

Énergie décentralisée : La micro-cogénération

Solution énergétique

pour le résidentiel et le tertiaire

Jean-Paul ONANA, Chargé d'activités projet PRODÉLEC

PRODuction et gestion de la production d'ÉLECtricité

Direction de la Recherche

Pôle Cogénération et GNV / Projet PRODELEC

Plan de la présentation

Partie I : Généralités

- La production d'énergie décentralisée
- La cogénération

Partie II : Perspectives en micro-cogénération

- La micro-cogénération
- Expérimentation d'un module en micro-cogénération
- Adéquation Technologies / Marchés Clients (Tertiaire, résidentiel)

La production d'énergie décentralisée

Contexte, Bénéfices

Contexte

- Les orientations politiques de l'Union Européenne favorisent le développement de l'énergie décentralisée (DER) :
 - Marché intérieur de l'énergie,
 - Énergie et développement durable (Kyoto),
 - Sécurité d'approvisionnement énergétique
- Les progrès technologiques (consommation, transformation, production de l'énergie) des EnR ou cogénération
- La décentralisation des pouvoirs favorise l'adoption de politiques énergétiques locales

	Production d'électricité en Europe (15 pays)	% Décentralisé
2003	2000 TWh	10%
2010	3000 TWh	22% (*)

(*) Prévisions de la CE en 2001

Bénéfices de la production décentralisée

- Sécurisation de l'alimentation en énergie (diversification du « mix énergétique »)
- Une solution économique et souple de développement des infrastructures
- Efficacité énergétique (cogénération, pertes réseau)
- Fournir de l'énergie aux sites isolés ou peu accessibles

La production décentralisée permet d'afficher ses choix politiques

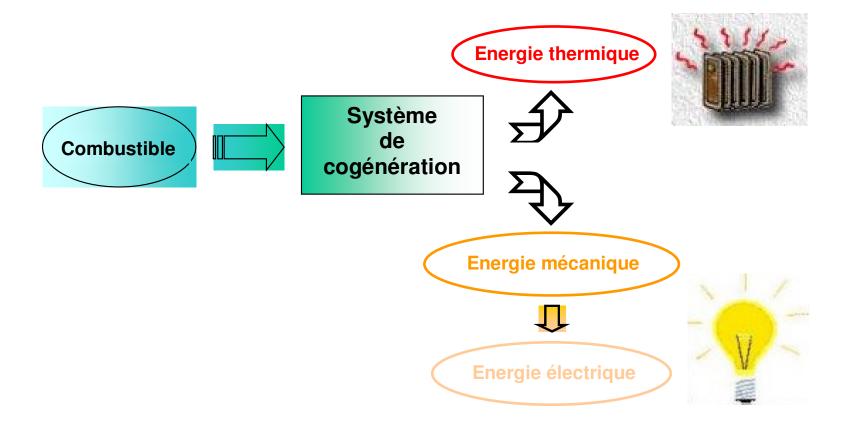
Tant en matière d'innovation que de performances énergétiques et

environnementales

La cogénération

Principe d'une cogénération

Atouts de la cogénération

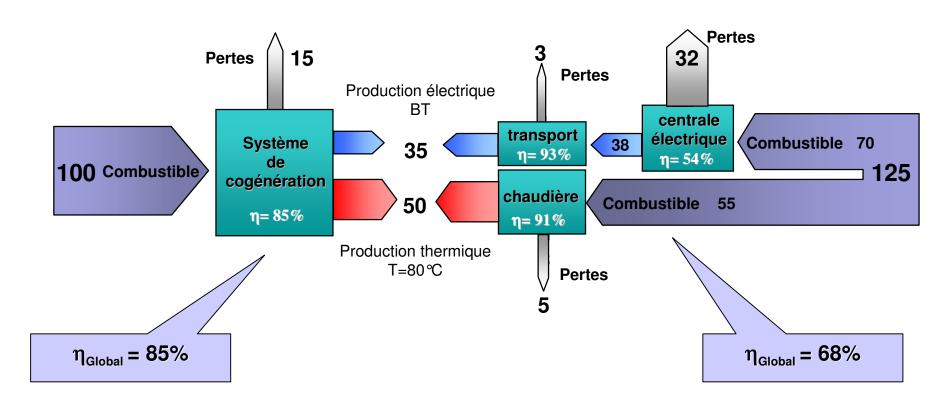

Efficacité énergétique

Technologies plages de puissance

Direction de la Recherche

Pôle Cogénération et GNV / Projet PRODELEC

Principe d'une cogénération



Atouts de la cogénération

- Production simultanée de l'électricité et de la chaleur
 - Favorise l'autonomie
 - Gestion individualisée de son mode de production d'énergie,
 - Utilisation des ressources locales,
 - Un moyen continu d'alimentation en électricité (régulation possible dans la majorité des cas).
 - Une disponibilité garantie et continue, notamment pendant tout l'hiver,
 - Avec un bon rendement énergétique :
 - Économie d'énergie primaire (Ep),
 - Évolution des technologies allant dans le sens d'une amélioration des performances énergétiques et environnementales.
 - Avec un bonus environnemental (réduction des GES).
 - Aménagement du territoire et renforcement de la sécurité d'approvisionnement,
 - Facilité d'insertion dans le milieu environnant (en particulier urbain) courts délais de réalisation et de mise en route.

Cogénération : Comparatif

Bilan énergétique positif

Pour le système de cogénération

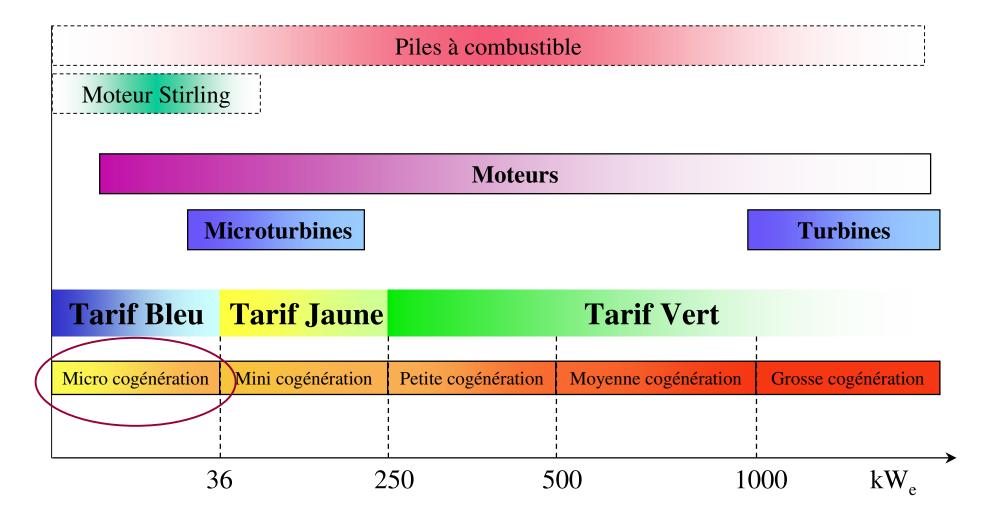
La cogénération : Une économie d'énergie primaire

- Les économies d'énergie
 - Les moteurs permettent de générer un courant électrique de façon continue :
 - Les rendements électriques atteignent les 40%
 - Le rendement global (électrique + thermique) est de l'ordre 90%
 - Les moteurs contribuent ainsi:
 - aux économies d'énergie primaire (E_P > 5%)
 - À la protection de l'environnement
 Références à déterminer pour le bilan CO₂

Proposition de réglementation : Installation de taille inférieure à $1MW : \mathbf{E}_{\mathbf{P}} > 0$

La cogénération : Une économie d'énergie primaire

Les économies d'énergie


- Les moteurs permettent de générer un courant électrique de façon continue :
 - Les rendements électriques atteignent les 40%
 - Le rendement global (électrique + thermique) est de l'ordre 90%
- Les moteurs contribuent ainsi:
 - aux économies d'énergie primaire (E_P > 5%)
- À la protection de l'environnement
 Références à déterminer pour le bilan CO₂

$$E_p = 1 - \frac{Q}{\frac{E}{\eta_{élec}(1-\tau)} + \frac{C}{\eta_{chaudière}}} > 0,05$$

- Q : consommation énergétique du module
- E: électricité produite
- **C** : chaleur produite <u>ET</u> consommée
- η_{élec} : rendement électrique de référence = 54 %
- τ : rendement du réseau (perte)
 - 93 % en BT et 96 % en HTA
- η_{chaudière} : rendement thermique de référence
 - 91% pour T<80℃
 - 85% pour T>110 °C
 - Variation linéaire entre ces deux températures

Technologies et plages de puissance

Technologies matures : Applications stationnaires

Tableau récapitulatif des technologies matures

En quoi consiste la maturité technologique?

Répondre à un cahier des charges

■Phase R&D terminée

Moteurs à combustion

interne : Ok

Turbine: Ok

Moteur Stirling: Précommercialisation

Pile à combustible : R&D

9				
	Moteurs	Turbines	Moteurs Stirling	
Gamme de puissance	1 à 250 kVA	28 à 200 kWe	1 à 9 kWe	
Rendement électrique	28 à 35 %	30%	10 à 20 %	
Rendement global	85%	75%	90 à 95%	
rapport C/E	1,2 à 2	1,5 à 1,7	6 à 8	
Récupération de chaleur	Refroidissement et échappement	Echappement	Refroidissement et échappement	
Pression alimentation gaz	20 mbar ou 300 mbar	4 bars mini	20 mbar	
Production électrique	1500 tr/min - 50 Hz	Electronique de puissance	1500 tr/min - 50Hz	
Coûts	Micro (qqkWe) : 3500 €/kWe Mini(100 kW) : 1600 €/ kWe Mini(200 kW) : 1125 €/ kWe	4000€/kWe	3000 €/kWe	
Avantages	Large gamme de puissance	Durée de vie longue, Maintenance réduite, Faible émissions de Nox	Compacité, silencieux, bon rendement, faibles émissions de Nox	
Inconvénients	Maintenance	Pression alimentation gaz, faible rendement, Volume ventilation important	Coûts encore élevés	

La cogénération par moteurs à gaz : Une offre constructeur étendue

- De nombreux systèmes de micro et mini-cogénérations commercialement disponibles ou en pré-commercialisation :
- Les systèmes Stirling adaptés aux marchés
 - Du résidentiel individuel, du tertiaire
- Les systèmes « moteurs » bien adaptés aux marchés
 - des professionnels (confort + process),
 - Du résidentiel collectif

Partie II

Perspectives en Micro-cogénération

Direction de la Recherche

Pôle Cogénération et GNV / Projet PRODELEC

La micro-cogénération : Un contexte favorable actuellement ...

Une période charnière pour la réglementation en France :

- Référentiel technique pour le raccordement au réseau,
- Transposition de la Directive cogénération (avant février 2006),
- Intégration de la micro-cogénération dans la RT 2005,
- Nouvelle tarification prévue pour mars 2006.

Des mécanismes de soutien :

- Rachat de l'électricité produite :
 - Arrêté du 13 mars 2002 (auto-consommation + revente au fil de l'eau)
- Crédits d'impôt en perspective,

Des mécanismes d'incitation :

- Les Certificats d'Économie d'Énergie (C.E.E.) : Intégration fin 2006 pour la micro-cogénération,
- Levée de certaines lourdeurs administratives.

La micro-cogénération : Facteurs clés du succès

Performances et coûts systèmes :

- Facteurs technologiques influençant directement le succès d'une technologie :
 - Confort,
 - Rendements,
 - Durée de vie,
 - Maintenance,
 - Retour sur investissement.

Facteur socio-culturel :

- Acceptabilité par le public et les prescripteurs,
- Prise de conscience des contraintes environnementales.

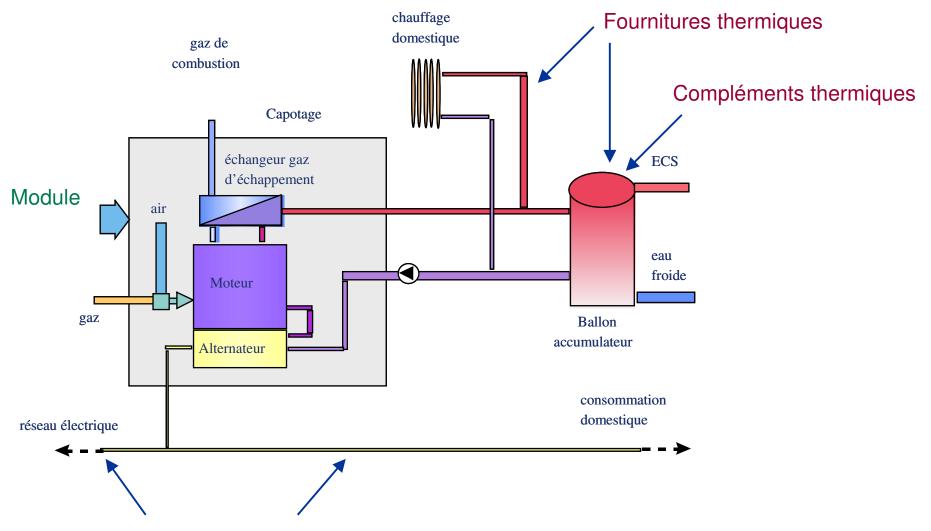
Services énergétiques :

Conseils en MdE, Exploitation (conduite, maintenance), ...

Le module en micro-cogénération

Des avantages supplémentaires :

- Équipement standard plug&play, produit sur catalogue,
- Enceinte insonorisée, compacte et monobloc : tous les éléments sont intégrés dans la « boîte »,
- Encombrement réduit,
- Simplicité et rapidité d'installation,
- Maintenance et conduite optimisées,
- Gamme de puissance large :
 - moins de 1 kW_e à 36 kW


Dans quelques temps : La pile à combustible

Module de cogénération (moteur Stirling)

La micro-cogénération par moteurs à gaz : Schéma synoptique d'une installation

Revente et/ou fourniture en électricité

Source: Whisper Tech

Expérimentation du module Stirling Whispergen G4

Direction de la Recherche

Pôle Cogénération et GNV / Projet PRODELEC

Présentation du site et du module

Le site :

- 2 pièces principales et une cuisine
- Recherche d'optimisation sur l'efficacité énergétique
- Fourniture Chauffage et ECS
- Le module : Whisper Tech (néo-zélandais)
 - Fonctionnement sous trois allures :
 - Allure minimale : 50 W_e et 4,7 kW_{th}
 - Allure normale : 850 W_e et 6 kW_{th}
 - $(\eta_{th}=83,2\% \text{ et } \eta_e=11,8\%)$
 - Allure maximale: 1,4 kW_e et 9,2 kW_{th}
 - Rendement global : 95% pour l'ensemble de ces allures

Objectifs et enjeux du projet

- 2 objectifs majeurs :
 - Le suivi scientifique et le REX de l'unité :
 - Validation in situ des performances et des scénarios d'exploitation :
 - Bilan énergétique du site,
 - Conditions d'exploitation
 - La communication
- Des enjeux à plus long terme :
 - Moteurs Stirling :
 - Technologie du premier pas de la cogénération dans le petit tertiaire et chez les particuliers

INNOVATION

Sensibilisation à la gestion efficace de l'énergie

Whispergen G4: Retour d'expérience

 3 versions du moteur Stirling développé par Whisper Tech ont été testés par la DR de 2001 à 2004

- Combustible: Gaz naturel
- Moteur: 4 cylindres cycle stirling
- Puissance: électrique : jusqu'à 1,2kW à 220-240V
- Puissance thermique: jusqu'à 8kW
- Environnement: 0....55 °C
- Dimensions: 500 x 600 x 850 (w x d x h)
- Masse: 138 kg

- Test de la version 4 du Whisper Gen
 - Bonnes performances thermiques et électriques ηglobal : 90%
 - Fiabilité satisfaisante (aucune panne majeur nécessitant une intervention extérieure)
 - Qualité du courant électrique produit est satisfaisante

Whispergen G4: Conclusion de l'expérimentation

- Un an de retour d'expérience,
- Un encombrement minimum (module),
- Un fonctionnement silencieux dû à l'absence de déflagration dans les cylindres (technologie Stirling),
- Faibles émissions atmosphériques grâce aux bonnes performances des brûleurs gaz utilisés (technologie de génération 4),
- Une régulation adaptée correspondant aux besoins et aux spécificités d'un logement individuel ou d'un client tertiaire,
- Des opérations de maintenance légères et espacées, peu différentes de l'entretien d'une chaudière individuelle.

Adéquation Technologies / Marchés Clients :

Tertiaire

Résidentiel

Direction de la Recherche

Pôle Cogénération et GNV / Projet PRODELEC

Le secteur Résidentiel / Tertiaire

Le résidentiel :

- Résidentiel social, privé individuel, privé collectif
- cf. logement individuel de 100m²:
 - Puissance moyenne pour le chauffage : 4,5 kW

Le tertiaire :

- Identification du secteur tertiaire par surface chauffée en m² et par branche
- cf. commerce de 300 m²:
 - Puissance moyenne pour le chauffage : 8 kW,
 - Puissance moyenne pour l'ECS : 1 kW

Critères de l'évaluation économique

- Étude comparative entre chaudière standard et technologies de micro-cogénération :
 - Marché Résidentiel Individuel
 - Marché Professionnel
 - Marché Résidentiel Collectif et Petit Tertiaire

P_e < 36 kW ; P_{th} < 70 kW → Micro-cogénération

Critères économiques :

- Coût chaudière de référence,
- Caractéristiques technologiques : η, rapport C/E (brûleurs auxiliaires), ballon de stockage, ...
- Évolutions réglementaires: protection de découplage imposée pour des puissances > 4,6 kVA, obligations d'achats (arrêté du 13 mars 2002), crédit d'impôts, TVA ...
- Prix des énergies électriques et gaz,
- Leviers: production de masse (coût objectif à moyen terme), CEE
- Aide financière aux produits innovants (offre commercialisateur Gaz de France)

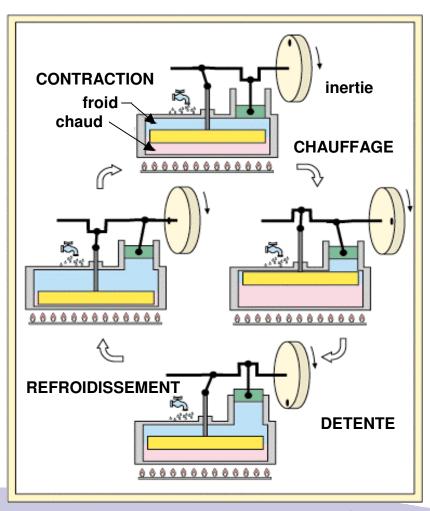
Conclusions

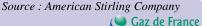
- Essor de la production d'énergie décentralisée,
- Le gaz naturel : une source d'énergie primaire pour de nombreuses années (transition et vecteur secondaire),
- Technologies de cogénération éprouvées (moteurs, turbines à gaz, moteur Stirling),
- Adéquation entre besoins thermiques du secteur Résidentiel / Tertiaire et puissance thermique fournie par micro-cogénération,
- Des réponses aux besoins et attentes Client (secteur Résidentiel / Tertiaire) :
 - Technologies de production décentralisée par cogénération,
 - Des services énergétiques.
- Demain, la pile à combustible ...
 - Technologie prospective : Prototype PaC pour un usage en microcogénération.

Merci pour votre attention

Place à vos questions...

Production d'énergie décentralisée fonctionnant au gaz naturel


Le moteur Stirling


Principe

Moteur à combustion externe utilisant un gaz de travail qui échange de la chaleur entre une source chaude et une source froide.

Avantages

- Bruit limité
- Maintenance réduite
- Respect de l'environnement

