = ρ(x ⋆) , x ⋆ ∈ Γ 1 ,

∇ ⋆ u n⃗ = 0 , x ⋆ ∈ Γ2 ∪ Γ 4 ,

u = 1 , x ⋆ ∈ Γ3 .

where ρ(x⋆) = qL (x )H
k TR

.

2.3. Numerical method to solve the direct problem

2.3.1. Boundary Integral equation

To derive the boundary integral equation of Eq. (2), we use GREEN’s second identity for two regular
functions:
∫

Ω − Ωϵ

(
u∇2Φ ⋆ − Φ ⋆∇2 u

)
dV =

∫

Γ

(
u q ⋆ − Φ ⋆ q

)
dΓ +

∫

Γϵ

(
u q ⋆ − Φ ⋆ q

)
dΓϵ, (3)

where u is solution of our dimensionless problem defined for the bounded two-dimensional region Ω with
its closed boundary curve Γ . Φ ⋆ is the fundamental solution of LAPLACE’s equation for the bounded
two-dimensional region Ω ϵ with its closed boundary curve Γ ϵ . q and q⋆ are normal derivatives for u and
Φ ⋆:

q = ∇ ⋆ u n⃗ , q ⋆ = ∇ ⋆Φ ⋆ n⃗.

Last, Φ ⋆ is defined by :

Φ ⋆ = − ln ( r )

2π (R1R2)1/2
,

where r is the distance from a source point to a boundary point, which is defined as:

r =
[ 1

R1
(x ⋆ − xξ)

2 +
1

R2
( y ⋆ − yξ)

2
]1/2

,

here x ξ = (xξ , yξ ) is a source point coordinates and x = (x⋆, y⋆) is a boundary point coordinates,
which is shown in Figure 1(b).

u and Φ ⋆ satisfy LAPLACE’s equation in the new region Ω − Ωϵ, thus the domain integral is equal to
zero. The original region is recovered on taking the limit when ϵ → 0. The limit of the second integral
on the right-hand side over Γϵ in Eq. (3) produces the result:

lim
ϵ→ 0

∫

Γϵ

(
u (x) q ⋆(x ξ, x) − Φ ⋆(x ξ, x) q (x)

)
dΓϵ = u(x ξ) ,



and the following integral equation is obtained from Eq. (3):

u(x ξ) =

∫

Γ

(
Φ ⋆(x ξ, x) q (x) − u (x) q ⋆(x ξ, x)

)
dΓ, (4)

this equation is known as GREEN’s third identity.

To obtain a boundary integral equation relating only boundary values, the limit is taken when the point
x ξ tends to a point x on the boundary Γ. However, if x ξ belongs to the boundary Γ. The limits produce
what is called a free term. Taking into account these terms the boundary integral equation Eq. (4) can be
generalized in the form:

c(x ξ)u(x ξ) =

∫

Γ

(
Φ ⋆(x ξ, x) q (x) − u (x) q ⋆(x ξ, x)

)
dΓ, (5)

for any point x ξ on the boundary Γ. The free coefficient c(x ξ) is given by:

c(x ξ) =
α

2π
, 0 ≤ c(x ξ) ≤ 1,

where α is an internal angle at source point x ξ .

2.3.2. Discrete Boundary Integral equation

The Boundary integral equation (BIE) Eq. (5) can only be solved analytically for some very simple
problems. For this, a standard GREEN’s function method is normally used. Rather than attempting
analytical solutions to the BIE for particular geometries and boundary conditions, we seek a suitable
reduction of the equation to an algebraic form that can be solved by a numerical approach.

The Boundary element method (BEM) is a numerical method of solution of the BIE, based on a
discretization procedure [4]. Application requires two types of approximation: the first geometrical,
involving a subdivision of the boundary Γ into Ne small segments or elements Γj , schematically shown
in Figure 1(b), such that:

Ne∑

j=1

Γj ≈ Γ,

Taking this into account, Eq. (5) can be written in the form:

c(x ξ)u(x ξ) =

Ne∑

j=1

∫

Γj

(
Φ ⋆(x ξ, x) q (x) − u (x) q ⋆(x ξ, x)

)
dΓ, (6)

The second approximation required by the BEM is functional. We approximate the variation of u and
q within each element by writing them in terms of their values at some fixed points in the element,
using interpolation functions. The simplest possible approximation is a piecewise constant one, which
assumes that u and q are constant within each element and equal to their value at the midpoint. Using
this approximation into Eq. (6), we obtain:

c(x i)u(x i) =

Ne∑

j=1

q (xj)

∫

Γj

Φ ⋆(x i, x) dΓ − u (xj)

∫

Γj

q ⋆(x i, x) dΓ, (7)

here i - nodal point, j - number of the element. Calling integrals

Gi j =

∫

Γj

Φ ⋆(x i, x) dΓ (8)



and

Ĥi j =

∫

Γj

q ⋆(x i, x) dΓ , Hi j = Ĥi j + c(x i) δi j , (9)

where δi j is the Kronecker delta.

Integration in Eq. (8) and (9) is carried out using composite SIMPSON’s rule. Quadratic boundary
elements are used to represent curved geometry. Thus the Jacobian and normal vector are no longer
constant within each element. In order to implement them, there is a need to transform from Cartesian
to curvilinear coordinates [5]. For the sake of brevity, transformation omitted by authors.

Now Eq. (7) can be rewritten in the form:

Ne∑

j=1

Hi j uj =

Ne∑

j=1

Gi j qj , (10)

for any nodal point i. If the above equations are now applied, this generates a system of equations which
can be written in matrix form as:

Hu = Gq. (11)

Once the boundary conditions of the problem are applied to the system of Eq. (11), the matrices can be
reordered in the form:

Ax = b, (12)

in which all unknowns have been collected into the vector x, and the vector b is the ’load’ vector, which
contains all known boundary conditions.

2.4. Verification of BEM

10−2 10−1

∆h [-]

10−6

10−5

10−4

10−3

10−2

ε 2
[-

]

BEM

FDM

∆h2

∆h3

(a)

10−6 10−5 10−4 10−3

ε2 [-]

10−4

10−3

10−2

10−1

100

t C
P

U
/

m
ax
t C

P
U

[-
]

∆h = 0.007∆h = 0.007

∆h = 0.125∆h = 0.125

BEM

FDM

(b)

Figure 2 : Influence of spatial step ∆h on ε2 error for dimensionless u (a) and on the ratio tCPU time
and ε2 (b).

Firstly, the BEM method is verified on a case where an analytical solution is known. A rectangular
domain is considered. Thus, for the flat wall case γ(P, y ⋆) = 0. Analytical solution ua for Eq. (2) is
used as a reference:

ua(x⋆) = (x⋆)2 − (y⋆)2.



The analytical solution is compared with the BEM one and the finite-difference method (FDM). The
latter is implemented using JACOBI’s method. For the comparison purpose, the error ε 2 is defined by:

ε 2 =
∣∣ ∣∣u − ua

∣∣ ∣∣
2
.

The results are computed for boundary and internal points. Different values of the spatial step ∆h are
chosen according to the total number of boundary elements Ne.

Figure 2(a) presents the error according the spatial step of each method. It highlights that BEM has a
lower error compared to FDM results for all spatial step. Both approaches have an error proportional with
∆h 2 . Figure 2(b) gives the computational time ratio according to the error. Here the ratio is computed so
that the maximal value is one for the method that requires the most computational resources. The Figure
shows that for the same level of accuracy, the BEM is faster to compute the solution than the FDM.

3. Design optimization problem

The objective of this work is to improve energy efficiency of a building wall by finding the optimal
shape of the left boundary which is in contact with outside environment. Thus, the optimization problem
aims at finding parameters of the left boundary that minimizes a heat flux on the right wall:

p ◦ = arg min
p∈Ω p

J . (13)

In winter, the issue is to maximize the inward heat flux while in summer, it is the opposite. The objective
function J

[
W .m−2

]
is the total inward heat flux on the right boundary, corresponding to the inside of

the building:

J = s
1

H

∫ H

0
−k∇T n⃗ dy , (14)

where s is the sign of the objective function depending on the different seasons. Namely, s = 1 and
s = −1 in summer and winter, respectively. Note that the objective function needs to be minimized
under several constraints. First, the physical volume of the wall Vp should not exceed the reference case
V∞. The reference case is defined as the flat standard wall (γ = 0 in Eq. (1)). Thus, the cost function
Eq. (14) needs to be minimized under the following constraint:

Vp ≤ V∞,

which leads to
∫

Γ3

LdΓ −
∫

Γ1

γ (p , y) dΓ ≤
∫

Γ3

LdΓ,

which can be rewritten as
∫

Γ1

γ (p , y) dΓ ≥ 0. (15)

The second constraint that must be satisfied by the parametrized mapping is that the maximum width
of the wall cannot be higher than L . In other words, the left and right boundaries cannot intersect each
other:

γ (p , y) dΓ ≤ L − δ, (16)

where δ is a given spatial tolerance.

The cost function Eq. (14) is minimized with Constrained optimization by linear approximation
method (COBYLA) [6]. It works by iteratively approximating the actual constrained optimization prob-
lem with linear programming problems.



4. Case study

4.1. Description

The case study considers a house wall in summer and winter conditions. The wall composed of bricks
with thermal conductivity k = 1W .m−1 .K−1. The height and width of the wall are H = 3m and
L = 0.3m. For the mapping function γ Eq. (1), a third order polynomial is considered:

γ (p , y) = p0
y

H

( y

H
− p1

)( y

H
− 1

)
.

The absorptivity of the right boundary is set to β = 1 . The urban environment assumes a front building
of 5 m height and placed at 3 m of the boundary Γ 1 . The incident radiation flux are computed using
analytical projections of the solar angle, considering shadow induced by front building and by the own
shape of the boundary Γ 1 . For the boundary Γ 3 of the wall, the temperature of the inside ambient air
is TR = 20 ◦C. The number of boundary elements is set to Ne = 256, which corresponds to a
dimensionless spatial step ∆h = 8.5 · 10−3. The spatial tolerance is set to δ = 2∆h.

4.2. Results

Table 1 : Optimization results.

Scaled cost function Optimized shape parameter Volume of the wall Computational cost
Configuration Jf

[
−
]

Jo

[
−
]

p ◦
0

[
−
]

p ◦
1

[
−
]

Vf

[
−
]

Vo

[
−
]

iter. tCPU

[
s
]

Summer 1 0.93 1.12 0.51 1.00 0.99 20 231

Winter 1 1.24 −1.13 0.49 1.00 0.81 22 241

0.00 0.25 0.50

x
[

m
]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

y
[ m
]

(a)

0.00 0.25 0.50

x
[

m
]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

y
[ m
]

(b)

0.00 0.25 0.50

x
[

m
]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

y
[ m
]

(c)

Figure 3 : Flat wall shape (a) and optimized shapes of the wall in summer (b) and in winter (c).

Shape optimization problem of building facade is solved using the method described in Section 3.. The
direct problem is solved for the summer (21th August) and winter (21th January) seasons. The radiation
flux are generated using standard climate for the city of Perpignan, France. The flat wall is considered
as reference case and denoted by subscript f . Table 1 provides the results for both configurations. The
results show benefits for energy efficiency. The heat transfer is reduced by 7% in Summer and increased
by 24% in Winter. Furthermore, the volume of the optimized shape are less than reference case (0.01%
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Figure 4 : Heat flux distribution along y axis on outside (Γ1) and inside (Γ3) boundaries.

and 19% for summer and winter, respectively). Optimized design parameters are given Table 1 and
illustrated in Figure 3. Figure 4 shows influence of the shape of the left boundary on the heat flux
distribution along Γ1 and Γ3. According to the summer optimized shape, the wall has convexity on the
higher part, which makes difficult for sun radiation to penetrate wall on that zone. Thus, total heat flux
is lower in case of optimized design. Same logic can be applied for the optimized shape in winter. Due
to concavity, distance to opposite wall is decreased. Thus, optimized shape shows an improvement of
the global energy efficiency for increasing the heat transfer through the wall for both winter and summer
periods.

5. Conclusion

This article investigates the use of BEM to solve a shape optimization problem of building walls. First
the method is verified considering an analytical solution. It highlights that the approach is faster and more
accurate than standard finite-difference method. Then, a case study is considered for optimization. The
incident short-wave radiation flux is varying according to the height of the facade, due to shadow induce
by the urban environment and by the own shape of the wall. Results show that for a reduced volume
of the wall, energy efficiency can be improved by 13% and 100% in Summer and Winter respectively.
Future works should focus on extending the methodology for transient heat transfer.
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