

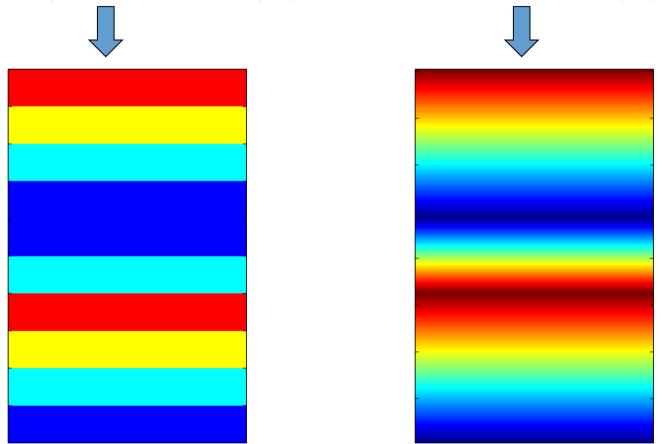
Diffusion et ondes dans les milieux à gradient de propriétés 1D. Construction de profils analytiquement solubles avec leurs solutions associées. Applications en CND thermique, optique des couches minces, et micro-météorologie

Journée SFT, 20 juin 2019

Foreword (1/5): Modeling of transfer phenomena in heterogeneous media

An analytical journey from

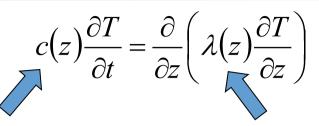
the world of **piece-wise constant** properties to the world of **continuous** properties



Foreword (2/5): Heat equation in graded media

Heat equation for 1D heat diffusion in a graded medium

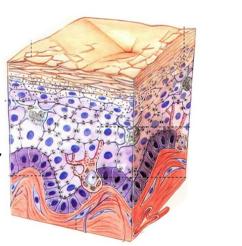
Soils



Thermal Barrier Coating

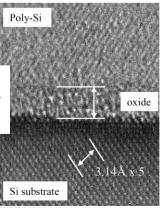
variable volumetric heat capacity

variable thermal conductivity



Skin

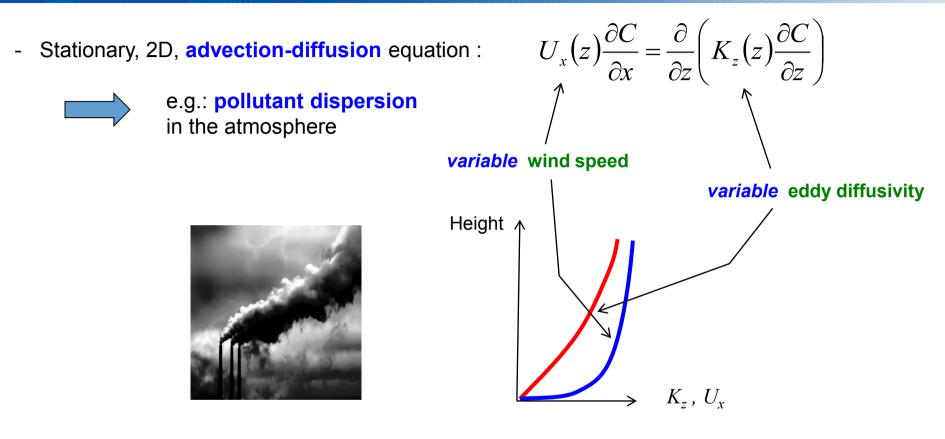
Graded interface at nanoscale: Oxygen concentration in thermally grown ultrathin SiO_x gate oxide



Gear teeth. Carburized case-hardened steel

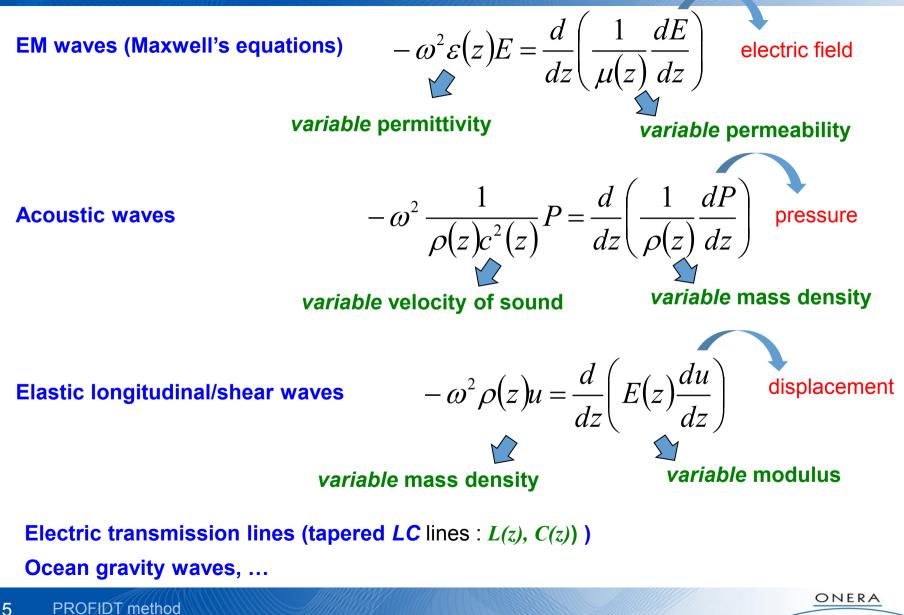
3 PROFIDT method

Foreword (3/5): Other (diffusion) equations of the same form



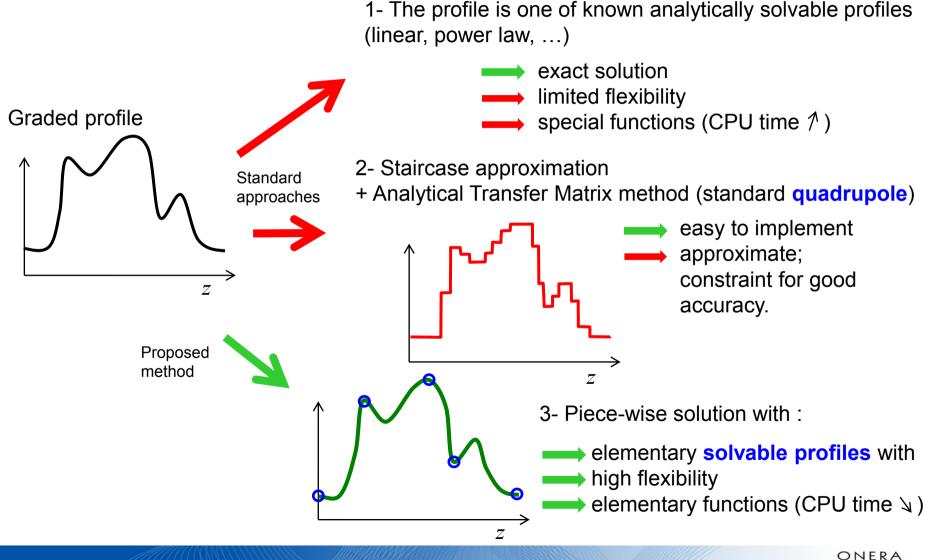
- Matter diffusion (Fick's law) with variable diffusion coefficient
- Electric transmission lines (tapered RC lines : R(z), C(z))
- Graetz problem, etc...

Foreword (4/5): Wave equations of "similar" form



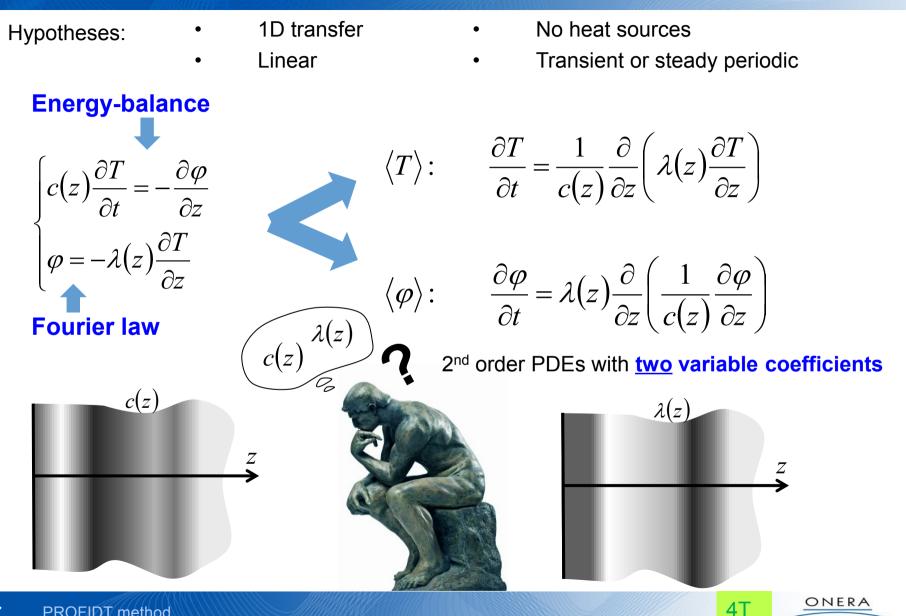
THE FRENCH AEROSPACE LAB

Foreword (5/5): Motivation and objectives

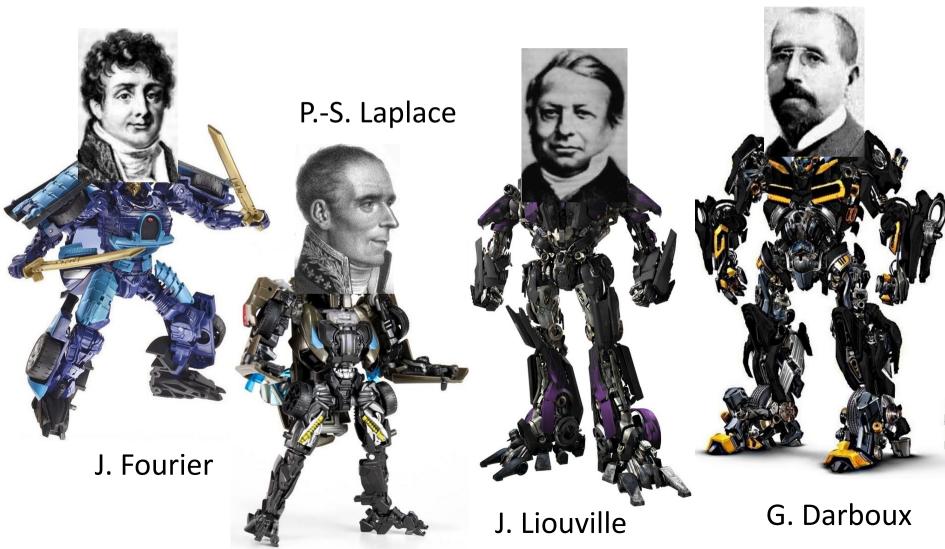


THE FRENCH AEROSPACE LAB

Heat equations for temperature and for heat flux



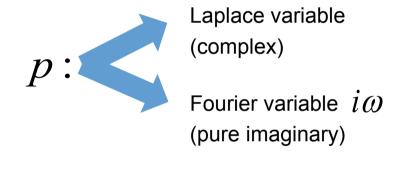
THE FRENCH AFROSPACE IA



Laplace or Fourier transform

Elimination of the time-derivative Multiplication by (p = p)

$$\langle T \rangle: \qquad p\theta = \frac{1}{c(z)} \frac{d}{dz} \left(\lambda(z) \frac{d\theta}{dz} \right)$$
$$\langle \varphi \rangle: \qquad p\phi = \lambda(z) \frac{d}{dz} \left(\frac{1}{c(z)} \frac{d\phi}{dz} \right)$$



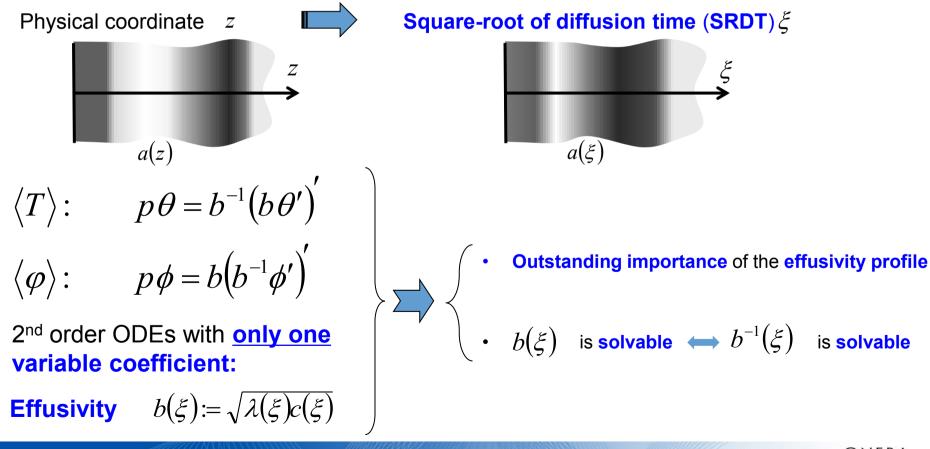
2nd order ODEs with <u>two</u> variable coefficients

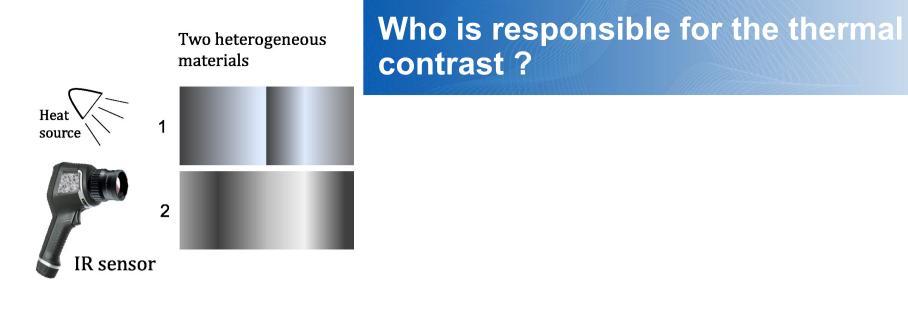
Liouville transformation (1897). First step

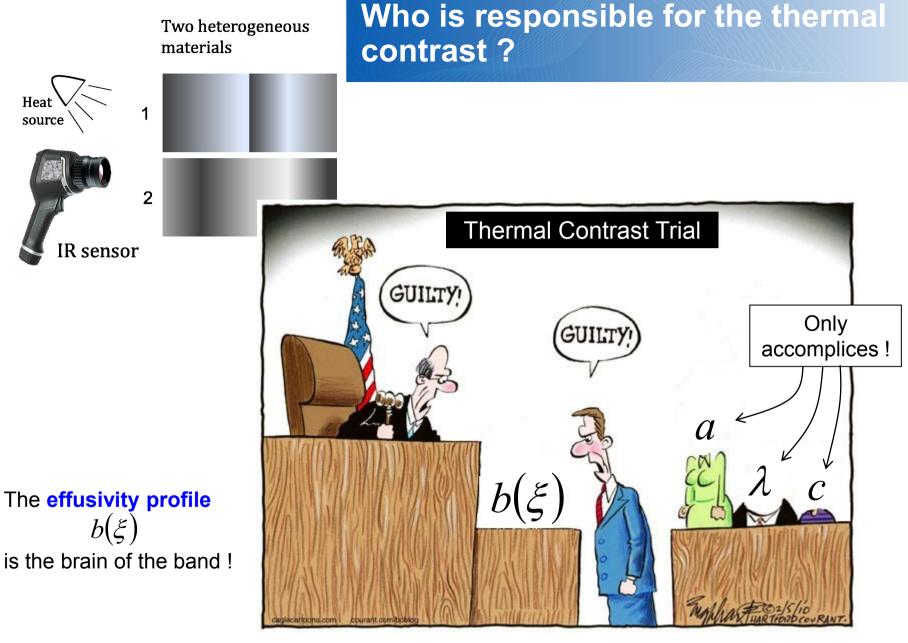
First step : a change of the independent-variable:

$$z \to \xi(z) \coloneqq \int_0^z \frac{du}{\sqrt{a(u)}}$$

Transformation involving the **diffusivity** profile: $a(z) := \lambda(z)/c(z)$







I apologize to B. Englehart for the misappropriation of his cartoon ...

Liouville transformation (1897). Second step

Second step : a change of the dependent-variable:

$$\begin{cases} \langle T \rangle \colon \quad \theta \to \psi \coloneqq \theta \, b^{+1/2}(\xi) \\ \langle \varphi \rangle \colon \quad \phi \to \psi \coloneqq \phi \, b^{-1/2}(\xi) \end{cases}$$

In both cases we obtain a Stationary Schrödinger Equation (SSE)

$$\psi'' = (V + p)\psi$$

"potential" $V(\xi) \coloneqq \frac{s''}{s}$

reduced 2nd derivative

The "metaproperty"
$$s(\xi)$$
 is defined by: $s \coloneqq \begin{cases} b^{+1/2} & ;\langle T \rangle - form \\ b^{-1/2} & ;\langle \varphi \rangle - form \end{cases}$

The TRICK: cast the SSE equation into two homologous SSEs

Recast the definition of the "potential"

$$V(\xi) := s''/s \qquad \Longrightarrow \qquad s'' = V(\xi)s$$

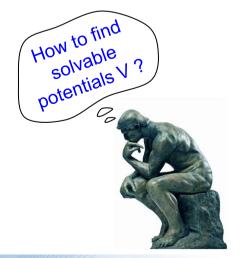
$$\psi'' = (V(\xi) + p)\psi$$
$$s'' = V(\xi)s$$

• the thermal field
$$\psi$$

• the meta-property s

satisfy

satisfy two **homologous** Schrödinger equations (i.e. with the <u>same potential</u>)

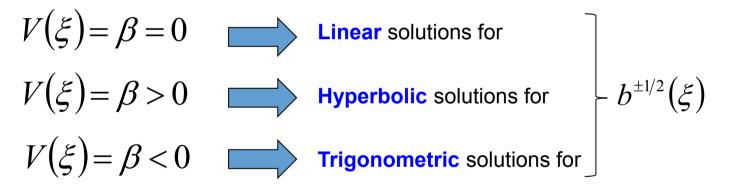


Constant potential \implies « Fundamental solutions »

$$\psi'' = (V(\xi) + p)\psi$$
$$s'' = V(\xi)s$$

$$\langle T \rangle - form: s = b^{+1/2} ; \psi = \theta b^{+1/2}$$

 $\langle \varphi \rangle - form: s = b^{-1/2} ; \psi = \varphi b^{-1/2}$

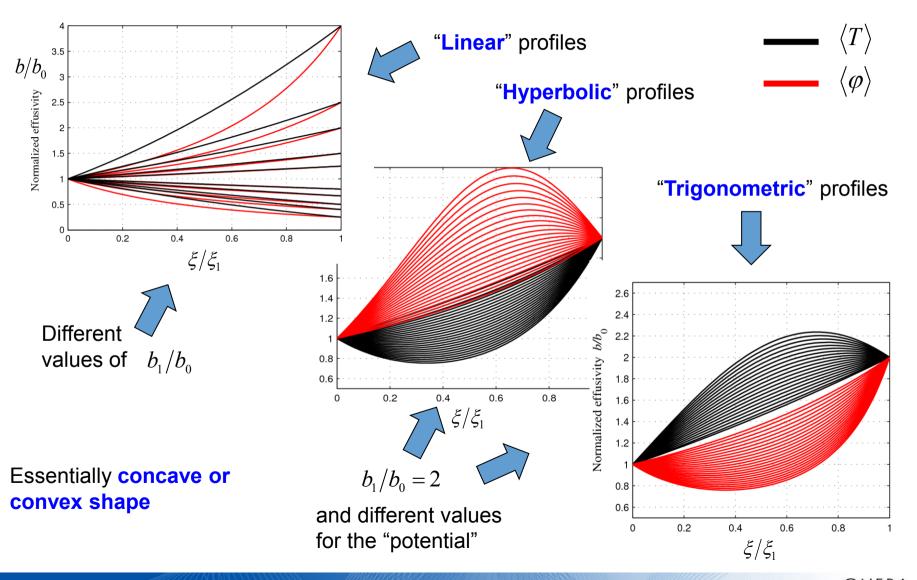


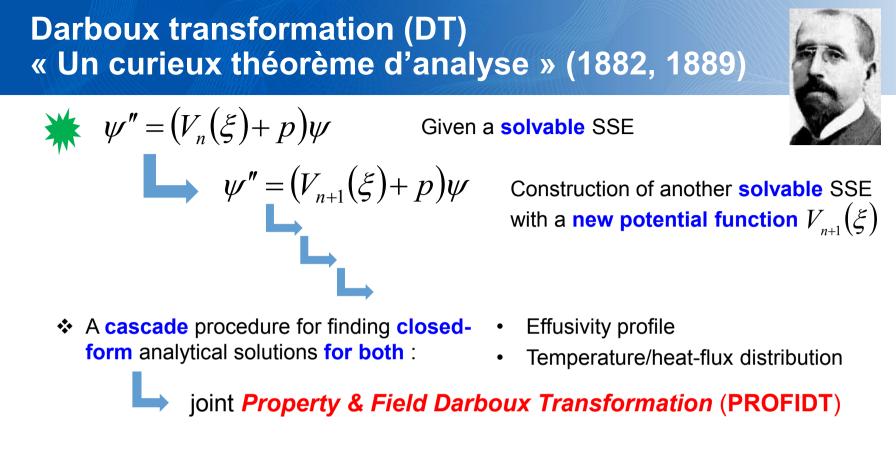
Solution for the field function:

$$\psi(\xi, p) \propto \begin{bmatrix} \cosh(\sqrt{p+\beta}\xi) \\ \sinh(\sqrt{p+\beta}\xi) \end{bmatrix}$$

Generalization of the particular case with constant diffusivity: Sutradhar A. et al., Comput. Meth. Appl. Mech. Engrg. (2004)

A few "fundamental profiles" of the effusivity





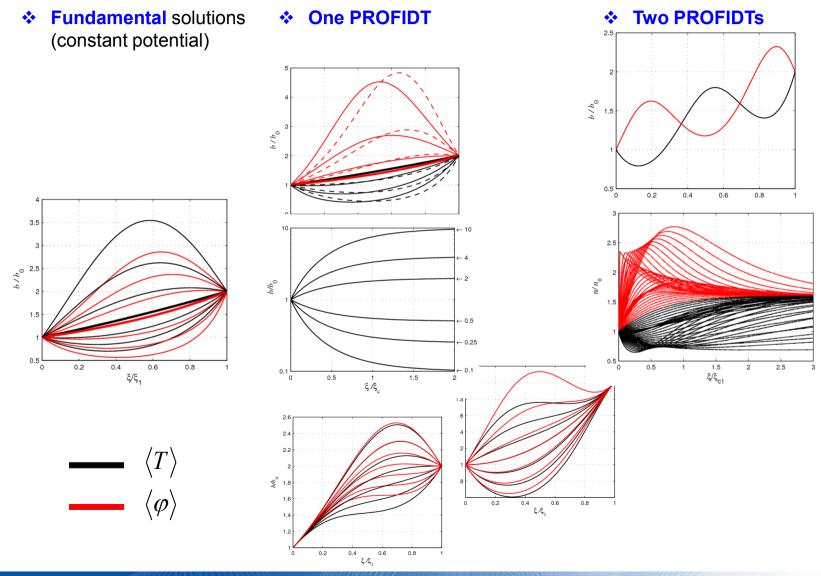
Up to 2 additional parameters per step

profiles with increasingly complex shape

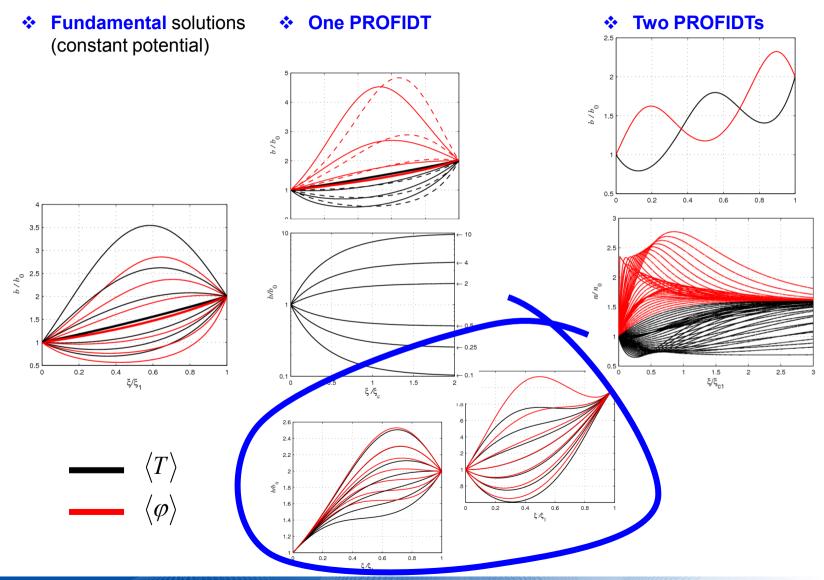
When starting with a constant seed-potential

all solutions involve only elementary functions

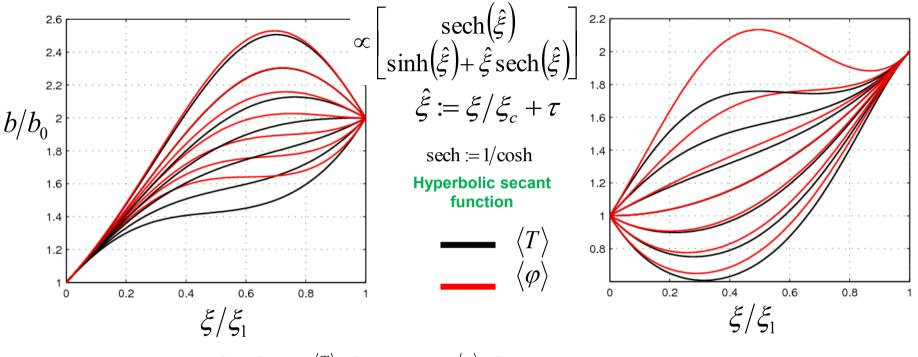
PROFIDT plenty of new solvable profiles



 PROFIDT plenty of new solvable profiles



One single PROFIDT with seed potential $V_0(\xi) = \xi_c^{-2} > 0$ and $p_1 = 0$. Profiles of $\operatorname{sech}(\hat{\xi})$ -type ([sek ksi hæt])

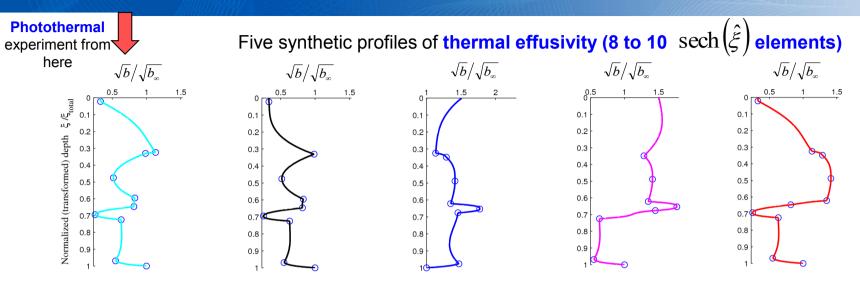


- Two sub-classes of profiles : $\langle T \rangle$ -form and $\langle \varphi \rangle$ -form
- Relatively simple quadrupole (only exp. functions)
- 4 adjustable parameters ξ_c, τ and two multiplicative factors
- Absolutely flexible : can accomodate any specification regarding

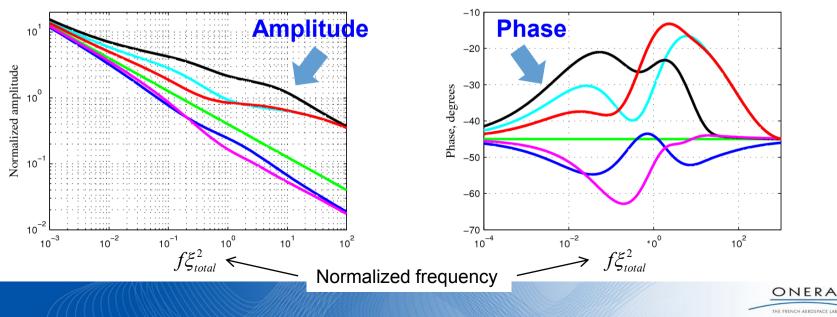
 Elementary bricks to perform
 spline interpolation (like cubic polynomials) two end-values two end-slopes

new concept of solvable splines

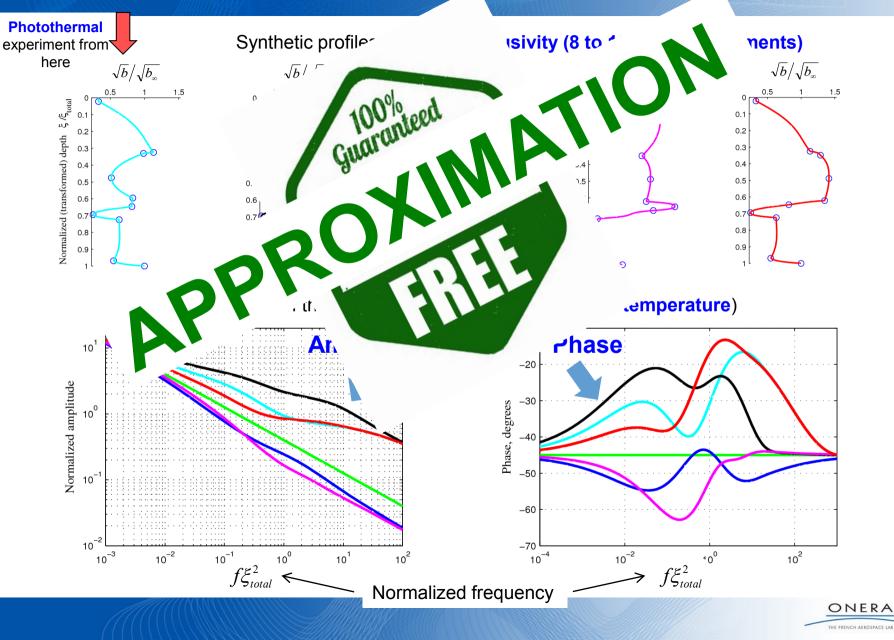
And now, a « light » example of synthetic profiles with the corresponding temperature responses



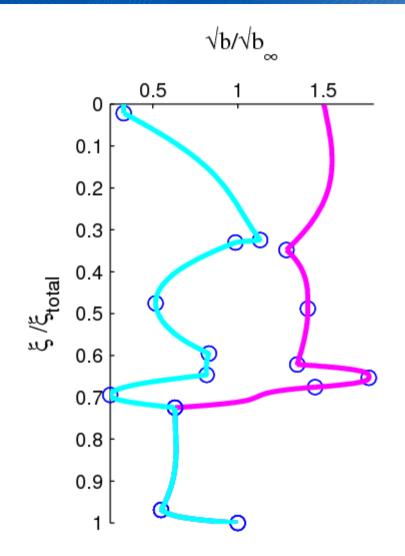
Spectra of the photothermal response (modulated surface temperature)

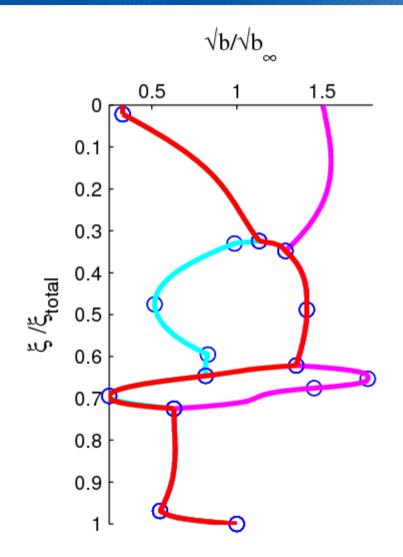


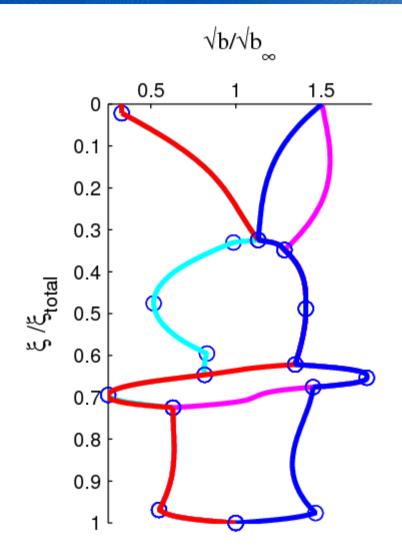
And now, a « light » example of synthetic profiles with the corresponding temperature responses



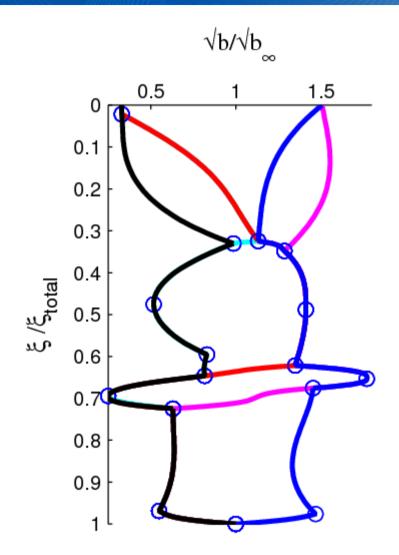








Examples of synthetic graded profiles

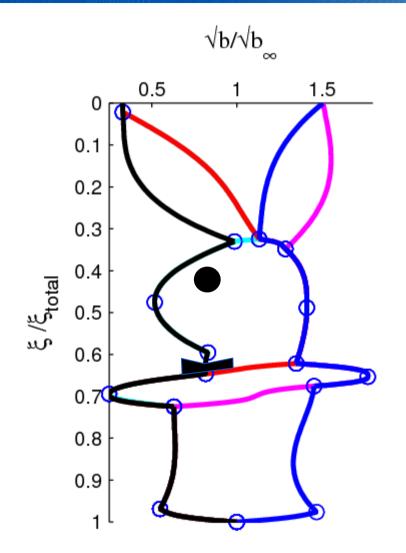


By superimposing all these synthetic profiles...

we come to a representation that :

• illustrates the versatility of the $\operatorname{sech}(\hat{\xi})$ profiles

Examples of synthetic graded profiles



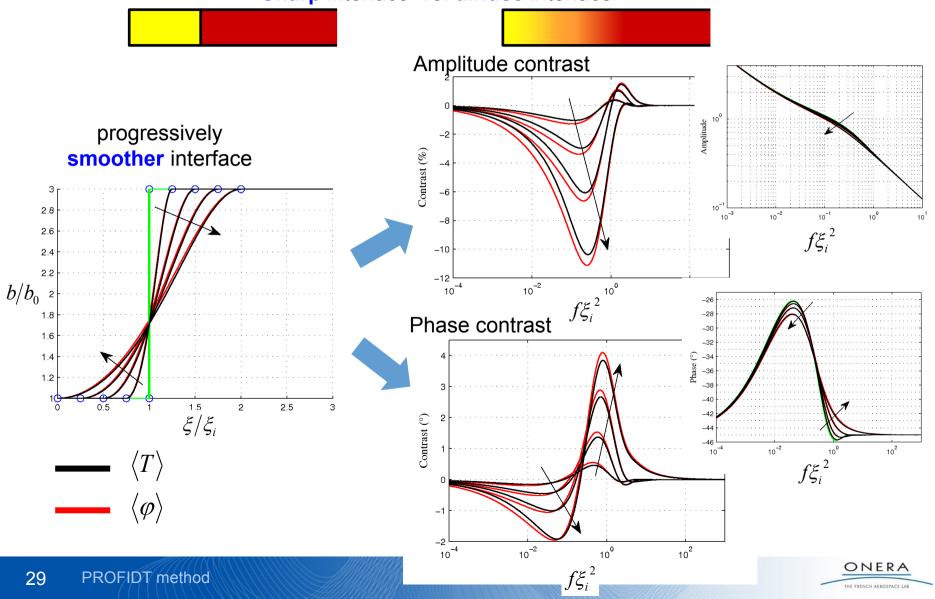
By superimposing all these synthetic profiles...

we come to a representation that :

- illustrates the versatility of the $\operatorname{sech}(\hat{\xi})$ profiles
- will allow you to easily memorize the name of these [sɛksi hæt] profiles

And now, a « serious » example : diffuse interfaces

Sharp interface vs. diffuse interface



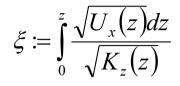
Modeling of the dispersion of pollutants in the atmosphere

$$U_{x}(z)\frac{\partial C}{\partial x} = \frac{\partial}{\partial z}\left(K_{z}(z)\frac{\partial C}{\partial z}\right)$$

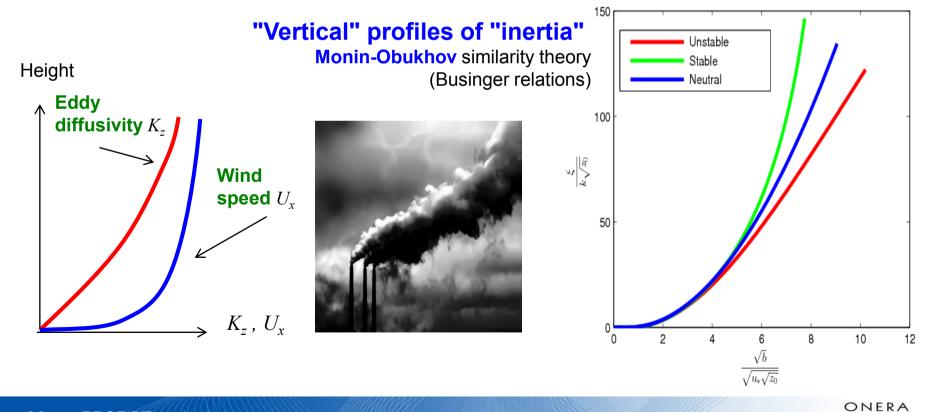
Essential parameter : the **« effective inertia » of the atmosphere** (with respect to contamination):

$$b \coloneqq \sqrt{U_x(z)K_z(z)}$$

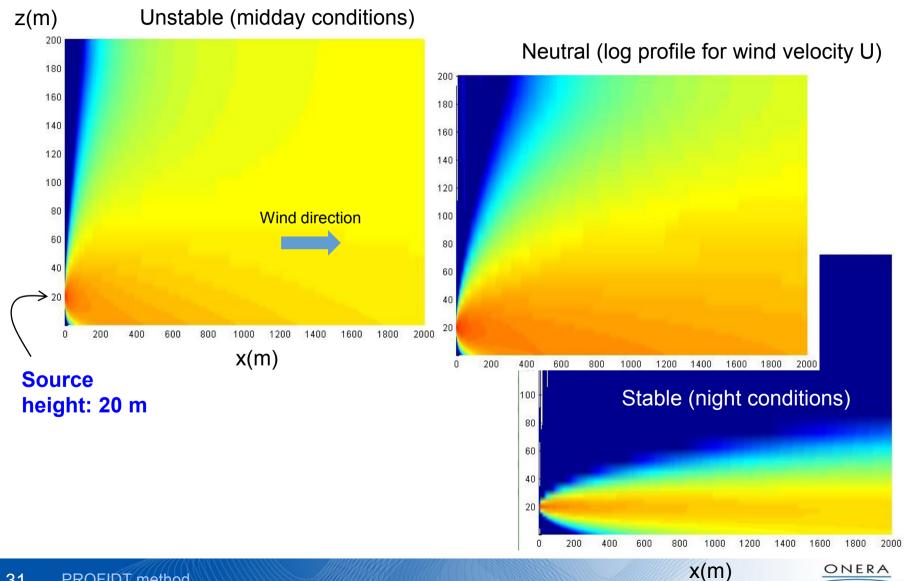
New independent variable:



THE FRENCH AEROSPACE LAB



x-z distribution of pollutant concentration depending on the atmosphere stability



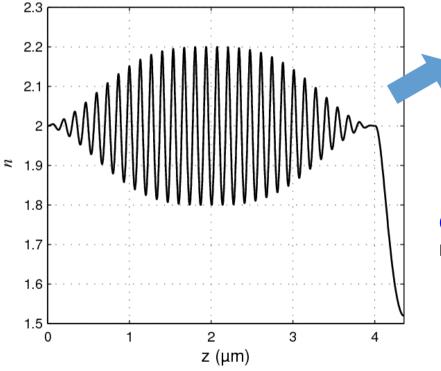
THE FRENCH AEROSPACE LAB

Applications in optics: filter design (dielectric thin films)

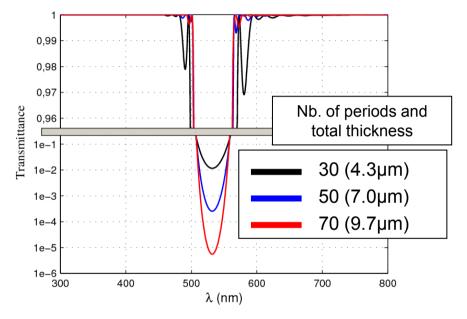
Rugate profile obtained by stitching **60** sech $(\hat{\xi})$ -type profiles of <E>-form (30 periods of 266nm optical thickness)

+ sinus-square apodisation

+ matching layer with 600nm optical thickness from n_0 =2 down to n_s =1.52 (substrate)



Transmittance spectrum of the notch filter



Only one transfer matrix per alternance (no need for finer discretisation)

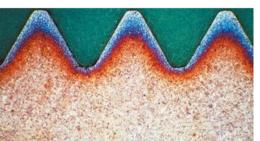
Other applications : chirped mirrors (fs lasers) Bragg filters, photonic crystals, matching layers, etc...

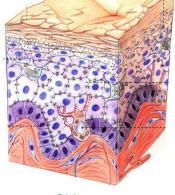
Thermal depth-profiling

Examples of « materials » with graded properties

Soil

SEM of Thermal Barrier Coating





Skin

different nature and scales !

1- heat the surface (pulse or modulated)

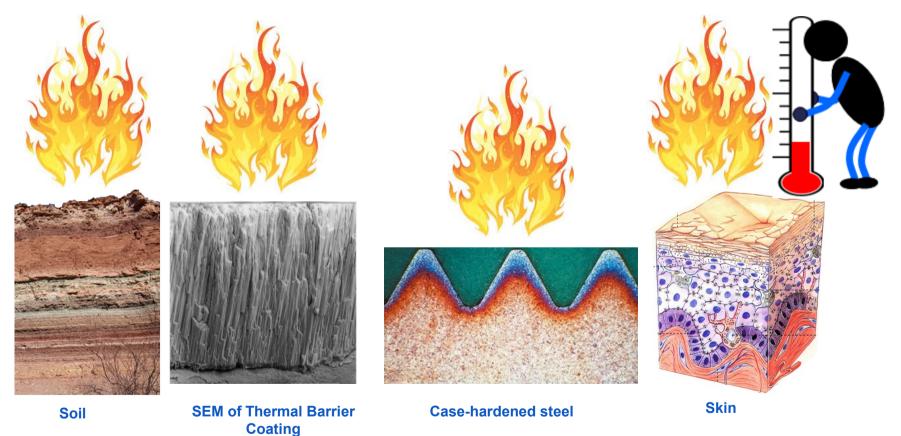
Soil

SEM of Thermal Barrier Coating

Case-hardened steel

Skin

2- measure the temperature response (while heating or just after)

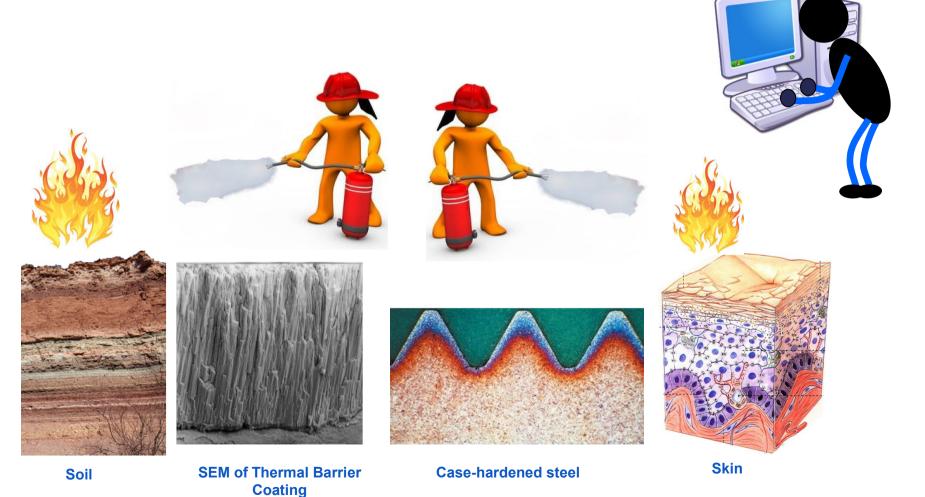


ONERA

THE FRENCH AEROSPACE LAB

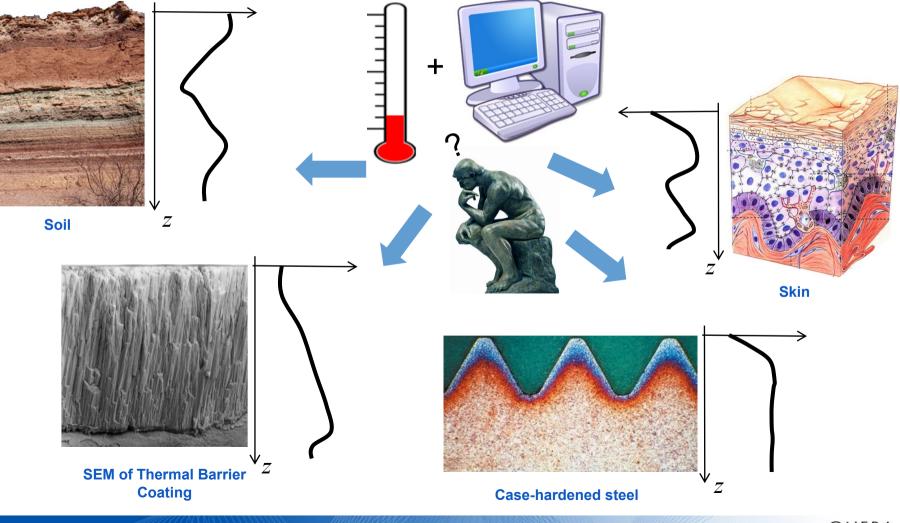
35 Benchmarking

3- (stop heating and) process the data for inversion



36 Benchmarking

4- identify the profile of the thermal property (...which one ?)



Inversion principle to evaluate the effusivity profile

1- Minimize the mismatch between the experimental data and the theoretical data as given by a model with continuous parameters

Cost function:

difference in temperature:

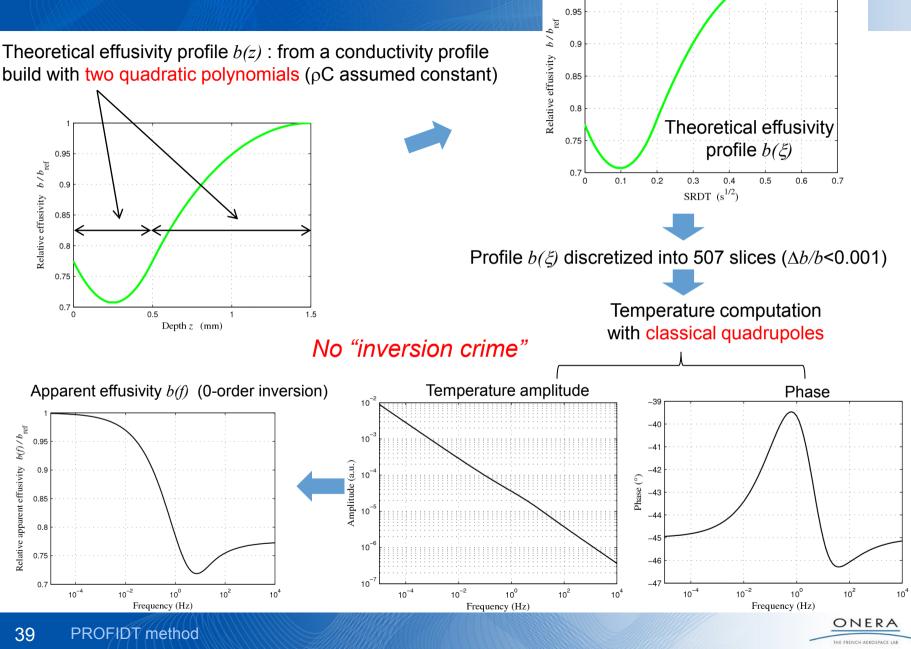
difference in apparent effusivity:

$$F = \sum_{i=1}^{n} \left(T_{\text{th}}(t_i) - T_{\exp}(t_i) \right)^2$$
$$F = \sum_{i=1}^{n} \left(\frac{1}{\sqrt{\pi t_i} T_{\text{th}}(t_i)} - \frac{1}{\sqrt{\pi t_i} T_{\exp}(t_i)} \right)^2$$

2- Add as many $\operatorname{sech}(\hat{\xi})$ -type profiles as necessary to reduce residues to an acceptable level (i.e. stop as soon as all non-stochastic features have disappeared)

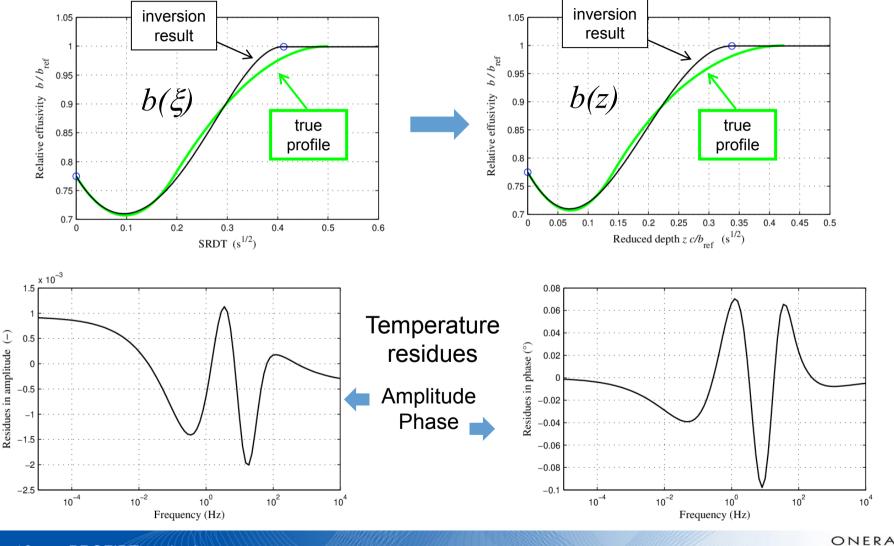
= parsimonious regularization

Inversion. Synthetic data



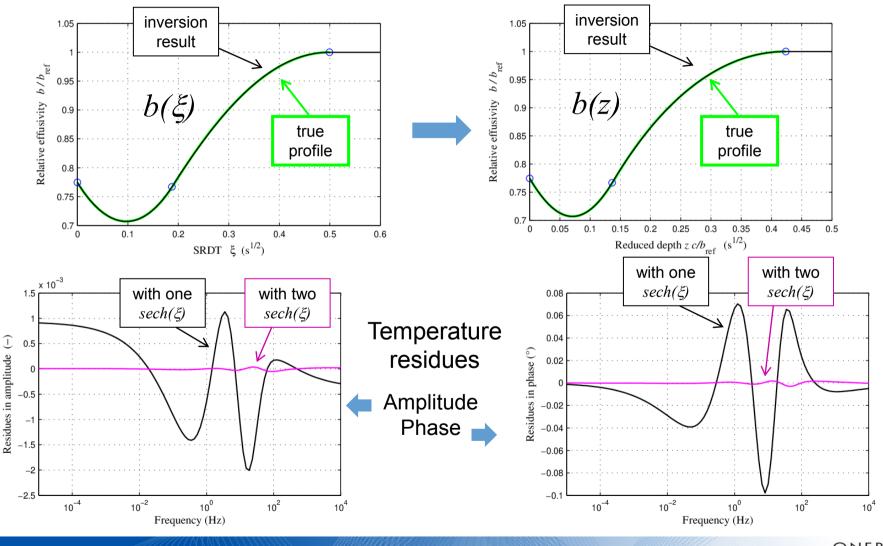
Inversion. Input data with no noise

Inversion attempt with *a priori* hypothesis on the unknown profile : **one** sech(ξ) layer + uniform bulk



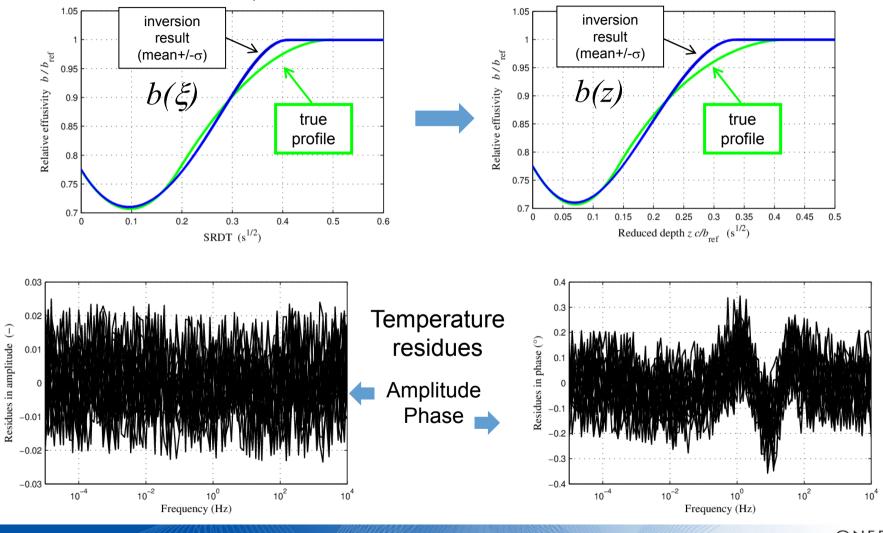
Inversion. Input data with no noise

Inversion attempt with a priori hypothesis on the unknown profile : two sech(ξ) layers + uniform bulk



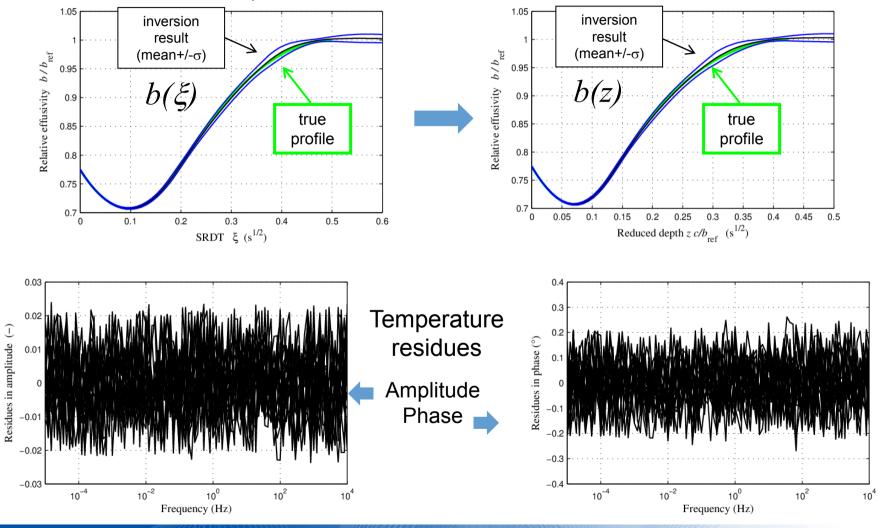
Inversion. Input data with noise (1% on amplitude, 0.1° on phase)

Inversion attempt with *a priori* hypothesis on the unknown profile : **one** $sech(\xi)$ **layer + uniform bulk** Statistics with 20 virtual experiments



Inversion. Input data with noise (1% on amplitude, 0.1° on phase)

Inversion attempt with *a priori* hypothesis on the unknown profile : two $sech(\xi)$ layers + uniform bulk Statistics with 20 virtual experiments



Thank you for your attention

 J_{Ω}

Everything you always wanted to *know* about profiles (but were afraid to ask), is in:

 $\operatorname{sech}(\hat{\xi})$

Krapez, *Int. J. Heat Mass Tr.*, 99, 485 (2016) Krapez, *J. Mod. Opt.*, 64, 1988-2016 (2017) Krapez, *Int. J. Thermoph.*, 39:86 (2018) Krapez, *J. Opt. Soc. Am.*, 35, 1039 (2018)

