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Abstract. The methods for solving inverse problems must propose some consistent solution 
despite it is ill-posed. Regularization is one of the important technic that yields the 
stabilization of the solution. We present in this lecture some generic examples as well as the 
main concepts within the linear estimation frame for the OLS estimator already studied in 
Lectures 1 and 3. The Singular Value Decomposition of the sensitivity matrix is used in order 
to analyse the solution. For such finite dimensional problems, the ill-posed behavior is indeed 
turned into a bad-conditioned matrix computation. 
 
 
1. Introduction 
 

The reader could see in Lecture 1, “Getting started with problematic inversions with three 

basic examples”, some examples of generic inverse problems, which gave rise to envision 

the main characteristics that make difficult to solved them. In Lecture 3, “Basics for linear 

inversion, the white box case”, the concepts and resolution of linear parameter estimation 

problems was presented, when using a direct model which computes the output from the 

knowledge of the input and some inner parameters used in the direct model. 

The parameters to be recovered may be as well the passive structural parameters of the 

model (model identification), the parameters relative to the input variables, initial state, 

boundary conditions, some thermophysical properties, calibration, etc… For any of these 

cases in consideration, the output of the model can be properly computed if all the required 

information is available.  

 

The problem is said to be well-posed, if, according to Hadamard (Hadamard 1923), three 

conditions are satisfied, such as 

 

1- A solution exists 
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2- The solution is unique 

3- The solution depends continuously in the data 

 

Problems that are not well-posed in the sense of Hadamard are said to be ill-posed 

problems. Note that the simple inversion of a well-posed problem may be either a well-posed 

or an ill-posed problem. 

 

The example of 1D steady heat conduction in a wall discussed in Lecture 1, shows how 

the interpolation problem (that is the computation of T(x) between the sensor location and the 

well-known boundary condition) is a well-posed problem, while the extrapolation problem 

(computation of T(x) between the unknown boundary condition to be retrieved and the 

sensor location) is an ill-posed problem, since the estimation error may increase drastically. 

 

The example of searching the slope of a line with two or more data points, such as 

discussed in Lecture 3, may be either a well-posed or an ill-posed problem: 

- a unique and stable solution exists if all the data points fit on the same line (no noise 

in the data), and the time zero has not been chosen for some noisy data point. In that 

very specific case, the problem of finding the slope is well-posed. 

- If, due to the noise in the measurement points, the data do not fit on the same line, a 

solution does not exists and the corresponding inverse problem of finding the slope is 

ill-posed. 

- If the values of time for taking the measurements are not properly chosen (mostly 

close to zero), the solution is unstable, since the errors in the measurement may 

increase drastically – see the absolute and relative amplification coefficients such as 

defined in Lecture 1, and the corresponding inverse problem is ill-conditioned and 

may be considered as  ill-posed. 

 

The parameter estimation problem stated by finding the vector of parameters by matching 

the measurements to the model is most often an ill-posed problem, since it is generally over-

determined (because the number of measurements m is greater than the number of 

parameters n), and has no solution because Im( )y S . When the system is under-

detemined ( m < n), it is also ill-posed because there is an infinity of solutions. Moreover, 
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when m = n, the problem may be well-posed if it were stable, but may also be unstable due 

to the effect of noise in the data.  

 
In the present lecture, we will consider discrete inverse problems, where the number of 

parameters to be estimated is finite. When the magnitudes to be estimated are functions 

instead of discrete values, the corresponding problem is turned out to be a continuous 

inverse problem which may be fully ill-posed. However, in many cases, the searched 

functions can be parametrized and conveniently approximated by a discrete inverse problem. 

It was typically the case for the 1D transient inverse heat conduction example in section 4 of 

Lecture 1, where the wall heat flux was to be estimated as a function of time. The heat flux at 

each time ti is represented by a stepwise function qi.  

 
The main challenge for such discrete function estimation problem is that the number of 

unknown is almost the same as the number of measurements, and the least squares 

approach is turned out to be quite close to an exact matching procedure where only one 

observation is available for one estimated value. In this case the solution is highly sensitive 

to any ill-conditioned behaviour of the sensitivity matrix.  
 
 
2. Some examples of typical ill-posed problems  

 

We give hereafter some typical examples of ill-posed problems, such as derivation and  

deconvolution of experimental data. These examples are typical of the case of a 

parameterized function estimation. Instead of having a low number of parameters to be 

estimated with a high number of measurements, as for the example in Lecture 3 of 

estimating the slope and intercept of a linear profile, the number of parameters to be 

estimated is herein very large and is quite of the same order as the number of observable 

data y, which makes the problem highly sensitive to noise. Unfortunately, in this case the 

inversion is often also amplifying the measurement noise. 

 

2.1 Derivation of a signal 

 

The derivation of a signal is often required for data processing. It is the case of time 

dependent functions, for instance, when deriving the time evolution of the mass of a product 

during drying or deducing the velocity of a body from the measurement of its position. An 
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usual case in heat transfer is problem of estimating the heat flux q (t) exchanged by a body 

with uniform temperature T (t) and volumetric heat capacity C (lumped body approximation). 

The heat balance can be written as 

( )dT
C q t

dt
  with the initial condition 0T0t     (8.1) 

 

An inversion procedure is thougth, for recovering an estimation of q (t) from the measured 

temperature values y(ti), for different levels of the measurement noise, based on the following 

steps: 

 
a. Choose some heat flux function, such as ( ) 2q t t (arbitraly chosen here) 
b. Compute the corresponding analytical solution ( ) /2T t t C . 
c. Add some random error, in order to simulate some experimental data, such as 

( ) ( ) ( )y t T t t   

d. Retrieve the estimation by discrete derivation of the signal 
Δ y dˆ( )
Δ d

T
q t C C

t t
   

e. Repeat for different values of the Signal-to-Noise Ratio (characterized by different levels of 
std) 
 

The results are depicted in Figure 1, assuming that 1C  . When the standard deviation 

(std) of the error is low, the heat flux is conveniently retrieved (Fig. 1a). For case (b), the 

noise on the signal y remains very low, in the sense it is still almost not visible in the 

corresponding curve. However, the heat flux is poorly computed. Increasing the level of 

noise, such as in Fig. 1c, where the std is 0.9 K, results in a drastically poor computation of 

the heat flux. Thus, the derivation of an experimental signal is an ill-posed problem, due to its 

unstable nature. The numerical derivation yields the computation of the difference of 

successive measurements, divided by the time step. The ill-posed character of the problem 

is more important as the time step decreases. 
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(a) 

 
(b) 

 

0 1 2 3 4 5 6 7 8 9 10
-20

0

20

40

60

80

100

time (s)

T
 a

n
d
 q

std =0.03 K

computed temperature T

noisy signal y

known q

retrieved by derivation of y

0 1 2 3 4 5 6 7 8 9 10
-20

0

20

40

60

80

100

time (s)

T
 a

n
d
 q

std = 0.3 K

computed temperature T

noisy signal y

known q

retrieved by derivation of y

0 1 2 3 4 5 6 7 8 9 10
-20

0

20

40

60

80

100

120

time (s)

T
 a

n
d
 q

std = 0.9 K

computed temperature T

noisy signal y

known q

retrieved by derivation of y



 

 

 

 

Metti 6 Advanced School: Thermal Measurements and Inverse Techniques            Biarritz,  March 1- 5, 2015㔀 
 

 Lecture 8: Inverse problems and regularized solutions – page 6 

(c) 
 

Figure 1 – Derivation of an experimental signal (a) std = 0.03 K (b) std = 0.3 K (c) std = 0.9 K 
 
 
2.2 Deconvolution of a signal 
 
The deconvolution of a signal is also an operation often required when processing 
experimental data, for instance when searching the transfer function of a system or sensor, 
in image processing, optics, geophysics, etc... We give again the heat transfer example of 
some heat capacity exchanging with convective heat losses with the surrounding medium, 
such as 
 

( )dT
C q t hT

dt
    with the initial condition 0T0t     (8.2) 

 

We assume here that 1, 0C T   and that the boundary surface of the body is 1. 
Solving this equation by using the Laplace transform of the temperature and heat flux and 
inverting yields the solution in the form of the following product of convolution: 

0

( ) ( )exp( )
t

T t q t h d         (8.3) 

The same approach as in previous example is proposed herein, such as 
 
a. Choose some heat flux function, such q(t) 
b. Compute the corresponding analytical solution T(t) as the convolution product above.  
c. Add some random error, such as ( ) ( ) ( )y t T t t   
d. Retrieve the heat flux by inverting the product this signal (deconvolution) 
e. Repeat for different values of the Signal-to-Noise Ratio (different levels of std) 
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Figure 2 – Effect of the noise level on the deconvolution of a signal 

 
The results are depicted in Figure 2. For a low standard deviation of the error (std = 0.03 K), 
the heat flux is conveniently retrieved by the deconvolution operation. when increasing the 
noise level (std = 0.3 K), the drastic amplification of the errors in the deconvolution operation 
makes the result absolutly inaccurate. The visual effect of the noise level in the curves where 
the temperature outputs are drawn shows that the increase of noise between the two 
situations which makes the solution accurate or unavailable is not significative. It is apparent 
with this example that the deconvolution of an experimental signal may be an ill-posed 
problem, depending on the functional form of the impulse response, due to its unstable 
nature. 
 
 

3. Structure of the linear transform and stability 

 

3.1 Singular Value Decomposition of the sensitivity matrix 

It was already discussed that the existence, unicity and stability of the solution of the discrete 

linear parameter estimation problem, such as defined in Lecture 3 depend of the 
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characteristics and structure of the rectangular sensitivity matrix S. Moreover, when the 

overdetermined problem y = S x is turned into the least squares problem given by the normal 

equations it appears that the structure of the square matrix tS S  is also important for the 

propagation of the errors between the observed data and the parameters. The anatomy of 

such linear transformation is very clearly discussed in the text of S. Tan & C. Fox (Tan 2006). 

One approach of interest in order to analyze this problem is to consider the Singular Value 

Decomposition of S (SVD). We assume herein that m > n (overdetermined system, there is 

more data than parameters) and that S has only real coefficients. 

The SVD of the matrix S is then written as 

1
t t

n

w

w

   
   

   
   

       
   

   
         

      

U W V VS U
0

0

 (8.4) 

where  
 
- U is an orthogonal matrix of dimensions (m, n) : its column vectors (the left singular vectors 
of S have a unit norm and are orthogonal by pairs : n

t IUU  , where nI  is the identity matrix 
of dimension n. Its columns are composed of the first n eigenvectors Uk, ordered according 
to decreasing values of the eigenvalues of matrix tSS . Let us note that, in the general case, 

m
t IUU  . 

 
- V , a square orthogonal matrix of dimensions (n, n), : n

tt IVVVV  . Its column vectors 
(the right singular vectors of K), are the n eigenvectors Vk, ordered according to decreasing 
eigenvalues, of matrix  tS S ; 
 
- W , a square diagonal matrix of dimensions (n x n), that contains the n so-called singular 
values of matrix S, ordered according to decreasing values : nwww  21 . The 
singular values of matrix S are defined as the square roots of the eigenvalues of matrix tS S . 
 
In Lecture 3, the Singular value Decomposition of the reduced sensitivity matrix was used to 
prove that the condition number is a criterion that can be used to measure the degree of ill-
posedness of the OLS estimator, through the analysis of the singular values of the sensitivity 
matrix, which is independent in that case of the noise level.  
 

As previously seen in Lecture 3, the Ordinary Least Squares solution is obtained by 
minimizing the distance between the direct model Sx and the data y, which is done by  the 
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orthogonal projection of the data on the space spanned by the column vectors of S.  This is 
equivalent to minimize the objective function 

   
2( ) t

OLSJ     x y Sx y Sx y Sx    (8.5) 
 

The minimization of ( )OLSJ x yields the OLS estimator, computed with Eq. (3.24) in Lecture 

3. Applying the singular Value Decomposition to the sensitivity matrix yields 

  yUWVySSSx ttt
OLS
ˆ 11 

     (8.6) 

In this case, if the standard statistical assumptions stand (see Lecture 3), the covariance 
matrix of the OLS estimator can be written as 
 

2 2cov( ) t


x V W V      (8.7) 

 
Eqs. (8.6) and (8.7) are valid if the sensitivity matrix S  is of full rank, which means that its 
smaller singular value nw  is strictly positive. The condition number is then defined as 

1cond( )
n

w

w
S       (8.8) 

3.2 Spectral analysis of the OLS estimator  

Applying SVD to the normal equations (see Eq. (3.23) in Lecture 3) in order to find the OLS 

estimator in the diagonal basis yields 

ˆ ˆt t t t t

OLS OLS  S Sx S y V WU UW V x V WU y    (8.9) 

where the estimation problem can be reconsidered now with the new parameter vector 
tb V x  and a new observable vector : tz = U y , such as 

ˆ
OLS Wb z      (8.10) 

The unicity of the solution is confirmed here when the sensitivity matrix S  is of full rank, i.e. r 

= n, which is possible only if m n  (more data than parameters). When r < n, the matrix has 

not full rank, and the parameters to be estimated must be reduced, or some parameters must 

be determined in an arbitrary form. 

The linear transformation of the data y also yields a new covariance matrix associated to the 

observable measurement noise. Hopefully, we can note that this operation does not affect 

the variance of the error of the transformed signal z (here for the standard assumptions): 

    2 2cov covt t

    z U y U U U I     (8.11) 

Hence the covariance matrix is computed by   
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  2 2ˆcov OLS W
b  or   

2

2
1

2

2

. 0

ˆcov . . .

0 .

OLS

n

w

w









 
 
 
 
 
 
  

b  (8.12) 

The above equation shows that an effect of noise amplification appears due to the fact that 

the eigenvalues have a wide range of order of magnitude. It is of particular interest to note in 

Eq. (8.12) that the covariance matrix of the estimator in the diagonal basis is linking the 

square of the singular values to the variance of noise, that is to the level of uncertainty in the 

measurement errors. 

A small pertubation applied to a single component k of z, such as 

kz  kz U      (8.13) 

yields the following variation to the OLS estimator 

ˆ k
OLS

k

z

w


  kb V      (8.14) 

which implies a relative variation corresponding to 

ˆ 1OLS

kw






b

z
     (8.15) 

Thus the singular values indicate how the same perturbation yields different effects on the 

components of the estimator. Moreover, this relative variation may increase drastically when 

the singular values are close to zero. The relative variation between two components of 

respective index k and h is given by the ratio k

h

w

w
. Hence the maximum relative variation 

factor is obtained between the first and the last component, such as 1

n

w

w
, which is condition 

number of the sensitivity matrix, as seen in Eq. (8.8). If cond( )S  is not too large, the 

problem is said to be well-conditioned and the solution is stable with respect to small 

variations of the data. Otherwise the problem is said to be ill-conditioned. It is clear that the 

separation between well-conditioned and ill-conditioned problems is not very sharp and that 
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the concept of well-conditioned problem is more vague than the concept of well-posed 

problem.  

3.3 Example of a simple ill-conditioned matrix 

1

2

1 1 1
1 1.01 1

p

p

    
    

    
 the inversion yields 1

2

1
0

p

p

   
   
  

 

Let’s give a perturbation of 1% on the second data point, such as 

1

2

1 1 1
1 1.01 1.01

p

p

    
    

    
  the inversion yields 1

2

0
1

p

p

   
   
  

 

Hence the resulting perturbation on the solution of the matrix inversion  is surprisingly as far 

as possible from the original solution. The solution is quite unstable. Note inmediatly that the 

determinant is close to zero.  

The eigenvalues are (2.005, 0.005), and the condition number is 402 >> 1. 

 
4. Regularization 
 
In the previous section it was shown how the ill-posed estimation problem is turned into an ill-
conditioned problem by the least squares approach. Equations. (8.6) and (8.7) show that the 
unstable behavior of the pseudo-inverse of the sensitivity matrix can be straightly addressed 
by the means of the singular values diagonal matrix W. Regularization is relative to the 
search of some acceptable solution, by reducing the effect of measurement errors on the 
estimate. Several approaches may be used for this purpose. The main idea is to reduce the 
effect of the “small” singular values on the obtained solution, while trying to avoid that this 
“smooth” solution be quite different than the true-but-unknown solution. The two main 
approaches are 
  

(i) Apply some prior information as a constraint 
The most usual methods are truncation of the diagonal basis and the 
parametrization of the solution (reduction of the number of parameters)  
 

(ii) Apply some penalization to the objective function 
Some weighted prior information is included in the objective function 

 
4.1 Truncated SVD 
  
TSVD of order  is obtained when replacing in Eq. (8.6) the inverse of the matrix W  by the 
truncated inverse 1

W where the smaller singular values are removed (their inverse put to 
zero), such as  
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





























0

00
1

01
1

2

1

1





 w/

w/

w/

W   (8.16) 

  
The regularized TSVD estimator is: 
 

yUWVx tTSVDˆ 1      (8.17) 
 
Note only 1



W can be computed, and not the matrix W  since an infinite value has been 
attributed to the n  smallest singular values nn w,w,,w,w 121   . 
 
Equation (8.17) may be written using the left and right singular column vectors kU  and kV  

defined in section 1, such as 
 

 
1

1ˆ TSVD t

k k

k kw







 x U y V     (8.18) 

 
The discrepancy principle can be adopted for the choice of the truncation order  : 

 

2
1

2 )(and)(   mˆJmˆJ TSVDTSVD  xx    (8.19) 
 
4.2 Tikhonov regularization of zero order 
 
The important idea of introducing some regularization by some penalization of the objective 
function is that we may include some prior knowledge relative to the parameters to be 
retrieved. For instance, the parameter should not be very far from a reference value, or the 
time history of the function to be estimated should be smooth… A widespread regularization 
method by penalization of the OLS objective function is Tikhonov regularization. We present 
herein the Tikhonov regularization of order zero, which yields the minimization of the 
following objective function: 
 

       
22( )

tt

prior prior priorJ           x y Sx x x y Sx y Sx x x x x        (8.20) 
 
where the real positive number is the regularization parameter. The value 0  yields the 
OLS solution where no regularization applies. Increasing  tend to force the solution to be 
close to the prior estimate priorx   
 
Equation (8.20) is solved by: 
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   
10ˆTik t t

n prior  


  x S S I S y x     (8.21) 
 
Applying SVD to the sensitivity matrixS  and using n

t IVV   yields: 

   
10 2ˆTik t t

n prior  


  x V W I WU y V x    (8.22) 
It is quite apparent in Eq. (8.22) how the regularization parameter will cancel the noise 
amplification effect of the smallest singular values in the diagonal matrix  2

nW I to be 
inverted. Nevertheless, the cost of this stabilization  is also obvious, since the non-zero 
regularization parameter value yields that the information of the experimental data in y is 
biased by the prior information ( priorx ). Hence let’s point out that the regularized solution 
aims to balance accuracy and stability requirements. 
 
4.3 Examples: Regularization for derivation and deconvolution  
 
The experimental derivation and deconvolution examples given in section 2 by Equations 
(8.1) and (8.2) can be computed as linear estimation problem. These function estimation 
problem are highly sensitive to noise, since the number of unknown matches the number of 
function components to be retrieved (exact matching: the sensitivity matrix is a square 
matrix). Equation (8.22) is used for these two examples for different values of the 
regularization parameter. 
 

 
Figure 3 – Derivation and inversion with Tikhonov regularization 
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Figure 4 – Deconvolution and inversion with Tikhonov regularization ( 2 0.01  ) 

 
Figures 3 and 4 show how increasing the value of the regularization parameter has a positive 
effect regarding the stabilization of the heat flux time history to be retrieved, while this effect 
is counter balanced by the apparition of a bias with the original solution. It is of great interest 
to point out in Figure 4 that the correct possible values of the regularization parameter µ are 
quite close to the variance of the measurement error (here 2 0.01   K): stabilization is 
related to the signal-to-noise ratio.  
 
The regularization of deconvolution Matlab code is given in appendix 1.  
 
4.4 The regularization parameter  
 
The convenient choice of the value of the regularization parameter is a nontrivial problem for 
which numerous solutions have been proposed. The L-curve method (due to Hansen,1992) 
has become a popular method, which is implemented by the graphical analysis of a log-log 
plot obtained by varying the value of the regularization parameter, as shown in figure 5. For 
each value of µ, the norm of the distance between the data and the model is reported on the 
horizontal axis, while the distance of x to priorx  is reported on the vertical axis. The L-curve 
selection criterion consists of locating the value which maximizes the curvature, that is the L-
curve corner which separates the two regions: under-regularized on the left, over-regularized 
on the right. 
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Figure 5 – Choice of the Tikhonov regularization parameter: L-curve 

 
Figure 6 – L-curve obtained for the regularization of the deconvolution example 

 
The L-curve is plotted for the regularized deconvolution example. The red circle is obtained 
when the regularization parameter µ has the same value as the standard deviation of the 
measurement noise. It is found to be quite close to the L-curve point. 
 
6. Conclusions 
 
Regularization is an important step for solving ill-posed problems. When the inverse problem 
is of finite dimension, which is the case for discrete estimation problems, the existence of 
solution is achieved by the least squares approach, and the problem is in fact ill-conditioned. 
For function estimation problems, the parametrization of the function to be retrieved tend to 
exact matching, where the number of experimental data is equal to the number of 
parameters. This case is generally highly sensitive to the measurement noise. Regularization 
stabilizes the solution by removing the effect of the smallest singular values which amplify 
the effect of these measurement errors. However the cost of regularization is that the 
stabilized solution is biased, hence the value of the regularization parameter (Tikhonov 
parameter or truncation order) must be carfully chosen. 
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Appendix 1 
 
% Deconvolution and inversion with regularization 
% fi=fi0*exp(-(t-t0)**2 
% dT/dt = fi - hT 
% T=conv(fi,exp(-ht)) 
% Tr = T + bruit 

  
N=100;dt=0.01;t0=dt*N/2;t=dt*(1:N); 
fi0=10;h=1;fi=fi0*exp(-10*(t-t0).^2); 

  
Q=sqrt(fi*fi');Amp=40; 
% noise 
bruit=0.1*randn(size(t)); 
cov(bruit) 

  
k=[0.0001 0.005 0.02 0.1]; % Regularization parameter 

  
X=dt*toeplitz(exp(-h*(t(1:N))), zeros(1,N)); % Sensitivity matrix 

  
T=X*fi'; % Direct model (convolution) 
Tr=T'+bruit; 

  
for i=1:length(k) 
   G=inv(X'*X+k(i)*eye(N)); 
   fir=G*X'*Tr'; 
   VI=eig(G); 
   ki=k(i) 
   cond_i=max(abs(VI))/min(abs(VI)) 
   p=i; 
   subplot(2,2,p),plot(t,T,'k',t,Tr,'k',t,fi,'k:',t,fir,'k+',0,15,0,-5), 
   title(['k = ',num2str(k(i))]) 
   figure(gcf); 
end 

 

 


