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Abstract. The main objective of this lecture is to make the end users aware of the 
various physical phenomena and especially of the errors frequently met during 
temperature and heat flow measurement. Phenomena which occur in thermometry 
without contact (pyrometry with single, two colors or multiwavelength) will be 
presented. Specificities of radiative methods and procedures to overcome bias in 
temperature measurement will be discussed. The amount of thermal radiation emitted 
by a surface is only a fraction of the blackbody radiation at the same temperature. This 
ratio, i.e. the emissivity, is an additional unknown parameter. Whatever the number of 
considered wavelengths in passive radiation thermometry, one faces an 
underdetermined problem, notwithstanding the fact that the atmosphere between the 
sensed surface and the sensor introduces itself additional unknown parameters. We 
will present several solutions (and some pitfalls) for the problem of emissivity and 
temperature separation developed in the field of multiwavelength pyrometry (MWP) 
and in the field of multiwavelength/hyperspectral remote sensing of earth. Last but not 
least, a paragraph is especially dedicated to infrared thermography, as far as the 
technical limitations may have a great influence on both validity and accuracy of the 
results issued from a parameters estimation procedure. 

 

1. Basic relations for the measured radiance 
 

1.1. Blackbody radiance 
 
Matter spontaneously emits electromagnetic radiation in a very broad spectrum comprising 
UV, visible light, infrared (IR) and microwaves. The emitted radiance from a surface in a 
given direction depends on wavelength, on temperature, on direction and also on the 
considered matter. For a solid material it also depends on the surface state: roughness , 
presence of corrosion. The maximum emitted radiance at a given wavelength, temperature, 
and direction is described by the Planck’s law (blackbody radiance) [1]. 
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( )TB ,λ  is expressed in W/m3/sr, wavelength λ  in m, temperature T  in K, with 1C  = 1.191·10-

16 W·m2 and 2C  = 1.439·10-2 m·K. The spectral blackbody radiance is described in figure 5.1 
for different temperature levels. The maximum emission is observed at a wavelength maxλ  
such that µmKT 2898max =λ  (Wien’s displacement law). This law tells us that the peak 
emissive intensity shifts to shorter wavelengths as temperature rises, in inverse proportion to 
T . 

 
 

Figure 5.1.   Blackbody radiance vs. wavelength for T=300K, 500K, 700K, 900K and 1100K 
(from bottom to top). Planck’s law in continuous line, Wien’s law in dashed line. 

 
 
A common approximation to the Plank’s law is the Wien’s law, which is also plotted in figure 
5.1: 
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The approximation error increases with wavelength. One can however consider that the 
Wien approximation is valid in the rising part of the radiance curve. As a matter of fact the 
error is less than 1% provided µmKT 3124<λ . 
It is obvious that by measuring the thermal radiation emitted by the blackbody surface at a 
given wavelength one could infer its temperature from the Planck’s law. This idea is at the 
origin of pyrometry, thermography, and microwave radiometry. 
 
The sensitivity of blackbody radiance to temperature, according to Planck’s law, is plotted in 
figure 5.2. Figure 5.2-left refers to the absolute sensitivity TB ∂∂  whereas figure 5.2-right 

refers to the relative sensitivity TBB ∂∂−1 . The absolute sensitivity presents a maximum at a 
wavelength maxSλ  such that µmKTS 2410max =λ . For a blackbody at 300K, the maximum 
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radiance is observed at µm65.9max =λ ; however the maximum sensitivity to temperature 
variations is observed at a shorter wavelength, namely µmS 03.8max =λ . On the other hand, 
the relative sensitivity is continuously decreasing (see figure 5.2-right). The trend is like λ1  
at short wavelengths. The decreasing nature of relative sensitivity would thus favour short 
wavelengths for temperature measurement. However the radiance to noise ratio 
progressively decreases in the meantime. Actually, one should consider all three aspects: 
the radiance level, the absolute sensitivity and the relative sensitivity, together with the 
spectral detectivity and thus the signal to noise ratio of the potential sensors, when selecting 
a wavelength or a spectral band for temperature measurement. 
 

 
Figure 5.2.  Absolute (left) and relative (right) sensitivity of blackbody radiance to 
temperature for T=300K, 500K, 700K, 900K and 1100K (resp. from bottom to top and top to 
bottom). 
 

1.2. Emissivity and related radiative parameters 
 
The ratio between ( )ϕθλ ,,,TL , the radiance effectively emitted by a surface in the direction 
( )ϕθ , , and the blackbody radiance ( )TB ,λ  at same wavelength and same temperature is 
called the emissivity: 
 
 ( ) ( ) ( ) 1,,,,,,, ≤= TBTLT λϕθλϕθλε  (5.3) 
The emissivity generally depends on the surface temperature too but, just for convenience, 
we will drop the T  dependency. 
 
From the analysis of the radiation in an enclosure one can state the following relation 
between the emissivity and the hemispherical directional reflectance (for isotropic radiance) 
[1]: 
 ( ) ( ) 1,,,, ' =+ ∩ ϕθλρϕθλε  (5.4) 
 
Also, the energy conservation law for an opaque material tells that the energy that is not 
absorbed by the surface is reflected in all directions. It leads to the following relation between 
the absorptivity and the directional hemispherical reflectance: 
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 ( ) ( ) 1,,,, ' =+ ∩ ϕθλρϕθλα  (5.5) 
 
Helmoltz reciprocity principle leads to (for isotropic radiance): 
 ( ) ( )ϕθλρϕθλρ ,,,, '' ∩∩ =  (5.6) 
which, from eq. (5.4) and (5.5), leads itself to the second Kirchhoff’s law stating that the 
spectral emissivity in a given direction ( )ϕθ ,  is equal to the spectral absorptivity in the same 
direction: 
 
 ( ) ( )ϕθλαϕθλε ,,,, =  (5.7) 
 
The radiation that leaves the surface ( )ϕθλ ,,,TL  is the sum of the radiation emitted by the 
surface and the reflection by the surface of the radiation coming from the environment in all 
incident directions ( )ii ϕθ ,  of the upper hemisphere (in this course, without loss of generality, 
we will generally consider that the surface is facing up): 
 

 ( ) ( ) ( ) ( ) ( ) iiiiii dLTBTL Ω+= ↓
∫ θϕθλϕθϕθλρλϕθλεϕθλ
π

cos,,,,,,,,,,,,
2

''  (5.8) 

 
where ( )ii ϕθϕθλρ ,,,,''  is the bidirectional reflectance. 
Let us now consider temperature measurement with an optical sensor in the direction ( )ϕθ , . 
The radiance received by the sensor ( )ϕθλ ,,,TLs  includes both the radiance leaving the 
monitored surface and transmitted along the optical path and the radiance self-emitted by the 

atmosphere and the optics along this path, ( )ϕθλ ,,↑L : 

 ( ) ( ) ( ) ( )ϕθλϕθλϕθλτϕθλ ,,,,,,,,,, ↑+= LTLTLs  (5.9) 

 
where ( )ϕθλτ ,,  is the transmission coefficient through the air and the collecting optics. 
After proper calibration, i.e with a blackbody brought close to the sensor, one can get rid of 

the contributions of the optics. After that, ( )ϕθλτ ,,  and ( )ϕθλ ,,↑L  are merely relevant of the 

atmosphere along the optical path. 
 

1.3. Simplifications of the radiative equation 
 
The general radiation thermometry equation is: 

 
( ) ( ) ( ) ( ) ( ) ( )

( )ϕθλ

θϕθλϕθϕθλρλϕθλεϕθλτϕθλ
π

,,

cos,,,,,,,,,,,,,,
2

''

↑

↓

+












Ω+= ∫

L

dLTBTL iiiiiis
 (5.10) 

The objective is to evaluate the surface temperature from it. At this point one has to deal with 
several unknowns: the transmissivity ( )ϕθλτ ,,  and the self-emission of the atmosphere 

( )ϕθλ ,,↑L  along the line of sight, the hemispherical environmental radiance ( )iiL ϕθλ ,,↓ , the 
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bidirectional reflectance ( )ii ϕθϕθλρ ,,,,''  for all incident directions ( )ii ϕθ ,  and the directional 
emissivity ( )ϕθλε ,, . Only when all these parameters are determined can we expect getting 
the blackbody radiance ( )TB ,λ  and then the temperature from the measured radiance 

( )ϕθλ ,,,TLs . 
One common approximation is to consider that the surface is Lambertian, i.e. its optical 
properties are direction-independent. Equation (5.10) is then simplified as follows: 

 ( ) ( ) ( ) ( )( ) ( )λλελλελ ↓−+= LTBTL 1,,  (5.11) 

 
where ( )TL ,λ↓  is the mean (i.e. isotropic equivalent) environment radiance: 

 ( ) ( )∫ Ω= ↓↓

π

θϕθλ
π

λ
2

cos,,
1

, iiii dLTL  (5.12) 

 
One has access to the spectral at-sensor radiance: 
 

 ( ) ( ) ( ) ( ) ( )( ) ( )[ ] ( )ϕθλλλελλεϕθλτϕθλ ,,1,,,,,, ↑↓ +−+= LLTBTLs  (5.13) 

 
Generally speaking, when dealing with radiative temperature measurement, one faces two 
problems: 

- the influence of the environment through reflections as well as along-the-path self-
emission and attenuation; 

- the emissivity and temperature separation problem. 
The atmosphere contribution through attenuation and self-emission is particularly relevant 
when the measurement is performed from large distances as for example in airborne and 
satellite remote sensing. Specific methods for atmosphere correction were developed for 
these applications. Emissivity and temperature separation methods that take advantage of 
the presence of the atmosphere where also devised and we refer the reader to [2] for a 
review. 
For the remaining of this presentation we will assume that an atmosphere correction was 
implemented and that one has access to the surface-leaving radiance in eq. (5.8) or its 
counterpart valid for Lambertian surfaces in eq. (5.11). 

The next step is to get rid of the reflected radiation ( ) ( ) iiiiii dL Ω↓
∫ θϕθλϕθϕθλρ
π

cos,,,,,,
2

''  or, 

for lambertian surfaces, ( )( ) ( )λλε ↓− L1 . 

The photothermal approach is an efficient method for this purpose [3], [4]. It requires the use 
of an additional radiative heat source able to slightly heat up the tested material, like a laser 
beam. The laser is either pulsed or modulated. Two pyrometers are used at two wavelengths 
for measuring the spectral radiance slight increase, respectively the radiance modulation. In 
both cases the useful spectral signals are deprived from the spurious reflections contribution. 
They are in fact proportional to ( ) ( )TTB ,λλε ∂∂ ; they are then processed like in two-color 

pyrometry (see § 3), where the two spectral blackbody radiances ( )TB ,1λ  and ( )TB ,2λ  in 

eq. (5.17) are replaced by the temperature derivatives ( )TTB ,1λ∂∂  and ( )TTB ,2λ∂∂ . 
 



 
 
 
 
Metti 6 Advanced School: Thermal Measurements and Inverse Techniques        Biarritz,  March 1- 5, 2015 
 
 
 

Lecture 5: Measurements without contact in heat transfer:  page 6 
 
 

The remaining will deal with cases where the most important contribution to the sensed 
signal is the surface self-emitted radiation. Pyrometry of high temperature surfaces with 
(relatively) cold surrounding surfaces is a typical example of such cases. After a proper 
calibration of the optic instrument at each wavelength, one has access to the emitted 
radiance itself: 
 
 ( ) ( ) ( )TBTL ,,,,,, λϕθλεϕθλ =  (5.14) 
 
It is clear from this relation that an evaluation of the emissivity is necessary to get the 
temperature. An indirect approach consists in measuring the directional hemispherical 
reflectance and using equation (5.4), (5.5) and (5.6) to infer the directional emissivity. This 
requires using an additional radiation source and bringing close to the characterized surface 
an integrating hemisphere to collect all the reflected radiation. This approach was used to 
build several databases which give some hints on the emissivity range and spectral 
variations for specific materials (see for example [5], [6], [7]). 
The indirect reflectance approach will not be dealt in this presentation. We will rather review 
the approaches which consist in simultaneously evaluating temperature and emissivity, or 
which manage to get rid of emissivity in the temperature measurement procedure. 
In the field of pyrometry, different methods were devised depending on the number of 
wavelengths or wavebands used for the measurement: monochromatic (§ 3), bispectral (§ 4), 
and multiwavelength pyrometry (§ 5). 
 

2. Single-Color Pyrometry 
 
In single color pyrometry one measures, in a given direction, the spectral radiance expressed 
in equation (5.14). Actually, the raw signal also includes a multiplicative coefficient and an 
additive coefficient (assuming linearity between radiance and recorded signal). However, by 
calibrating the sensor with a blackbody at two temperature levels one can get rid of both 
coefficients. From now on it is considered that this calibration has been applied. 
An estimation of the surface emissivity then allows inferring its temperature. This estimation 
can be based on prior reflectance measurements or it can be extracted from databases. The 
question is then: what is the consequence of an emissivity error on the temperature 
evaluation? 
By differentiating equation (5.14) one can evaluate the sensitivity of temperature to an error 
on emissivity: 
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drawn in figure 5.2. 
Also, with the Wien’s approximation, equation (5.15) reduces to: 
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The amplification factor is about 0.08 for a temperature of 1100K and at 1µm. It reaches 
about 0.2 for a temperature of 300K and at 10µm. A 10% underestimation of emissivity will 
thus lead to a 0.8% overestimation of temperature in the first case (i.e. 8K) and a 2% 
overestimation in the second case (i.e. 6K). The advantage of working at short wavelength is 
evident from this perspective. As a matter of fact, as seen in eq. (5.16) the error amplification 
is proportional to λ . For this reason some authors recommended to apply pyrometry in the 
visible spectrum or even in the UV spectrum (see for example [8], [9], [10]). However, 
although a given emissivity relative error has a lower impact on temperature evaluation at 
short wavelength, it should not occult the fact that a reasonable estimation of emissivity is 
nevertheless needed. The retrieved temperature is unavoidably affected by this emissivity 
estimation [11]. Apart from this, at short wavelength, both the signal and its absolute 
sensitivity to temperature decrease. The choice of the spectral range for pyrometry is thus 
always a compromise. 
 

3. Two-Color Pyrometry 
 
By performing a measurement at another wavelength, one adds new information, but 
unfortunately, one also adds a new unknown, namely the spectral emissivity at this 
supplementary wavelength: 
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The most popular method consists in calculating the ratio of the two spectral signals: 
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which gives, with the Wien’s approximation : 
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where the equivalent wavelength 12λ  of the two-color sensor is defined by : 
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Ratio two-color pyrometry thus requires knowing the emissivity ratio ( ) ( )21 λελε  in order to 
infer temperature from the radiance ratio 12R  according to equation (5.18) or according to its 
approximation, equation (5.19). One common assumption is : ( ) ( )21 λελε =  (it is abusively 
called the greybody assumption even though only the two emissivity values at 1λ  and at 2λ  
are required to be equal). 
Like for one-color pyrometry, it is easy to relate the temperature estimation error to the 
emissivity error: 
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 (5.21) 

 
Considering the following examples: [T =1100K, =1λ 1µm, =2λ 1.5µm] for the first one, and [

T =300K, =1λ 10µm, =2λ 12µm] for the second one, the amplification factor reaches 
respectively 0.22 and 1.2. These values are respectively 3 and 6 times higher than for the 
single-color pyrometry examples in previous paragraph. 
The error on temperature can be lowered by reducing the equivalent wavelength, i.e. by 
increasing the distance between 1

2
−λ  and 1

1
−λ , as for example by increasing the higher 

wavelength 2λ  or decreasing the shorter one 1λ . In any case the amplification factor will 
always be larger than the one obtained with single-color pyrometry performed at the shortest 
wavelength. 
A common idea is that by choosing close wavelengths, there is a higher chance that the ratio 

( ) ( )21 λελε  gets near 1. However, in doing so, the equivalent wavelength 12λ  increases and 
the sensitivity of the radiance ratio to temperature drops. A better strategy is to widen the 
spectral separation, more precisely to increase the 1

1
−λ - 1

2
−λ difference, (i.e. to decrease 12λ ). 

Even for close wavelengths, the statement ( ) ( )21 λελε =1 is prone to error. A prior knowledge 
of the ratio ( ) ( )21 λελε  is thus required for evaluating T  from eq. (5.18) or eq. (5.19). Having 
this in mind it is thus preferable maximizing the sensitivity to temperature as described 
before. 
In single-color pyrometry at 1λ , the required prior knowledge is about ( )1λε . In two-color 
pyrometry it is about the ratio ( ) ( )21 λελε . Obviously we can’t avoid the introduction of some 
knowledge about the emissivity spectrum. 
The advantage however as compared to one-color pyrometry is that thanks to the ratioing, 
the method is insensitive to problems like a partial occultation of the line of sight, or an 
optical path transmission variation (provided that this transmission variation is the same in 
both spectral channels). 
For evaluating the emissivity ratio ( ) ( )21 λελε  one could resort to pyroreflectometry [12]. 

Each emissivity is equal to ( ) ( )rrii ϕθϕθλπηρϕθλρ ,,,,1,,1 ''' −=− ∩  where η  is a diffusion 

factor. It actually depends on incident and reflection directions as well as on wavelength. The 
bidirectional reflectance ( )rrii ϕθϕθλρ ,,,,''  is measured at the two wavelengths with the use 

of an additional source and a reference material in place of the tested one. It is then 
assumed that the diffusion factor is wavelength independent. This remaining unknown 
parameter is finally adjusted until the color temperatures at both wavelength (together 
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eventually with the ratio temperature) are made coincident. This common temperature is the 
true one. 
In some circumstances, it is possible to bring close to the characterized object a highly 
reflecting surface. By properly choosing its shape, one gets two benefits: the reflection fluxes 
from the environment are diminished and the apparent emissivity of the sensed surface is 
increased thanks to the multiple reflections of the emitted radiation between the surface and 
the mirror [13]. As a consequence, the temperature estimation error due to errors on the 
emissivity ratio now refer to ( ) ( )21 λελε ))  where ε)  is the apparent, actually amplified, 
emissivity. The errors are therefore diminished. 
Instead of evaluating the temperature from the radiance ratio in eq. (5.18) or eq. (5.19), one 
could get it from a least squares minimization between the measured radiances 1S  at 1λ  and 

2S  at 2λ  and their theoretical counterpart. The cost function expresses as: 

 ( ) ( )( ) ( ) ( )[ ] ( ) ( )[ ]2222
2

11121 ,,,, TBSTBSTJ λλελλελελε −+−=  (5.22) 
 
 ( ) ( )( )21

,,
,,min

21

λελε
εε

TJT
T

=  (5.23) 

This problem is underdetermined as there are three unknown parameters: T , ( )1λε  and 
( )2λε  and only two observations: 1S  and 2S . One possibility for solving it is to introduce a 

functional relationship between the two emissivity values. An example of such relationship is: 
 
 ( ) ( ) βλελε =21  (5.24) 
which correspond to the constant emissivity ratio already invoked in the course of the ratio 
method. In this context we actually have two methods for evaluating the temperature from 
the two spectral signals 1S  and 2S : either from their ratio in eq. (5.18) of from the least 
squares equation in eq. (5.22). The signals are actually corrupted by additive noise and it is 
known that the expected value of the ratio is a biased estimator of the ratio of the expected 
values. It is thus preferable using eq. (5.22) for the temperature identification. 
Many other functional relationships could be used. Here are a few examples: 
 
 ( ) ( ) βλελε =− 21  (5.25) 
 ( ) ( ) βλελε =− 21 11  (5.26) 
where β  is a surface dependent constant. 
The emissivity compensation methods of Foley [14], Watari [15] and Anderson [16] described 
in [17] can all be connected to the following general relationship: 
 
 ( ) ( )βλελε 21 =  (5.27) 
where again β  is a surface dependent constant (in [15] it is actually fixed to 21 λλ ). 
The crucial point with two-color pyrometry is to find out a functional relationship like those in 
eq. (5.24) to eq. (5.27) together with the associated parameter β . It often happens that a 
good choice for a given material may lead to poor results for another material or for the same 
material in a different state (oxidation, ageing). The great difficulty, when dealing with 
different materials or with materials in different state, is to find out a general functional 
relationship able to represent all observed emissivity changes. 
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4. Multiwavelength Pyrometry 
 
One can proceed further by adding measurements performed at other wavelengths. The 
problems still remains underdetermined, as one gets N radiance values, but in the same time 
one faces N+1 unknowns: N spectral emissivities and one temperature value. 
Multiwavelength pyrometry has been a subject of controversy for several decades [11], [18]-
[42]: some authors presented experimental results with various successes, sometimes with 
small temperature errors, other times with unacceptably high errors, depending on the 
material, on its surface state, and on the chosen function for approximating the emissivity 
spectrum. Even the theoretical works don’t agree about the advantage of using a large 
number of wavelengths [18], [19], [23], [25], [27], [28], [29], [37], [38], [41], [42]. 
In the following we will present a few results which highlight the difficulty to obtain good and 
repeatable results with some multiwavelength approaches and a series of error mitigation 
processes.  

4.1. Interpolation based methods 
 
For solving the underdetermined problem, a potential solution would be to reduce simply by 
one the degree of freedom of the emissivity spectrum. For this purpose a first approach 
consists in approximating ( )λε  or ( )[ ]λεln  by a polynomial of degree N-2: 

 ( ) Niaora j
i

N

j
ji

j
i

N

j
ji ,1ln

2

0

2

0

=≈≈ ∑∑
−

=

−

=

λελε  (5.28) 

 
However, it was shown in [19], based on the Wien’s approximation and a polynomial 
approximation of ( )[ ]λεln  that this method can rapidly lead to unrealistic temperature values 
as N increases. Let us first assume that there is no measurement error ( ( )TLS ii ,λ= ). As a 
matter of fact, taking the logarithm of equation (5.17) with the Wien approximation for 
blackbody radiance, one gets: 
 
 [ ] ( )[ ] ( ) NiTCCTLCS iiiiii ,1ln,lnln 21

5
1

5 =−== λελλλ  (5.29) 
 
With the polynomial approximation of degree N-2 for ( )[ ]λεln  in eq. (5.28), a temperature 'T  
is retrieved instead of the real temperature T : 

 [ ] ( ) NiTCaTCCS i
j

i

N

j
jiiii ,1'lnln 2

2

0
21

5 =−=−= ∑
−

=

λλλελ  (5.30) 

 
By multiplying eq. (5.30) by iλ  one can notice that 'T  is related to the constant parameter of 

the polynomial of degree N-1 interpolating the N values [ ]1
5ln CS iii λλ : 

 [ ] NiTCaCS j
i

N

j
jiii ,1'ln 2
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1
1
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One can also notice that the temperature error expressed through ( )'112 TTC −  (it is also 
called “temperature correction”) corresponds to the constant parameter of the polynomial of 
degree N-1 interpolating the N values ( )[ ]ii λελ ln : 

 ( ) Ni
TT

Ca j
i

N

j
jii ,1

'

11
ln 2

1

1

=






 −+=∑
−

=

λελ  (5.32) 

The temperature corrections for N=1,2,3 are [11], [26]: 
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 (5.33) 

 
The temperature correction involves the ratio 21 εε  for N=2. With equidistant wavelengths, it 

involves the ratio 2

231 εεε  for N=3 and the ratio 4

2

2

2

31 εεεε  for N=4 [26]. These ratios are of 
course to estimate beforehand. Assigning arbitrarily a value of 1 to the emissivity ratio for a 
series of metals had the consequence that the temperature estimation error increased very 
rapidly with the number of wavelengths [26]. 
It can be shown that the temperature correction limit for wavelength intervals decreasing to 0 
is equal to ( ) ( ) ( )[ ] 111 ln!11 −−− −− NNNN ddN λλελ  [23]. One can also recognize in eq. (5.32) 
that the temperature correction corresponds to the extrapolation at 0=λ  of the polynomial 
interpolation of ( )[ ]ii λελ ln  of degree N-1. This finding can now be developed a little more. If, 
by chance, a polynomial of degree N-2 could be found passing exactly through the N values 

( )[ ]iλεln , the polynomial of degree N-1 passing through the N values ( )[ ]ii λελ ln  would 
correspond to the previous one multiplied by λ ; its constant parameter (i.e. the temperature 
correction term) would thus be equal to 0, and the retrieved temperature would be the exact 
one. The considered event is however highly improbable, therefore, in practice, there is an 
unavoidable bias. Furthermore the temperature error magnitude is tightly dependent on 
polynomial extrapolation properties. Unfortunately it is well known that an extrapolation 
based on a polynomial interpolation leads to increasingly high errors as the polynomial 
degree rises. Furthermore, things get progressively worse as the extrapolation is performed 
far from the interpolation domain. This last point would actually advocate expanding the 
spectral range to the shortest possible wavelength, but it is a desperate remedy. 
 
The potentially catastrophic errors described just before are actually systematic errors, i.e. 
method errors. They are obtained even when assuming errorless spectral signals. For 
analyzing the influence of measurement errors, one can state, for simplicity, that the 
measurement error in channel i has the same impact as a corresponding uncertainty of the 
emissivity in the same channel, ( )id λε . Then, the interpolation of the ( ) ( )[ ]iii d λελελ +ln  
values leads to the same extrapolation errors as described before and finally adds to it. The 
calculated temperature is thus increasingly sensitive to measurement errors as the number 
of channels increases. 
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The poor success of the interpolation based method originates from the over-fitting of the 
experimental data. It was finally recognized that the interpolation based method could be 
considered only for the simpler pyrometers, i.e. with two or three wavelengths at most [19]. 
 

4.2. Regularization by using a low-order emissivity  model 
 

4.2.1. Description of emissivity models 
 
The over-fitting shortcomings previously described can be alleviated by reducing the number 
of unknown that are used for describing the emissivity spectrum. Different models were 
tested in the past: 
 

 ( ) 2,...,1
0

−<==∑
=

NmNia j

i

m

j
ji λλε  (generally m=1 or 2) (5.34) 

 ( )[ ] 2,...,1ln
0

−<==∑
=

NmNia j

i

m

j
ji λλε  (generally m =1 or 2) (5.35) 

 ( ) ( ) Nia ii ,...,111 2

0 =+= λλε  (5.36) 
 
Polynomials of 21λ  or 21−λ  for ( )[ ]λεln  and functions involving the brightness temperature 
were considered in [37], [38], a sinusoïdal function of λ  in [18], and other more “physical” 
models like Maxwell, Hagen-Rubens and Edwards models in [11], [30], [41]. 
The grey-bands model consists in separating the spectrum in a small number of bands bN

and assigning the same emissivity value to all channels of a given band [25]. The bands can 
be narrowed down to three or even two channels as suggested in [76]. In this way, the 
number of unknowns is reduced from 1+N  to 13+N  or 12 +N . One can go even further by 
squeezing some bands to merely one channel. The extreme limit consists in 1−N  single-
channel bands plus one dual-channel band. In that case we face a problem with N  
measurements and N  unknowns which is thus, in principle, invertible. We will see that it is 
actually very badly conditioned. 
The concept of grey-bands can be generalized by allowing that the channels that are chosen 
to share a common emissivity value are not necessarily close together: an iterative process 
was described in [43] where these wavelengths are each time reshuffled according to the 
pseudo-continuous emissivity spectrum, i.e. the one defined over the N wavelengths 
according to: 
 

 ( ) ( )
( ) Ni

TB

TL
T

i

i
i ,...,1

ˆ,

,ˆ,ˆ ==
λ
λλε  (5.37) 

 
where T̂  is the most recent temperature estimation. ( )Ti

ˆ,ˆ λε  is sorted from lower to higher 

values and the bN  bands of equal emissivity values are defined by splitting the ( )Ti
ˆ,ˆ λε  

vector in bN  parts. 
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The unknown parameters of the emissivity function, together with temperature, are finally 
evaluated through least squares minimization. By introducing the Wien approximation for 
radiance, a polynomial approximation for ( )[ ]λεln  and by considering the observable 

[ ]1
5ln CS ii λ , equation (5.30) shows that the problem reduces to a linear least squares 

problem in the coefficients ja  and in 1−T  ([18], [22], [35], [36]). Otherwise, when considering 

for the observable the spectral signal iS  itself, one faces a non-linear least squares problem 
([20], [21], [24], [25], [27]-[34], [36]-[42],[44]). Let us add that by rearranging the i equations 
as described in equation (5.30) one could get rid of one parameter, either a constant 
parameter or the temperature ([18][22][36]). However it is believed that no advantage in 
accuracy is expected by manipulating the data to present the same information in different 
form [18]. As a matter of fact, in the case of linear fitting such a manipulation even increases 
the uncertainty of the identified parameters. 
We will now consider different aspects of the Least Squares Multiwavelength Pyrometry 
solution (LSMWP). 

4.2.2. Least-squares solution of the linearized Emi ssivity Temperature Separation 
problem (ETS) 

 
We will consider that the errorless signal corresponds to the emitted radiance expressed with 
the Wien’s approximation. The chosen observable is actually the logarithm of the measured 
signal and we will admit that this observable is corrupted by an additive noise: 
 
 ( ) ( ) NieCLCSY iiiiii ,1lnln 1

5
1

5 =+== λλ  (5.38) 
 
where ie  is the measurement error (noise) in channel i. We will assume that the ie , i=1,N are 
uncorrelated random variables following a Gaussian distribution of uniform variance. It is 
usually assumed that the spectral signal, not its logarithm, is affected by a noise of uniform 
variance. For ease, we will consider here that it applies to its logarithm. This approximation is 
valid if the spectral range is not too wide with respect to the variations of the Planck’s law 

( )TB ,λ  and if the emissivity does not have too wide variations. 
According to equation (5.30) where ( )[ ]λεln  would be approximated by a polynomial of 
degree m only, the least squares solution is: 
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For numerical purposes, it is preferable to replace the wavelength in the polynomial 
expression by its reduced and centered value so that [ ]1,1* −∈iλ : 

 12*
minmax

min −
−

−
=

λλ
λλλ i

i  (5.40) 

 
For the same reason, one can normalize T  by refT  so that refiTC λ2  is of the order of 1. The 

associated unknown parameter is then TTP refT =* . The parameter vector is : 
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 [ ]T

Tm Paa **...** 0=P  (5.41) 
 
where the parameters *ja  are the coefficients of the polynomial in *iλ . The corresponding 

sensitivity matrix is: 
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where the columns correspond to the sensitivity to successive parameters in vector *P  (i.e. 
the first derivative of the model function relatively to each parameter). 
The sensitivity to the parameters *ja  and to *TP  is plotted vs. the reduced wavelength 

min' λλλ ii =  in figure 5.3 up to j=2 for the particular case of 75.1minmax =λλ . The sensitivity to 
the temperature inverse is very smooth, close to linear. We thus expect a strong correlation 
between the parameters (near collinear sensitivity vectors). 
 
 

 

Figure 5. 3.  Sensitivity to the first three 
coefficients of the emissivity polynomial 
function (continuous, dashed and dotted 
line) and to TP , the inverse of normalized 
temperature (dashed-dotted line). 
Reduced wavelength is min' λλλ = . 
 

 
An estimation of the parameter vector *P  in the least squares sense is obtained by solving 
the linear system: 
 
 ( ) YXPXX TT =*ˆ  (5.43) 

The near-dependent sensitivities lead to a XXT  matrix that is near-singular. Indeed by 
computing the condition number of the matrix XXT  one gets very high values, even for a low 
degree polynomial approximation (see figure 5.4). 
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Figure 5. 4.  Condition number of matrix 
XX t  (○: N=m+2, □: N=7, ◊: N=30, x: 

N=100). Considered spectrum is such that 
75.1minmax =λλ  

 

 
The condition number describes somehow the rate at which the identified parameters will 
change with respect to a change in the observable. Thus, if the condition number is large, 
even a small error in the observable may cause a large error in the parameters (the condition 
number however only provides an upper bound). The condition number also reflects how a 
small change in the matrix XXT  itself will affect the identified parameters. Such a change 
may be due to the measurement error of the equivalent wavelength corresponding to each 
spectral channel. From figure 5.4, a first statement is that the regularization with a polynomial 
model of degree 2 or higher will not be efficient. But even the case of a polynomial of degree 
1 is expected to show unstable results. 
 
The condition number is not all. By the way, it depends on the choice of the reference 
temperature refT . Sometimes it could even be misleading because it only gives an upper 

bound of the error propagation. It is better to analyze the diagonal values of the covariance 
matrix ( ) 1−

XXT . They actually provide the variance amplification factor for each identified 
parameter *P : 
 
 [ ] ( )( ) 212

* σσ −= XXT
P diag  (5.44) 

 

where 2σ  is the variance of the observable, i.e. ( )2iS S
i

σ  which is here assumed 

independent of the spectral channel i (if instead one assumes that the radiance variance 

( )2
iSσ  is uniform, the result would be [ ] ( )( )112

*

−−= XΨXT
P diagσ  where Ψ  is the inferred 

covariance matrix of the observable). 
One should be aware that 2

*Pσ  merely describes the error around the mean estimator value 
due to the radiance error propagation to the parameters. If the mean estimator is biased, as it 
is the case when the true emissivity profile is not well represented by the chosen model, one 
should add the square systematic error to get the RMS error which better represents the 
misfit to the true parameter value, either the temperature or a spectral emissivity value (this 
will be described later through a Monte-Carlo analysis of the inversion). 
With the polynomial model, the mean standard relative error for emissivity, which is defined 
by: 
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is related to the standard error of the retrieved polynomial coefficients through: 
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As such, it can be related to the uncertainty of the observable, which will be written SSσ , 
through an error amplification factor εK : 
 

 
S

K Sσ
ε

σ
ε

ε =  (5.47) 

With the grey-bands model, the mean standard error and the amplification factor are defined 
according to: 
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 (5.48) 

 
From the Wien expression for radiance, it is clear that the standard relative error for 
temperature is proportional to temperature, to SSσ , and to a wavelength scale 

representative of the spectral window λ~  (one can choose the geometric mean of the window 
limits: maxmin

~ λλλ ≡ ). The error amplification factor for temperature, TK , is thus defined 

according to:  
 

 
S

TK
T

S
T

T σλσ ~=  (5.49) 

 
The error amplification factors TK  and εK  are plotted in figure 5.5 for the polynomial model, 
assuming a relative bandwidth minmax λλ  of 1.75 (this could correspond to the [8µm-14µm] 
spectral interval, for example). 
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Figure 5.5.   Left : Error amplification factor of emissivity versus the polynomial degree m 
chosen for modeling ( )[ ]λεln . Symbols correspond to different values for the total number of 
spectral channels: ○: N=m+2, □: N=7, ◊: N=30, x: N=100. Right : Same for the error 
amplification factor of temperature 
 
 
A first comment about the polynomial model is that the standard errors increase 
exponentially with the polynomial degree m, roughly like ( )m2exp . This increase can be 
slowed down by widening the spectral window. With the grey-bands model, the standard 
errors increase nearly in proportion to the number of bands. In both cases, they decrease 
with the total number of channels, roughly like 21−N . Empirical relations can be found for the 
factors TK  and εK . They lead to the following error predictions for the polynomial model, in 
the particular case minmax λλ  = 1.75: 
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Regarding the bandwidth influence, let us notice that the relative error of temperature 
depends both on minλ  and maxλ  whereas the mean relative error of emissivity only depends 
on the ratio minmax λλ . 
Assuming a target at 320K, and 1% radiance noise, a pyrometer with seven wavelengths 
between 8µm and 14µm will provide temperature and emissivity values with standard errors 
as reported in Table 5.1, depending on the polynomial degree chosen for ( )[ ]λεln . 
 
 

Table 5.1.  Root-mean square error for the estimated temperature and 
emissivity depending on the degree of the polynomial model for emissivity. 
Target temperature is 320K and radiance noise is 1%. 
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1 9.4 0.13 
2 64 0.83 

 
 
The errors are rather high with a linear model for ( )[ ]λεln  and they reach unacceptably high 
values when using a degree 2 polynomial. These results seem to preclude using the least 
squares linear regression approach together with a polynomial of degree 2 and more. They 
were obtained with the Wien’s approximation. However, Planck’s law is close to the Wien’s 
approximation over a large spectrum, therefore we expect that the general least squares 
nonlinear regression based on the Planck’s law will also face serious problems when using a 
polynomial model for emissivity. 
Let us recall that the temperature and emissivity errors mentioned here only describe how 
the radiance error propagates to the parameters. It was here assumed that the emissivity 
spectrum perfectly matches the considered polynomial model. If it is not the case (which 
actually occurs almost every time) a systematic error appears and the joint errors will be 
presented in § 4.2.4 through a Monte-Carlo analysis. 
 
Applying the grey-bands model to the previous example leads to the standard errors shown 
in Table 5.2 (the number of bands can be increased up to N-1=6 while avoiding 
underdetermination). 

 
Table 5.2.  Root-mean square error for the estimated temperature and 
emissivity depending on the number of bands when assuming a grey-band 
model for emissivity and 7 spectral measurements. Target temperature is 
320K and radiance noise is 1%. 
 

Number of bands Tσ  (K) εσ  

1 1.5 0.020 
2 2.6 0.035 
3 3.7 0.049 
4 5.7 0.076 
5 6.7 0.090 
6 7.2 0.094 

 
 
 

The errors increase with the number of bands, starting from the values corresponding to a 
degree 0 polynomial and ending at values that are lower than those obtained with a degree 1 
polynomial. This is interesting in the sense that even with six bands, i.e. six degrees of 
freedom for emissivity, the errors don’t “explode” as it was observed before by increasing the 
polynomial degree. The grey-bands model, although not being smooth, could thus capture 
more easily rapid variations in the emissivity profile like peaks. 
However, as stated before, the standard errors that are here presented only reflect what 
happens when noise corrupts the radiance emitted by a surface which otherwise perfectly 
follows the staircase model. As an example, with the 6-bands case, the emissivity should be 
equal in the two channels that were chosen to form the largest band.  
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4.2.3. A look on the solutions of the ETS problem 
 
Another way of presenting the ill-posedness of the ETS problem and the difficulties in finding 
an appropriate regularization consists, like in [19], in exposing the multiple solutions to this 
underdetermined problem. For this purpose we took two examples for the “true” emissivity 
profile: either a linear profile or a polynomial of degree 6. These profiles are represented with 
bold lines in figure 5.6 and in figure 5.7. 
The emitted radiance was then calculated according to Planck’s law assuming a  
temperature =T 320K in both cases (for simplicity we discarded at this stage the eventual 
reflections; experimental noise was also discarded, it will be added later). Then, from 
different temperature estimated values T̂ , one can infer the emissivity profile ( )T̂,ˆ λε  which 
exactly leads to the observed radiance. The estimated emissivity profile is given by: 
 

 ( ) ( )
( ) ( ) ( )

( )TB

TB

TB

TL
T

ˆ,

,
ˆ,

,ˆ,ˆ
λ
λλε

λ
λλε ==  (5.51) 

 
Some profiles ( )T̂,ˆ λε  are reported in figures 5.6 and 5.7 together with the corresponding 

initially estimated temperature values T̂ . We must stress the point that these emissivity 

profiles together with the corresponding T̂  value are all perfect solutions to the problem, at 
least from the mathematical perspective. As a matter of fact they all lead to the observed 
radiance. Of course one has to discard the emissivity profiles presenting values higher than 
1. With this constraint in mind, the admissible temperatures are from about 304K up. 
Similarly, profiles that reach values less than, say, 0.02-0.03 can also be discarded if one 
has some prior information that the surface is not a very clean polished metal surface. 
 
 

 

Figure 5. 6.  Emissivity profiles inferred by 
considering several temperature values T̂  
either higher or lower than the “real” 
temperature T =320K. T̂  values are 
indicated on the right. The “true” profile is 
in bold line (it is here assumed linear) 
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Figure 5. 7.  Same as in figure 5.6 when 
the “true” profile is a degree 6 polynomial 
function (bold line). 
 

 
The traditional way consists in looking for a solution of ( )λε  in the form of a polynomial and 
performing a least squares regression on the emitted radiance. As an example let us 
consider the case of a polynomial of degree 1. The problem can then be reformulated like 
this: it consists in finding in figure 5.6, respectively in figure 5.7, the profile which is closest to 
a straight line. The closeness criterion should take into account a weighting by the blackbody 
radiance function having in mind the least squares regression on the emitted radiance. Of 
course, in figure 5.6, the profile corresponding to T̂ =320K is the only one to be linear (the 
curvature of the profile changes on each side of T̂ =320K). If there is no error on the 
measured radiance, the perfect match is then for T̂ =320K. Nevertheless, one has to admit 
that the profiles corresponding to an estimated temperature in the range 304K< T̂ <350K are 
not far from a straight line. If one added some experimental noise, it is clear that the squared 
residuals after the linear fit would be in the same range for all profiles ( )T̂,ˆ λε  corresponding 
to this temperature range. 
The case in figure 5.7 is even worse: it is evident that, among all possible solutions, the “true” 
profile is not the closest one to a straight line. Evidently, in this example, the answer for 
optimal T̂  will be a temperature much higher than the “true” value (lower profiles in the figure 
are indeed smoother than higher profiles). The final solution will thus present a bias. A bias 
would also be obtained for the case drawn in figure 5.7 if the chosen emissivity model was a 
degree 0 polynomial instead of a degree 1 polynomial. 
As often stated, when using LSMWP, it is necessary to choose an emissivity model that 
exactly corresponds to the true profile. The difficulty is that most often, the profile shape is 
unknown. A misleading thought is that LSMWP performs a fit of the true profile with the 
chosen model (polynomial, exponential, and so on). Actually, as seen above, performing 
LSMWP comes to choosing among the different possible profile solutions ( )T̂,ˆ λε , the one 
which fits at best to the model, in the least squares sense by weighting it with the blackbody 
radiance (the fit deals with ( )λε  if the observable is radiance and with ( )( )λεln  if it is the 
logarithm of radiance). This can lead to an emissivity profile of much higher or much lower 
mean value than the real one, together with an important temperature error. Actually, the 
problem with present LSMWP is that it sticks to the emissivity shape rather than to its 
magnitude. 
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4.2.4. Least squares solution of the non linearized  ETS problem 
 
When using the Planck’s law instead of the Wien’s approximation, LSMWP cannot be 
linearized anymore. The nonlinear least squares problem can be tackled with the Levenberg-
Marquardt method as provided for example by the lsqnonlin function from MATLAB library. 
When choosing a linear model for emissivity and when the "true" emissivity profile is indeed 
linear this naturally leads to the right temperature and the right emissivity profile (there is no 
systematic error when the simulated emissivity spectrum corresponds to the chosen model). 
On the contrary, when the "true" emissivity profile is not linear, the identification presents a 
bias. For a “true” emissivity profile corresponding to the bold line curve in figure 5.7, the 
result is reported in figures 5.8 and 5.9. For this example we assumed seven equidistant 
spectral measurements between 8 µm and 14 µm. The dots in figure 5.8 correspond to the 
simulated measured radiance (no noise at this stage) and the line corresponds to the 
radiance calculated from ( ) ( ) ( )TBTL d

ˆ,ˆ,ˆ
1 λλελ =  where ( )λε 1

ˆ
d  is the degree 1 polynomial 

solution of the LSMWP inversion. A perfect match for radiance is of course impossible: the 
low order model chosen for emissivity (degree 1 polynomial) cannot explain the observed 
radiance variations. The least squares procedure reveals that the ( )T̂,ˆ λε  profile in figure 5.7 
that fits at best to a straight line (taking into account the weighting with the blackbody 
radiance), is the one corresponding to a temperature of 335.3K. The seven dots in figure 5.9 
correspond to ( )3.335,ˆ λε  and the dotted line is the best linear estimate for emissivity ( )λε 1

ˆ
d . 

The systematic error is thus +15K for temperature and between -0.06 and -0.2 for emissivity. 
 

 

Figure 5. 8.  Inversion result for the degree 
6 polynomial emissivity profile from figure 
5.7 when using a linear model. Dots 
represent the “true” noiseless radiance, 
the dashed line is the emitted radiance 
according to the solution (i.e. with “best” 
linear emissivity profile) 
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Figure 5. 9. Inversion result for the degree 
6 polynomial emissivity profile from figure 
5.7 (T=320K) when using a linear model. 
The “true” emissivity profile is labeled 
320K. The linear solution ( )λε 1

ˆ
d  which is 

associated with a temperature of 335.3K is 
in dotted line. The profile ( )3.335,ˆ λε  is 
represented with dots. 
 

 
If the fitting happened be too far from the ( )T̂,ˆ λε  profile, one should change the model. For 
this particular example, however, changing to a quadratic model leads to a complete failure: 
the profile in figure 5.7 that is closest to a degree 2 polynomial is the one corresponding to 
230K and the retrieved (hypothetical) emissivity spectrum ranges between 2 and 6 ! 
Obviously one should impose the constraint ( )T̂,ˆ λε <1. The acceptable solution would then 

be the profile associated to T̂ =304K which nethertheless means a 16K underestimation. 
 
Let us now analyze the influence of the measurement noise on the temperature and 
emissivity separation performance. This can be easily performed by simulating experiments 
where the theoretical radiance is corrupted with artificial noise. The radiance is altered by 
adding values that are randomly generated with a predetermined probability density function. 
We assumed a Gaussian distribution with a spectrally uniform standard deviation. We fixed it 
to a value ranging from 0.2% to 6% of the maximum radiance (additive noise). The least 
squares minimization was performed without constraint (i.e. without imposing iε <1) in order 
to highlight the mathematical (poor) stability of the inversion procedure. A series of 200 
radiance spectra were treated for each noise level and for both nominal emissivity profiles 
described in figures 3.6 and 3.7 (polynomial functions of degree 1 or 6). As before we 
assumed that the spectral measurements are performed at seven equidistant wavelengths 
between 8 µm and 14 µm. We chose a linear emissivity model for the LSMWP inversion. The 
results for the maximum root mean square emissivity error among the seven channels are 
plotted in figure 5.10-left. Those for the root mean square error on temperature are plotted in 
figure 5.10-right. One can notice that: 

- when the “true” profile is linear (crosses), the RMS error on temperature and on 
emissivity increases proportionally to the radiance noise level (the temperature RMS 
error becomes somewhat erratic when noise is higher than about 3%). In particular, 
the RMS errors are 0.1 for emissivity and 8K for temperature in the case of a 1% 
measurement noise. 
- when the “true” profile is a degree 6 polynomial (circles), the RMS errors are first 
dominated by the systematic error, which corresponds to the model implementation 
error (the chosen model – degree 1 polynomial – is too crude for representing the 
“true” profile); statistic errors due to the measurement noise dominate only when 
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noise is higher than 2-3%. The RMS errors are 0.2 for emissivity and 17K for 
temperature in the case of a 1% measurement noise. 
 

 
 
Figure 5.10.   Statistic analysis (Monte Carlo sampling with 200 simulated experiments) of 
the measurement noise influence on the identified emissivity when using a linear emissivity 
model. The “true” emissivity was considered linear (crosses) or a degree 6 polynomial 
(circles). Multispectral measurement in seven channels between 8 and 14µm. Left : 
emissivity error, Right : temperature error. 
 
Let us also add that the inversion leads to a systematic error as soon as the “true” profile 
departs from a straight line. The previous analysis allows us to evaluate the magnitude of this 
error when the deviation is small. Statistically, by considering several “true” profiles close to 
the nominal straight line in figure 5.6, the RMS of the systematic errors would be equal to the 
RMS of the statistic errors obtained by adding the same amount of measurement noise. For 
this reason, a “true” profile departing by as little as 1% from a straight line leads to an 
emissivity bias whose RMS value is about 0.1. The temperature quadratic mean error is in 
this case about 8K which is far from negligible. This result highlights the considerable 
importance of choosing the right emissivity model. This impact can be reduced by increasing 
the number of spectral channels (the trend is like 21−N  as seen later), at the condition that 
the departure from the profile model is randomly distributed. 
The same analysis was performed by assuming that both the "true" profile and the model are 
quadratic. The RMS errors (not presented here) are roughly proportional to the radiance 
noise level like when both profiles are linear however at a much higher level: in the case of a 
1% measurement noise, the RMS errors reach 0.33 for emissivity and 49K for temperature. 
It is well known that statistic errors can be reduced by increasing the number of 
measurements, here by increasing the number of channels. This is confirmed in figure 5.11 
where this number was increased from 7 to 120, keeping the channels uniformly distributed 
between 8µm and 14 µm. For this illustration the radiance measurement noise was fixed at 
1%. One can notice that the RMS errors indeed decrease in the case of the linear “true” 
profile with a power-law trend, close to the 21−N  classical reduction. In the case of the more 
complicated degree 6 polynomial “true” profile there is no such reduction. As a matter of fact, 
systematic errors always dominate. There is even a progressive increase of the RMS errors 
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with the number of wavelengths. The RMS errors of 0.2 for emissivity and 17K for 
temperature that are observed with 7 channels cannot be reduced by adding more channels.  
 

 
Figure 5.11.   Same as in figure 5.10 when keeping a 1% gaussian noise for radiance but 
progressively increasing the number of channels from 7 to 120 (uniformly distributed 
between 8µm and 14µm).  
 
 
As a conclusion we can state that:  

- Even by reducing the number of unknowns, as was done here by modeling spectral 
emissivity with a polynomial of low degree, the problem remains badly conditioned; 
with a polynomial model (either for ( )λε  or for ( )λεln ), reasonable inversion results 
are expected only up to degree 1. 
- Important systematic errors appear as soon as the real emissivity departs from the 
considered model: 1% departure from a straight line already leads to 8K RMS error. 
More complicated spectral shapes lead to unpredictably high systematic errors (17K 
for the considered example of a degree 6 polynomial). 
- Even if the real emissivity values at the sampled wavelengths iε  i=1,N perfectly 
fitted to a straight line, the demand on radiance measurement precision is very high: 
as a matter of fact no more than 0.12% noise is allowed to get a 1K RMS error near 
room temperature for a 7-band pyrometer between 8µm and 14µm. 

 
The same analysis was performed by considering the grey-bands model [2]. One noticed that 
for some particular number of bands, the results are significantly better than with the linear 
emissivity model. However, the results may vary by a factor of two by just changing by one 
the number of bands. This unpredictable behavior seems to preclude the grey-bands model 
from leading to a safer and more efficient inversion than with the linear emissivity model. 
 
Finally, LSMWP is not performing well for simultaneous evaluation of temperature and 
emissivity when using the emitted spectral radiance only. Reasonable RMS values can be 
obtained only when the emissivity spectrum perfectly matches with the implemented 
emissivity model (grey-bands or linear). Otherwise, important systematic errors are 
encountered. The problem is that, apart from a few exceptions, one does not know 
beforehand whether the emissivity of a tested material complies with such or another model. 
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As a conclusion, it would seem that there is no valuable reason for implementing LSMWP in 
place of the simpler one-color or bispectral pyrometry. All methods need an a-priori 
information about emissivity. However the requirements with one-color pyrometry (the 
knowledge of an emissivity level) or with bispectral pyrometry (the knowledge of the ratio of 
emissivity at two wavelengths) are less difficult to satisfy than the requirement with LSMWP 
which is a requirement of a strict shape conformity of the emissivity profile with a given 
parametric function which, practically, is impossible to satisfy. 
Regarding LSMWP, one must finally admit that without a knowledge about the emissivity 
magnitude, the temperature measurement cannot be very precise. Some vague intuition 
about the shape of the emissivity spectrum is not sufficient and adding more wavelengths 
doesn’t help much. The blackbody spectrum is too regular, therefore, introducing an 
emissivity polynomial model of higher degree than 1 introduces high correlations and 
generally leads to poor results. 
 

4.3. Another multiwavelengh approach: the TES metho d 
 
The TES method is a multiwavelength approach that was developed for land-surface 
temperature evaluation through infrared remote sensing, more specifically for the Advanced 
Space-borne Thermal Emission and Reflection Radiometer (ASTER) on board TERRA 
satellite [45]. It is a five-channel multispectral thermal–IR scanner. 
TES is based on the observation that the relative spectrum ( ) ( ) ελελβ ˆˆ=  where the apparent 

emissivity ( )λε̂  is obtained from an estimation of temperature T̂  according to: 

 ( ) ( ) ( )
( ) ( )λλ

λλλε
↓

↓

−
−=

LTB

LTL
T

ˆ,

,ˆ,ˆ  (5.52) 

is relatively insensitive to the temperature estimation error. A crude estimation as with the 
Normalized Emissivity Method (NEM) is thus sufficient [45]. The question is then how 
extracting the absolute spectrum ( )λε̂  from the relative spectrum ( )λβ . Gillespie et al. [45] 
found out a correlation between minε  and the minimum-maximum emissivity difference 
defined by minmax ββ −=MMD : 

 737.0
min 687.0994.0 MMD−≈ε  (5.53) 

The regression was based on 86 laboratory reflectance spectra from the ASTER spectral 
library [6] for soils, rocks, vegetation, snow, and water between 10 and 14µm. Ninety five 
percent of the samples fall within 0.02 emissivity units of the regression line. Nevertheless, 
this empirical relation in not universal: data related to artificial materials like metals fall far 
below the regression line. 
After evaluating minε  from the regression law, one retrieves a new estimate of the emissivity 
spectrum through  

 ( ) ( )
min

minˆ
β
ελβλε =  (5.54) 

The temperature T̂ is finally obtained by inverting the Planck’s law in eq. (5.52) where λ  is at 
the maximum emissivity value ( )λε̂ . One or two iterations are sufficient for the convergence 
of the procedure. 
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To be effective, TES requires at least three or four spectral bands. TES doesn’t work well for 
near-grey materials (as a matter of fact minε  would then stick to the 0.994 value). 
TES algorithm is presently used to calculate surface temperature and emissivity standard 
products for ASTER, which are predicted to be within respectively +1.5K and 0.015 of correct 
values. Validations performed on different sites demonstrated that TES generally performs 
within these limits. 
The regression law: 
 815.0

min 777.0999.0 MMD−≈ε  (5.55) 
was obtained using 108 emissivity spectra from the ASTER library, without man-made 
materials. It was compared with spectra of manmade materials used over urban surfaces in 
[47] (see fig. 5.11). The correlation in eq. (5.55) is relatively good for most considered 
manmade materials. Metallic surfaces are however badly modeled by this empirical 
relationship. 
 

 
Figure 5.11.   Correlation between MMD and minε  in eq. (5.54) and comparison with 54 man-
made materials spectra. Right figure is a detail from left plot [47]. 
 
The RMSE for emissivity is 0.017 in average (for a series of 9 manmade urban materials 
excluding metallic materials: brick, glass, tile, asphalt, concrete, marble, cement) and it may 
rise to 0.03 for some materials like marble and glass. Simultaneously, the RMSE for 
temperature is 0.9K in average and may rise to 1.5-1.8K for marble and glass (‘true’ 
temperature was set between 295K and 310K) [47]. 
The TES method is performing well for natural materials and man-made materials (excluding 
metallic materials) in the context of remote sensing. This concept could be extended to other 
situations. The decisive point would be to find out an empirical relation of the type in eq. 
(5.53) or (5.55) from the spectra of the considered materials. 
 

5. Infrared systems calibration 
 
Prior to any measurement using an infrared device, it is important to be aware of the 
limitations of the technique, but also of the transfer function of the device. Some work, 
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concerning either the thermography technique [48, 49] or the associated metrology [50-53] 
are available in the literature.  
There are three major points of necessary characterization of the devices: inaccuracies of 
the calibration, spatial non-uniformity, and irregular time sampling can lead to false 
parameter estimation.  
 

5.1. Thermal calibration 
 
In order to obtain reliable results, the user must, first of all, be confident in the apparatus 
calibration. Most of the time, infrared devices have their own setting and acquisition 
applications, including data-processing applications for digitizing, non-uniformity corrections, 
display, basic operations… 
Generally, the calibration laws used by manufacturers suppose the sensor’s response is 
linear, and consider the differences between the pixels’ responses only as distributions of 
gains and offsets. The calibration of the device consists then in two distinct operations: the 
calibration of the average of a central area, and the application of maps of gains and offsets 
to link the response of each pixel to the one of the average of the sensor matrix. This second 
operation is called “Non-Uniformity Correction” (NUC).  
In most cases, the calibration law is taken in the form of a 2 or 3 degree polynomial, more 
rarely a Planck-type law. 
 
 ( ) cbTaTTLm ++= 2  (5.56) 

 

 ( ) Offset

F
T

B

R
TLm +








 −







=

exp

 (5.57) 

 
Where (a, b, c) or (R, B, F and offset) are parameters identified during the calibration, and 
Lm the radiance measured by the camera, expressed in arbitrary units.  
The gains and offsets maps are computed so as to obtain uniform distributions of digitized 
fluxes for two specific images of uniform thermal scenes taken at two different temperatures; 
these two scenes are generally obtained by means of an extended blackbody. Recently, 
some manufacturers proposed to go further, by linking the values of the gain and offset maps 
an “internal temperature” of the camera, in order to compensate the thermal drifts associated 
with the heat produced by the internal electronics and the heat exchanges between the 
camera and its environment. This “advanced” non-uniformity correction is often called 
“Compensated Non-Uniformity Correction”: CNUC.  
Moreover, sensor matrixes always include some defective pixels (generally less than 0.5%), 
that can be saturated pixels, noisy pixels, or even “dead” pixels. They are localized using 
criteria dealing mainly with the discrepancy with respect to the mean response (in terms of 
digitized flux, gain, offset, etc.). Manufacturers propose to replace the value of these pixels 
by the one of their nearest non-defective neighbour (Bad Pixel Replacement, or BPR 
procedure), that induce a complete local correlation.  
 
The validity of the standard calibrations can be easily checked out by observing a given 
thermal scene with a unique camera, but using different calibrations, associated with different 
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acquisition settings (integration time / measurement range). As an illustration, figure 5-2 
illustrates different observations on a blackbody using different infrared cameras. These two 
illustrations show that it is appropriate, if possible, to use the centre of the matrix and the 
middle of the calibration range when using the manufacturer’s calibration laws. If the 
application needs a wider measurement area, it could be convenient to take into account the 
dispersion of the measured values in the data treatment procedure. 

 
 

 
(a) 

(b)  

 

Figure 5.12.   Check of the calibration using an extended black body: (a) Comparison 
between two ranges of a single camera (FLIR SC1000), (b) Comparison between several 
pixels responses (CEDIP IRC 320-4LW) of the array. 
 
If the specifications on the measurement accuracy are more stringent than one Kelvin, or if 
the independence of the measurement is a critical parameter for the later data processing, 
another solution is to be found. The most logical one consists in performing a customized 
calibration of the whole sensor matrix with testing conditions and camera configuration 
(integration time, windowing, etc.) similar to those used for the application, fitting the 
behavior of each detector independently. 
This calibration overcomes the limitations inherent to the NUC (or CNUC) and BPR 
procedures (linearity assumption valid further enough from saturation for the NUC, 
introduction of a strong spatial correlation between neighbouring pixels for the BPR 
operation…). However, it requires a high-uniformity extended blackbody so as to have a 
uniform radiation source at different temperature levels covering the whole range of the 
future application.  
Once more, as in the standard global calibration procedure, the calibration law of each pixel 
can be chosen as a polynomial or as a Planck-like function, but the constant will be arrays of 
coefficients, the size of which being the one of the infrared matrix itself. These calibration 
coefficients are obtained by approximating, generally in the least squares sense, the couples 
(digitized radiation–temperature) by the chosen calibration function. 
Defective pixels are then localized using a criterion for measuring the mismatch between the 
calibrated and specified temperature. The BPR operation is not performed: temperatures of 
the defective pixels are not taken into account in the subsequent data-processing. A specific 
pixel-to-pixel calibration is detailed in [54]. 
 

5.2. Temporal analysis 
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The integration time is the duration during which the radiation coming from the thermal scene 
is collected by the detectors of the camera. Consequently, it determines the ultimate 
temporal resolution of the device. As the image transfer time to the storage memory or to the 
hard disk is often much higher than the integration time (several milliseconds compared to 
some tenths or hundreds of microseconds), the camera thus does not see the scene during 
most of the time, which is particularly penalizing for observing fast phenomena. 
 
Regardless of the problems connected to the integration time, the temporal analysis can be 
disturbed by the absence of some images in the stored sequence. Depending on the 
devices, a temporal shift of one or two images can occur at the beginning of the sequence. 
This is due to the fact that the first stored image corresponds to the one that was captured 
when the starting order occurred, not the actual image at the beginning of the sequence; 
sometimes, due to pre-processing, the temporal shit can be of two images. Then, on 
condition that the user is aware of this fact, a simple sequence shift is enough to correct this 
edge effect. 
The second, more penalizing, problem is the absence of some images within a sequence. 
This problem is relatively unimportant in terms of visualization, but can become critical in the 
data processing when time is highly involved. Algorithms that are compatible with variable 
acquisition frequencies are then required. To count and isolate times from the missing 
images, it is possible to directly read time information in the files from the camera, provided 
that they have been accurately stored, i.e. sufficient with respect to the acquisition 
frequencies used. Depending on the camera model, the number of images missing can thus 
range from one to several dozens. 
 

  
Figure 5.13.   Errors induced by the missing images in lock-in thermography: amplitude is not 

really affected but phase is strongly distorted 
 
Figure 5.13 presents the artefacts observed in the case of a numerical lock-in procedure 
applied to a series of 500 images in which only two images are missing. If the amplitude is 
not very affected, the phase has a completely erratic behaviour, and takes a value that 
depends directly on the number and the phase of the missing images. 
 

5.3. Spatial resolution 
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The focal plane array technology has indubitably led to improvements in image quality 
(Figure 5-4). However, the quality of an image can be considered either from the point of 
view of the esthetics, or from the one of the metrology. Unfortunately, these two approaches 
are rarely compatible… 
 

 
Figure 5.14.   Strain gauge (tracks of approximately 20 µm) observed with an “M1” lens. 
 

In order to ensure to obtain reliable measurements, the independence of each sensor 
relatively to its neighbors must be checked. One of the most current tests for characterizing 
such equipment is the Slit Response Function (SRF) test: the camera focuses on a thermal 
side-cooled slit of variable width, placed in front of a hot plate; the following contrast function 
is then studied: 

 

 ( )
minmax

min

VV

VxV
FRF

−
−

= , (5.58) 

 
where V(x) is the value recorded for a slit width equal to x, Vmax is the value recorded when 
the slit is wide open (x →∞) and Vmin is the recorded value on the cooled part (Figure 16-5a). 
In general, it is assumed that, for 320 x 240 pixel cameras, to obtain a good measurement 
the object must be projected on at least two detectors. Thus, with a lens magnification of 1 
(“M1”) and a matrix periodicity of 30 µm, one obtains truly independent information only at 
each step of 60 µm. 
A study of this SRF for different positions clearly shows (Figure 5.15) that the pixels are quite 
more correlated on the edges of the array than in the center. Note that there is indeed a 
problem of correlation between close measurement points, i.e. on the one hand, only the 
contrast (and by no means the average value) is affected and, on the other hand, there is 
convolution of the thermal scene by this response function. Consequently, a simple 
geometrical correction (e.g. of repositioning of the points in the image, or amplification and/or 
offsets applied to each pixel) is necessary to recover the real quantitative image of the 
scene, in addition to a deconvolution procedure. 
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(a) (b) 

Figure 5.15.   (a) Slit Response Function; (b) SRF near the edge of the array compared to 
SRF at the centre (CEDIP IRC 320-4 LW camera) 
 

5.4. Thermal noise and thermal drift 
 
The infrared devices usually used in R&D are cooled at approximately 80 K in order to 
reduce radiation in the vicinity of the infrared sensors. In new-generation IR cameras, a 
Stirling cycle engine has replaced liquid nitrogen cooling systems of older cameras. Though 
the cameras have thus gained in portability, this new system has a non-negligible drawback: 
the cooling, which was quasi-instantaneous with nitrogen, now requires at least 10 min 
before any measurement is possible (figure 5.16a).  

 

  
 

Figure 5.16.   (a) Cooling CEDIP IRC320-4LW, (b) thermal drift CEDIP JADE III 
 
 
In addition, once the cooling is achieved, a slow drift of about 1 to 5 mK per second can 
occur with certain materials, sometimes over durations reaching a few hours (figure 5.16b). 
This temperature drift is mainly due to the evolution of the internal temperature of the 
camera, and modify the sensor responses, so it is appropriate in several situations to wait 
until the camera temperature is stabilized, or to take this internal drift into account in the 
conversion of the digitized signal into temperature (Compensated NUC). In addition, certain 
lower quality materials have instabilities of 0.5 or even 1 K, which that is incompatible with 
quantitative measurements. 

Environment thermal stability 

The signal measured by a camera comes primarily from the object (assumed to be gray and 
opaque in the camera’s spectral range), but also, to a lesser extent (in the most favorable 
conditions), from the environment and atmosphere (figure 5.17). If the environment can be 
considered as an integral radiator of temperature Tenv and if the atmosphere between the 
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target and the camera is isothermal at the temperature Tatm, considering a coefficient of 
transmission τatm, the measured intensity Lmes can be formulated as a function of the intensity 
L0 of a blackbody at the object temperature: 

 

 mes obj env atm
0 0 0a a a. . ( ) (1 ) ( ) (1 ) ( )L L T L T L T= τ ε + τ − ε + − τ  (5.59) 

 

This equation shows that the environment must be reasonably well controlled in order to limit 
the influence of parasitic radiation (reflection from a radiator or any other radiative IR source, 
or even from the operator!). This precaution is all the more important when the measured 
temperature increases are minor. In addition, using a high emissivity coating (thus of low 
reflectivity) is obviously advantageous to minimize the parasitic flow/object flow ratio.  

Along the same lines, note also the presence of the Narcissus effect (reflection of the cold 
detector on the scene), which is often observed when using a macro lens (e.g. lens 
magnification of 1, [55]). Usually, this is only an offset map which is superimposed on the 
scene, and which can thus be offset by subtraction of a reference image.  
Last but not least, possible environmental instabilities could modify the exchange conditions 
between the sample and its environment and thus must be taken into account, especially 
when there are marked temperature variations over time.  
 
 

6. Conclusion 
 
Accurate temperature measurement by radiative means is not an easy task. Many 
parameters have to be evaluated beforehand for extracting the surface emitted radiance from 
the measured radiance (atmospheric contributions: self-emission and attenuation, 
environments radiance reflections). One then faces the problem of temperature-emissivity 
separation. This underdetermined problem requires that some knowledge about the 
emissivity of the tested material is introduced. A general thought is that by adding spectral 
measurements at one or several other wavelengths would help identifying the temperature. 
The underdetermined nature of the problem is however maintained. Introducing a model for 
the emissivity spectral profile is often a misleading idea: high systematic errors unavoidably 
emerge when the model doesn’t perfectly match to the real emissivity profile. Having some 
knowledge on emissivity magnitude helps much than imposing an arbitrary shape model. 
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