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Abstract – Microbiology standard procedures for bacteria or micro-organisms detection in liquid or 

gas media usually require incubation of the samples for a few days. This work is aimed at the fast 

detection of micro-organisms by photothermal excitation on a plate with culture media that containing 

molds. The temperature is measured with an infrared camera. Temperature variations during the cooling 

period are used for the solution of a parameter estimation problem. The lumped model parameter is 

estimated by Markov Chain Monte Carlo method via Metropolis-Hastings algorithm. 

Nomenclature 

 

Latin letters 

𝐴 area, m² 

𝑐𝑝  specific heat, J·kg-1·K-1 

𝐸 energy, J 

ℎ heat transfer coefficient, W·K-1·m-2 

𝑷 vector parameters 

𝑟 radius, mm 

𝑇 temperature, °C 

𝑡 time, s 

𝐘 measurement vector 

Greek letters 

𝛼 Metropolis-Hastings ratio 

𝜌  density, kg·m-³ 

𝜀 emissivity 

𝜎 Stefan–Boltzmann constant, W·m-2⋅K-4 

𝜃 nondimensional temperature 

𝜋  probability distribution function 

 

 

1. Introduction 

The process of bacteria and microorganisms detecting can take many hours or even days. 

There are an extensive set of techniques used to determine the viability of bacteria, such as 

nucleic acid-based methods, fluorescent dye-based methods, cellular/metabolic properties, and 

culture-based methods [1]. The European standard BS EN 14683 establishes minimum 

requirements for surgical masks used in operating rooms and other areas of healthcare facilities 

to avoid cross-contamination as much as possible. Therefore, a set of procedures is required to 

verify the adequacy of such masks in relation to several aspects. Among them, the procedure 

for calculating the bacterial filtration efficiency (BFE) is of interest, which is obtained by 

exposing plates to a device that sprays a solution with bacteria. After an incubation period of 

48 hours at 37 ± 2 °C, the number of bacterial cultures for each plate is counted. These bacteria 

form on an agar gel Petri dish following a procedure of exposure to a Staphylococcus aureus 

culture diluted in peptone water. After the procedure described and counting the amount of 

bacterial culture in each plate, the average of the BFE of all plates is calculated, thus obtaining 

the filtration efficiency [2]. The complete work focuses on culture-based methods (CBM) to 

perform a count of the number of bacterial cultures that reproduce after the standardized test 

for respective regulation. But, for preliminary approach, the experimental apparatus and the 

algorithms are developed in order to detect, count, and estimate parameters for molds. The 
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objective of this work is to automatically detect microorganisms in a petri plate, more 

specifically mold/fungi given their larger magnitude when compared with bacterial cultures. 

After the detection, estimate thermophysical parameters and dimensions of these organisms. 

2. Mathematical model and inverse problem 

In this work, we use the inverse problem under Bayesian framework to estimate the thermal 

parameters for mold of different sizes in agar gel. This approach needs a direct problem and an 

inverse problem methodology, which is described in this section. The direct problem assumes 

heat exchange between the mold and the medium as a lumped heat transfer, which works quite 

well in small bodies with Biot number less than 0.1. In this modeling approach, the inner 

temperature depends on a simple energy balance between the body and the environment. 

Equation (1) shows this general energy balance: 

 𝑑𝐸 /𝑑𝑡 = 𝐸g − 𝐸conv − 𝐸rad (1) 

where the left-hand term is the stored energy in the volume, the first right-hand term is the heat 

generation considered negligible, the second is the energy lost by convection, and the third item 

is the energy lost by radiation. The heat losses are assumed only due to convective and radiative 

exchanges and negligible in the base of the hemisphere. An illustration of a hemisphere for 

modelling the mold geometry can be seen in Figure 1. 

 
Figure 1: Geometry of a hemisphere. 

Hence, we can write the direct problem as: 

 𝜌𝑐𝑝𝑉 𝑑𝑇 /𝑑𝑡 = −(ℎ𝑟 + ℎ𝐿)𝐴𝑠(𝑇 − 𝑇∞) (2) 

 𝑇(𝑡 = 0) = 𝑇𝑖𝑛𝑖 (3) 

where 𝜌 is the density, 𝑐𝑝 the specific heat, 𝑇∞ is the room temperature (about 22 °C), 𝑇𝑖𝑛𝑖 the 

initial temperature, ℎ𝐿 convective heat transfer coefficient, and ℎ𝑟 is the linearized heat transfer 

coefficient for radiation, given by: 

 ℎ𝑟 ≡ 4𝜀𝜎𝑇∞
3 (4) 

Despite ℎ𝑟 depends on the temperature, in the temperature range considered in our 

experiment, the variation for this coefficient is negligible but is considered in the uncertainties 

of the respective parameter. Considering the values of 𝑉 = 2𝜋𝑟3/3 and 𝐴𝑠 = 2𝜋𝑟2 for a 

hemisphere, and changing the variables using ℎ = ℎ𝑟 + ℎ𝐿, and 𝜃(𝑡) = 𝑇(𝑡) − 𝑇∞, the solution 

for equations (2) and (3) is the following expression: 

 𝜃(𝑡) = 𝜃0𝑒−𝑚𝑡 (5) 

 𝑚 = 3ℎ /(𝜌𝑐𝑝𝑟) (6) 

where 𝜃0 = 𝑇𝑖𝑛𝑖 − 𝑇∞, 𝜌𝑐𝑝 is the volumetric heat capacity, and 𝑟 is the radius of the base for 

each mold. 

The Bayesian approach for inverse problems deals with all available information to obtain 

the better estimative for parameters and its uncertainties taking into account prior information 

and the model selected to treat the measurements. All these elements are combined using the 

     

    

    

     



B y  ’ theorem (7). The statistical inversion approach is based in some principles: for example, 

all parameters in the model are considered random variables and the solution of the inverse 

problem is the posterior probability distribution [3]. Based on all information available for 

parameters 𝐏 before the measured data is available, we need to select a probability distribution 

function 𝜋(𝐏) that represents the prior information. It is needed to select the likelihood function 

𝜋(𝐘|𝐏) for modelling the measurement errors and to develop methods to explore the posterior 

density function, which is the conditional probability distribution given the measurements 

𝜋(𝐏|𝐘). 

 𝜋(𝐏|𝐘) ∝ 𝜋(𝐘|𝐏)𝜋(𝐏) (7) 

The Metropolis-Hastings algorithm with separate sampling for the parameters is given by 

the following steps [3], [4]: 

1. Let 𝑡 = 0 and start the Markov chains with the sample 𝐏(0). 

2. Sample candidates 𝑷∗ from the proposal distribution 𝑞(𝐏∗|𝐏(t)). 

3. Compute the Metropolis-Hastings ratio 

𝛼(𝐏∗|𝐏(𝑡)) = min [1, 𝜋𝑝𝑜𝑠𝑡(𝐏∗)𝑞(𝐏(𝑡)|𝐏∗)/ ( 𝜋𝑝𝑜𝑠𝑡(𝐏(𝑡))𝑞(𝐏∗|𝐏(𝑡))) ] 

4. Generate a random number with a uniform distribution in (0,1), 𝑈~𝑈(0,1). 

5. If 𝑈 ≤ 𝛼(𝐏∗|𝐏(𝑡)), make 𝐏(𝑡+1)= 𝐏∗. Otherwise, make 𝐏(𝑡+1)= 𝐏(𝑡). 

6. Make 𝑡 = 𝑡 + 1 and return to step 2 to generate the sequence {𝐏(1), 𝐏(2), . . . 𝐏(𝑛)}. 

 

The parameters of the mathematical model considered here are given by equation (8). As 

they are combined to form the parameter 𝑚 in equation (6), they are correlated. The estimation 

of the sole parameter m should be enough, but it is been extended to the three parameters (8). 

The Bayesian inference gives the possibility to evaluate priors on parameters, what cannot 

propose deterministic techniques. The initial temperature 𝜃0 is considered a deterministic 

parameter. The priors are determined and presented in Section 3. 

 𝐏 = [𝜌𝑐𝑝, ℎ, 𝑟]
𝑇
 (8) 

3. Materials and Methods 

A thermographic camera FLIR SC660 records the images of a disposable petri plate with  

90 mm diameter and 15 mm high containing about 15 ml of agar gel contaminated with several 

microorganisms initially uncharacterized. Contamination of the sterilized plate is performed by 

opening its lid to ambient air and storing it at an ambient temperature of 23 ± 2 °C for two days.  

 

 
 

Figure 2: Agar gel plate contaminated with mold and yeasts. Figure 3: Experimental apparatus. 

Figure 2 shows the top view of the plate, with the variety of organisms that grows during the 

incubation period at the specified temperature. The experimental apparatus can be seen in 



Figure 3, where the camera optical axis is perpendicular to the petri plate, and the flashlight is 

outside of camera field of vision. The plate is positioned between three plastic tips so that the 

image capture position remains the same. There are two height controls, and the camera focus 

can be done automatically or manually. The flashlight is provided by an emitter ATEK LLC 

800 generally used in photography studios, positioned at the top next to thermal imaging 

camera. 

Each pixel from the thermal image corresponds to one temperature measurement and these 

temperatures have associated uncertainties. The minimum element which forms the digital 

image, namely pixel, can represent different sizes for real objects depending on the distance 

between the lens and the object under analysis. The thermal camera used has 640 × 480 pixels 

with 7.5 – 13.0 µm of spectral range and accuracy of ± 1 °C or ± 2 % of reading. A microscope 

micrometer calibration ruler is used to estimate the pixels dimensions based on the captured 

thermal images. This ruler is showed in Figure 4. After several measurements, using all 

graduated scales for vertical and horizontal directions, a value for the basis (horizontally) of 

each pixel is obtained with mean value of 0.264 ± 0.040 mm. In the perpendicular position 

(vertically), the mean value is 0.27 ± 0.02 mm. The error propagation can be calculated to obtain 

the value for the area as 0.07 ± 0.01 mm2·pixel-1. These values are related strictly with the 

specific experimental apparatus, considering 40 cm between the lens and the plate image 

recorded. These calculations must be done every time that the experimental apparatus is 

changed, the distance between lens and plate and the focus configuration is altered. Some 

options are available after the recording for export the camera data in the FLIR Researcher 

software, like digital levels counting (counts), temperature, and radiance. In this work, the major 

interest is related to temperature since the surface emissivities are not known in order to infer 

the temperature measurements directly. In our case, we assume emissivity equals to unity, 

knowing that literature mentions emissivity value of equivalent gel of 0.92 [5]. 

Twenty-two frames are obtained from a thermal video, with about 33 ms between each frame 

and a total duration of 696 ms. The frame with mean temperature peak is considered the initial 

instant for the model, or 𝜃(𝜏 = 0) = 𝜃0. The energy applied by the flashlight is not part of the 

model directly, only the initial mean temperature is, so our problem is to estimate a cooling 

coefficient for the lumped model. The frame is detected with the greater mean temperature 

value and all frames before it is discarded for the simulations. To study the temperature 

distribution in all regions delimited by each unity of mold, the mean temperature is calculated 

for each frame in each one of the detected molds. The experimental data 𝛥𝜃𝑖 =  𝜃𝑖 /𝜃𝑚𝑎𝑥   is 

the representation of the mean values for each contour detected from the peak of temperature 

(after the flashlight pulse effects). Each one of the values of the measurement vector measY  is a 

result of a normalization according to equation (9): 

 𝛥 𝜃̅ = (𝜃̅𝑖 − 𝜃̅𝑚𝑖𝑛)/(𝜃̅𝑚𝑎𝑥 − 𝜃̅𝑚𝑖𝑛) (9) 

where 𝑖 = 0, . . . , 𝑛, 𝑛 is the frame number after flashlight. The index max represents the 

maximum value to all means temperatures calculated for each frame, and the index min is the 

nonzero minimal temperature for all frames. With an algorithm developed to detect contours 

with the Python library scikit-image, it is possible to detect three different mold contours. 𝒀𝑚𝑒𝑎𝑠 

is calculated for each one of them to be used later in the parameter estimation routine. At first, 

a thresholding is applied in a copy of the thermal images turning to zero all temperatures smaller 

than the minimal temperatures (Figure 5(a)). Then the function measure.find_contours from 

scikit-image is used to detect the contours (Figure 5(b)). Finally, the function polygon2mask 

from the same library is used to convert all contours in areas (Figure 5(c)). These regions are 

matrix with pixel values equal to one in the region and zero outside of them, and they are 



combined with the temperature measurement to define the region for calculation of the mean 

values for the temperatures in each one of the molds. 

Markov Chain Monte Carlo (MCMC) Method is used to obtain the parameter estimation 

under the Bayesian framework, and the Metropolis-Hasting sampling algorithm is used to 

sample the posterior distribution. Three parameters are considered to determine, namely 

volumetric heat capacity cp, heat transfer coefficient  ℎ, and radius of the mold 𝑟 (8). All these 

three parameters are considered random variables with Gaussian prior distribution. The prior 

for the heat transfer coefficient is considered the same for each mold detected and has been 

evaluated at 16.5 ± 3.3 W·K-1·m-2 with the help of theoretical correlation [6]. A methodology 

based on [7] is used with the prior of cp. The values for the mean of each radius are inferred 

based on the size of the contour, just like the standard deviation, for the three-contour detected. 

Table 1 shows the Gaussian priors for each detected mold. 

 
Figure 4: Ruler used to calibrate the pixel size. 

 

 
(a) Thresholding 

 
(b) Contours detection (c) Only regions detected 

Figure 5: Contour detection. 
 

Mold Number 
𝑟, mm 

Mean ± Standard Deviation 

𝜌𝑐𝑝, J⋅K−1⋅m−3 

Mean ± Standard Deviation 

1 4.32 ± 0.27 1 500 ± 450 

2 1.54 ± 0.09 4 000 ± 1 200 

3 1.15 ± 0.07 5 000 ± 1 500 

Table 1: Gaussian priors for the parameters. 

Also, the standard deviation for the Gaussian likelihood function is calculated depending on 

the standard deviation for the first frame, before the flashlight and with value of  

𝜎𝑙𝑖𝑘𝑒 = 1.22 %. It is used 3 000 000 samples with a burn-in of 2 100 000 samples. Hence,  

900 000 final states are used to calculate the statistics for the parameters. The MCMC method 

is used separately for each one of the three detected molds and were adjusted to result in 

acceptance rates around 30% of the candidate points [7]. The acceptance of the samples is  

32 %, 20 %, and 13 %, respectively, for mold 1, 2, and 3. Because we have used a low-cost 

computational model for the direct problem, all simulation is done in about 2 minutes for each 

one of the detected contours, totalizing about 6 minutes to run the MCMC method in a 11th 

g     ti   I t l® C   ™ i5 @2.40 GHz 4 core and 16 GB RAM computer. 



4. Results and discussion 

The Markov Chains can be seen in Figure 6 for each one of the molds grouped for separated 

parameters. For the radius Figure 6(a), we have the better values for prior information and the 

convergence for the chains is visible and associated with the respective uncertainties showed in 

Table 1. The respective distribution is showed in Figure 6(b), where we can see the normal 

distribution for each one of the radii. 

The heat transfer coefficient has large variation for the three molds, as we can observe in 

Figure 7(a). Despite this large variation, we can see most of the values well distributed around 

the mean value for all molds, it is showed clearly in  Figure 7(b). The values for h show 

convergence for chains with large variation. But it is important to consider the difficulty for 

obtaining this parameter remembering that ℎ = ℎ𝐿 + ℎ𝑟, i.e., i) the convective coefficient 

depends on the room temperature; ii) there could possibly be air flow around the experimental 

apparatus, modifying the heat transfer coefficient. 

Figure 8(a) shows the results for the volumetric heat capacity. The Markov chains indicate 

large variation for some of the parameters, mainly for the smallest mold detected. A possible 

explanation for this behavior is related with the values of the prior standard deviation which is  

30 % of the mean value for each mold, and with the smaller mold which shows the larger value 

of mean and standard deviation, as indicated by Table 1. Also, this information is combined 

with the information of the mold radius in the exponential model, so when large variation occurs 

in a specific mold for radius, relatively small variation occurs for volumetric heat capacity. 

Similarly, to ℎ, the parameter cp presents difficulties in his estimation, yet the posterior 

probability function is well distributed around the mean values, as we can see in Figure 8(b). 

After all simulations, it was possible to estimate the three parameters and the credible 

interval of 95 %. The summary of these results is show in Table 2. We can observe relatively 

large values for this credible interval in some results, like cp and h for all molds. Despite the 

 

 

(a) Markov Chains. (b) Histograms. 

Figure 6: Radii estimation. 

 
 

(a) Markov chains. (b) Histograms. 

Figure 7: Heat transfer coefficient estimation. 



larger values in Table 2, the mode values can be considered the most credible values for the 

parameters, and they can be combined to obtain m. 

 
 

(a) Markov chain (b) Histograms 

Figure 8: Volumetric heat capacity estimation. 

Parameters h1 h2 h3 r1 r2 r3 (𝜌𝑐𝑝)1 (𝜌𝑐𝑝)2 (𝜌𝑐𝑝)3 

Mode value 16.67 16.99  16.83  4.33  1.53  1.16 1660.77 3975.85 5720.55 

Cred. Interval 

of 95 %  

10.68 

22.76 

11.04 

22.59 

11.32 

22.10 

3.71 

4.96 

1.31 

1.76 

0.99 

1.32 

1055.24 

2243.59 

2517.40 

5389.55 

3741.03 

7562.13 

Units W·K-1·m-2 mm J·K-1·m-3 

Table 2: Gaussian posterior for the parameters. 

Figure 9 shows the temperature distribution of the direct problem after the parameter 

estimation using the mean value and the associated uncertainties based on these parameters. 

The figure also shows the mean value obtained by the measurements done by the thermal 

camera. The plots are accompanied by images of the position and size of the fungus on the right, 

and these images indicate the m exponent for the parameter and the respective mold area. It is 

visible in Figure 9 the better fit is for the larger mold 1, despite two points are outside the gray 

region of the uncertainties. For molds 2 and 3, even when the mean value does fit quite well, 

 ll m          l        i  i   th       t i ty’    gi   . Thi      fitti g    l       g      t  

thermal interactions between the mold volume and temperature fluctuations in the environment 

given their small sizes. Additionally, when the area is small, the mean value for them cannot be 

so representative as in the cases for large ones, for example, mold 1. 

 
Figure 9: Temperature distribution and measurements. 

Conclusion 

In this work, it was possible to mount an experimental apparatus able to detect molds in a 

petri plate using a flashlight and a thermographic camera. As well it was developed an algorithm 



to detect relatively large thermal responsible molds surfaces estimating their sizes and their 

respective associated uncertainties. Also, a lumped model analysis was used to predict the 

cooling of these molds and the parameters for each one of the detected molds were obtained by 

the Metropolis-Hastings and MCMC method. The estimated parameters were in accordance 

with the mean values of the camera measurements and better results for this fitting were more 

visible for larger molds. This preliminary work is important to take the next step in the direction 

of bacterial colonies detection, thermophysical parameter estimation for these colonies and 

further prediction of colony growth. To follow the general objective in future works implies the 

study of better configuration for detect smaller elements in the plate and the application of the 

growth modelling to estimate not only the sizes of the colonies but also the prediction of the 

counting for the colonies at future times.  
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