

FLOW BOILING IN MICROGRAVITY: APPLICATION TO COOLING ELECTRONIC COMPONENTS ON SATELLITES

Catherine Colin, Julien Sebilleau, Wladimir Bergez,

Marine Narcy, Michel Lebon, Esli Trejo, Erik de Malmazet

MOTIVATION AND CONTEXT

Studies of two-phase flows with phase changes motivated by nuclear safety issues (Critical Heat Flux, Reactivity Insertion Accidents)

ESC-B/Vinci Engine

and space applications re-ignition of cryogenic engines of the launchers (quenching, flow boiling)

- thermal control of electronic components in satellites

DESIGN OF A TWO-PHASE LOOP FOR COOLING ELECTRONIC COMPONENT OF A SATELLITE

MATRAS Programme of FNRAE (2009-2013) with THALES ALENIA SPACE

DESIGN OF A TWO-PHASE LOOP FOR COOLING ELECTRONIC COMPONENT OF A SATELLITE

Modelling of the pressure drop and heat transfer in the whole panel in microgravity and ground conditions \rightarrow optimisation of the design 3 tubes of 12mm diameter in parallel (60m) \rightarrow extraction of 3.4 kW

→ development of a 1D model
Project of INP-N7 students
→ Building of an experimental set-up for ground and microgravity experiments

ESA MAP PROJECT MULTISCALE ANALYSIS ON BOILING (2008-....)

Boiling investigation at the bubble scale (experiments, DNS, ..) \rightarrow RUBI experiments on the ISS (2019)

Flow Boiling in tube in microgravity

Catherine Colin, IMFT, Univ. Toulouse (FR)	Peter Stephan, TTD, TU Darmstadt (D)	Paolo Di Marco, Univ.Pisa (I)
Giuseppe Zummo, ENEA, Roma (I)	David Brutin, Lounes Tadrist, IUSTI, Univ. Aix Marseille (FR)	Pierre Colinet, TIPs, Univ. Libre de Bruxelles (B)
John <u>Thome</u> , EPF Lausanne (CH)	Marc Miscevic, Pascal Lavieille, LAPLACE, Univ. Toulouse (FR)	Thodoris Karapantsios, AUTH, <u>Thesaloniki</u> (G)
Franck Dubois, Carlo Iorio, MRC, Univ. Libre de Bruxelles (B)	Iztok Golobic, LTT, Univ. Ljubliana (SL)	Oleg Kabov, KIT, Novosibirsk (RU)
Jungho Kim, Univ. Maryland (US)	Philipp Behruzi, Airbus/ DS, Bremen (D)	Julien Hugon, Anthony Delmas, TAS, Cannes (FR)

FLOW BOILING IN TUBE

• EXPERIMENTAL SETUP

• MEASUREMENT TECHNIQUES

- VOID FRACTION
- WALL SHEAR STRESS
- HEAT TRANSFER COEFFICIENT

• RESULTS:

• CONCLUSIONS

EXPERIMENTAL SETUP

- Designed and built for two-phase flows studies with phase change 0 under microgravity conditions.
- BRASIL: Boiling Regimes in Annular and Slug flow In Low 0 gravity
- G=50-300 kg/m²/s 0
- x=0-0.6
- ΔT (subcooled) <10°C 0
- \circ q= 0.5-4 W/cm²
- ID=6 mm0
- Fluids HFE7000 HFE7100 0

EXPERIMENTAL SETUP

TEST SECTION: SAPPHIRE TUBE

Sapphire tube:

- 200 mm long sapphire tube
- Semi-transparent with an ITO coating for Joule effect heating
- Wall temperature measured by Pt100 probes
- HFE 7000 ->T_{sat}=34°C @ 1 bar
- Pressure drop measurements →wall shear stress
- Capacitance probes \rightarrow void fraction
- Thermocouples \rightarrow liquid enthalpy and quality x

9

copper electrodes

RESULTS: FLOW REGIMES

 $G=200 kg/m^2/s$ $G=50 kg/m^2/s$ $2 W/cm^2$ 2 W/cm² $\Delta T=10^{\circ}C$ $\Delta T=10^{\circ}C$

4 W/cm² T_{saturation}

Microgravity

G=200kg/m²/s G=200kg/m²/s G=50kg/m²/s 2 W/cm² 2 W/cm² $\Delta T=10^{\circ}C$ $\Delta T=10^{\circ}C$

G=200kg/m²/s

4 W/cm²

T_{saturation}

Influence of gravity:

- Size and shapes of bubbles
- At detachment larger bubble diameter is observed in microgravity.
- Liquid film in annular flow seems smoother

Normal gravity

TEST SECTION: SILICON TUBE

Silicon:

- 100 mm long sapphire tube
- Transparent to the IR camera doped for Joule effect heating
- Wall temperature measured obtained from IR camera visualization
- HFE 7100 ->T_{sat}=61°C @ 1 bar
- ESA's High Resolution IR camera

HEAT TRANSFER COEFFICIENT IN SLUG FLOW

RESULTS: VOID FRACTION NORMAL VS MICROGRAVITY

Evolution of the void fraction as a function of mass flow rate (kg/m²/s)

Influence of gravity: - The liquid film is thicker in 1g.

INTERFACIAL FRICTION FACTOR FOR ANNULAR FLOW

INTERFACIAL FRICTION FACTOR FOR ANNULAR FLOW

HEAT TRANSFER COEFFICIENT

Deterioration of the heat transfer in microgravity.

- At lower quality the influence of gravity can be seen,
- At higher quality good agreement with classical correlations.

18

CONCLUSION

- Study of flow boiling in tube → expertise in specific measurements technics (Thermocouples, Infrared camera, capacitance probes, pressure drops, high-speed video recording and image processing) and in 1 dimensional modelling of two-phase flows.
- Close connexions with industrial partners:
 Thales Alena Space for the design of two-phase loop for cooling electronic devices
 - Air Liquide : heat and mass transfers in space launchers
 - Snecma moteurs & CNES: chill down of tubes before the re-ignition of space launcher engine (Ariane V programme)
 - IRSN: rapid transient boiling in nuclear reactors (RIA)

Université de Toulouse

THANK YOU FOR YOUR ATTENTION

• Contact: colin@imft.fr

20