

Quels carburants pour les 20 prochaines années : évolutions actuelles et futures

Dr. Xavier MONTAGNE

Chef du Département ''Carburants, Lubrifiants, Emissions''

Membre de la direction scientifique

IFP

Le contexte général

- → Réduire la dépendance énergétique
- → Lutter contre les changements climatiques : contrôler les émissions de GES
- → Améliorer la qualité de l'air

Les réponses techniques possibles

Moteurs conventionnels

- •à allumage commandé et injection directe ou indirecte de carburant :moteur à essence
- •à allumage par compression et injection directe de carburant : moteur diesel

Carburants conventionnels

- issus du pétrole
- avec composants oxygénés et additifs

Avec engagement ACEA d'atteindre

Moteurs alternatifs

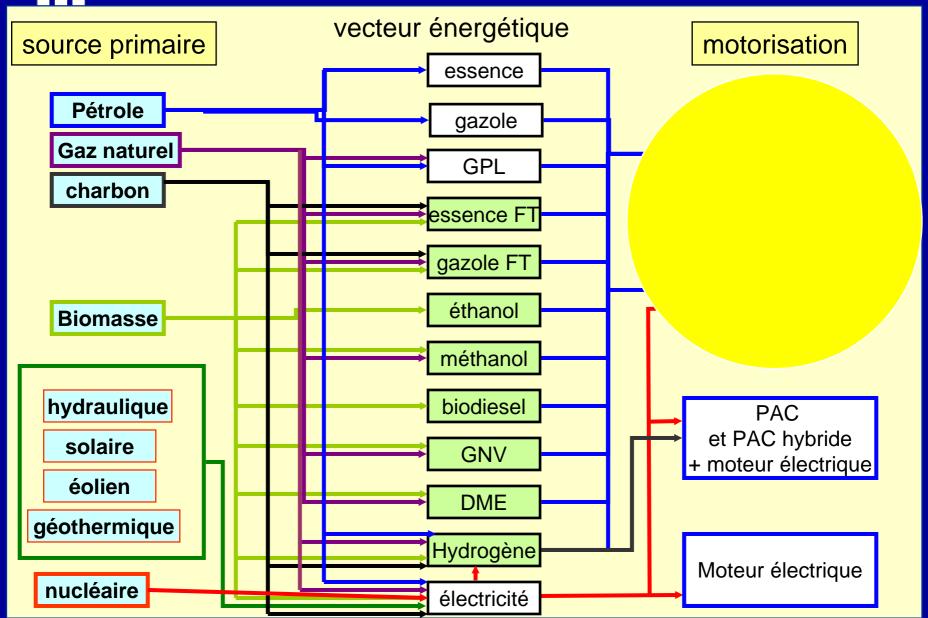
140g CO2/km en moyenne en 2008

Carburants alternatifs

- FFV
- •moteurs dédiés (GNV, GTL, DME, éthanol,....)
- •nouveaux procédés de combustion (HCCI, CAI)
- motorisation électrique (batteries ou pile à combustible)
- •motorisation hybride thermique/électrique

- •carburants reformulés (moteurs conventionnels, nouveaux procédés de combustion, reformeur)
- gazeux: GPL, GNV, DME, H2
- carburants liquides de synthèse : GTL, CTL
- •bio-carburants (éthanol, ETBE, EMHV,EEHV, BtL, NextBtL)

f


Le contexte européen

- → Objectifs de l'UE
 - → Réduire la dépendance énergétique
 - → Favoriser le développement des énergies renouvelables et lutter contre les changements climatiques
- → Forte diésélisation

- → Directives Biocarburants adoptées en 2003 :
 - → Directive "Promotion": fixer pour les membres des objectifs d'incorporation (2003/30/CE)
 - → 2010 : 5,75% du pool carburants ex biomasse, en contenu énergétique, France : anticipation pour 2008

filières énergétiques possibles pour les transports

Carburants et perspectives de développement dans les 20 années à venir

- Evolution continue des carburants conventionnels
 - en phase avec les évolutions technologiques requises pour franchir les étapes réglementaires
- Pénétration des carburants alternatifs :

Directive européenne (2003/30/CE)

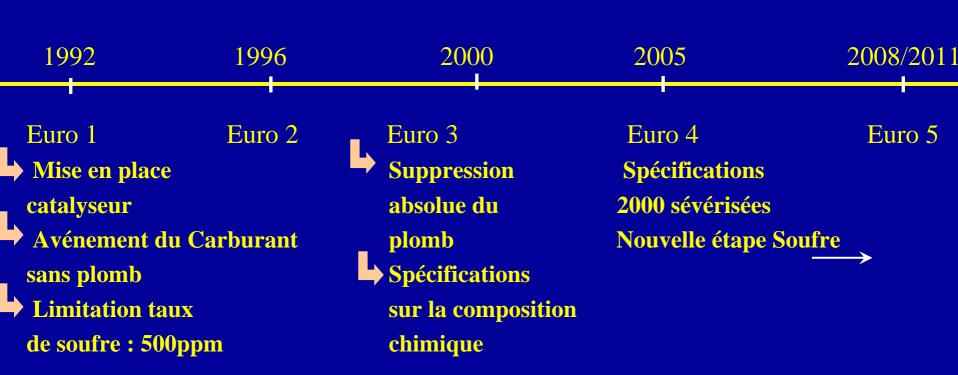
• Emergence de carburants avancés

nouvelles exigences carburants des technologies en ''rupture "

Carburants et perspectives de développement dans les 20 années à venir (1)

- Evolution continue des carburants conventionnels
 - en phase avec les évolutions technologiques requises pour franchir les étapes réglementaires
- Pénétration des carburants alternatifs :

Directive européenne (2003/30/CE)


• Emergence de carburants avancés

nouvelles exigences carburants des technologies en rupture

Carburants conventionnels : une évolution continue (Cas des essences)

évolution pour un fonctionnement optimal des nouvelles technologies et contribution à la maîtrise des émissions

Évolution des spécifications "essence"

	2005	2009	Cat 4 WWFC(1)	
Sulphur content	50 ppm to reach 10 ppm in 2009	< 10 ppm	5 – 10 ppm	
Aromatic content	< 35% vol	< 35% vol	< 35% (2)vol	
Olefin content	< 18% vol	<18% vol	< 10% vol	
Benzene content	< 1% vol	< 1 vol (?)	< 1% vol	
Lead content	id	id	ND	
Vapor pressure (summer)	45-60 kPa	45-60 kPa (?)	45-60 kPa	
RON / MON	95 / 85	95 / 85	95 / 85	
Density	720-775		715-770	

(2): 25% pour RON91

(1): WWFC: World Wide Fuel Charter, version 08/05

Carburants conventionnels : une évolution continue (Cas des gazoles)

évolution pour un fonctionnement optimal des nouvelles technologies et contribution à la maîtrise des émissions

Évolution des spécifications "gazole"

	2005	2009	Cat 4 WWFC (1)	
Sulphur content	50 ppm to reach 10 ppm in 2009	< 10 ppm	< 10 ppm	
Cetane number	>51	>51	> 55	
Density	820-845	820-845	820 - 840	
Cetane Index	>46	>?	> 55	
Poly-aromatic content	< 11 wt %	<11wt% <6-7 wt % ?	< 2 wt%	
Total aromatics	-	-	< 15 wt%	

(1): World Wide Fuel Charter, version 08/05

Carburants et perspectives de développement dans les 20 années à venir (1)

- Evolution continue des carburants conventionnels
 - en phase avec les évolutions technologiques requises pour franchir les étapes réglementaires
- Pénétration des carburants alternatifs :
 - Directive européenne (2003/30/CE)
- Emergence de carburants avancés
 - nouvelles exigences carburants des technologies en rupture

Plan d'action envisagé au niveau européen (Le livre blanc)

	Biocarburants	GNV	H2	Total
2005	2			2
2010	6	2		8
2015	7	5	2	14
2020	8	10	5	23

f

Le contexte européen

→ Objectifs de l'UE

- → Réduire la dépendance énergétique
- → Favoriser le développement des énergies renouvelables et lutter contre les changements climatiques

→ Directives Biocarburants adoptées en 2003 :

- → Directive "Promotion": fixer pour les membres des objectifs d'incorporation (2003/30/CE)
 - → 2010 : 5,75% du pool carburants ex biomasse, en contenu énergétique, France : anticipation pour 2008 et volonté d'atteindre è/ en 2010
- → Directive fiscale

Les filières alternatives à l'horizon 2020

Les filières "court terme"

- Le GPL
- Les biocarburants de première génération

Les filières "moyen terme"

- Le GNV
- Les carburants de synthèse : GtL, CtL, DME
- Les biocarburants de seconde génération

Les filières "long terme"

- l'hydrogène
- •

f

Biocarburants (2)

Les principales options possibles

- Les biocarburants liquides
 - Éthanol / ETBE
 - Huile végétale Directe (HVD ou HVP)
 - Esters d'HV : méthylique ou éthylique (et d'HA)
 - Next-BtL (bio hydrocarbures)
 - BtL
 - Autres produits

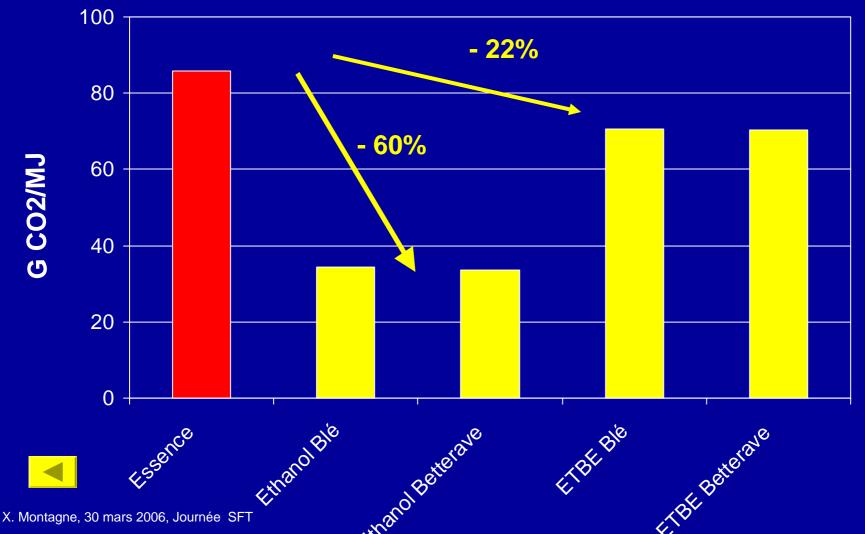
Les biocarburants gazeux

- Biogaz
- DME

Un bilan CO2 du puits à

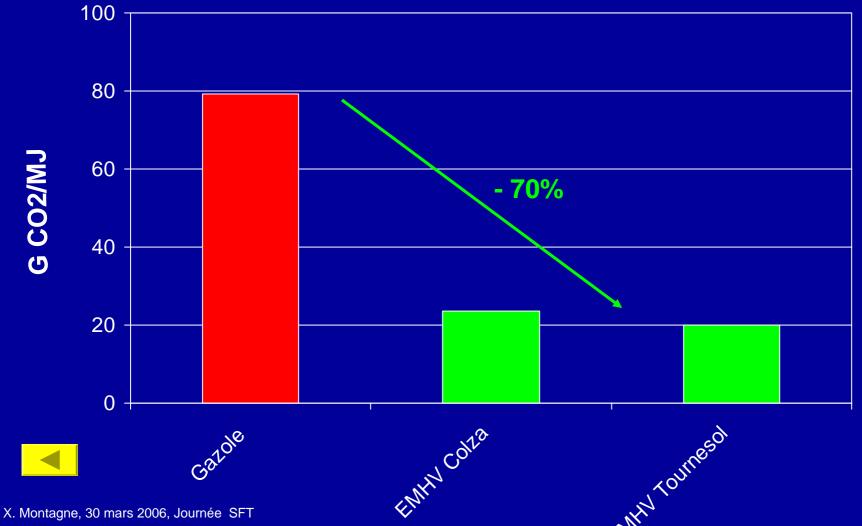
la roue très positif

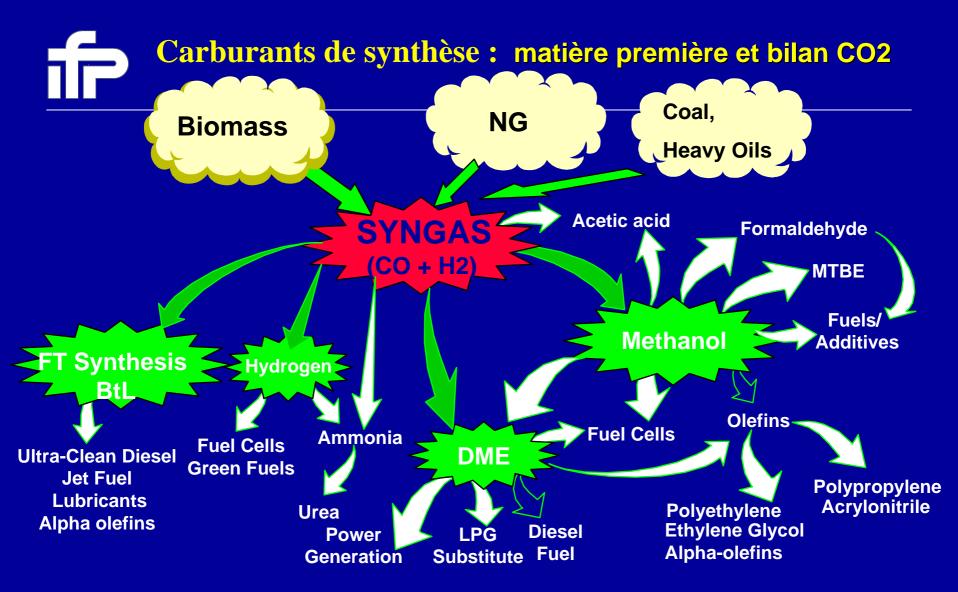
Les biocarburants liquides


Un bilan CO2 du puits à la roue très positif

Type de biocarburants Applications	Biocarburants de première génération (1G)	Biocarburants de seconde génération (2G)
Moteurs AC	Éthanol,ETBE Impact positif sur CO et HC EtOH: TV et Aldéhydes	Éthanol ex BLC (3)
Moteurs Diesel	Biodiesel: (2) EMHV, EEHV, EMHA (HVD - Éthanol) Impact positif sur HC et PM	BtL (3), BioHydrocarbures Hydrocarbures paraffiniques à fort potentiel (Next Btl) (Éthanol)

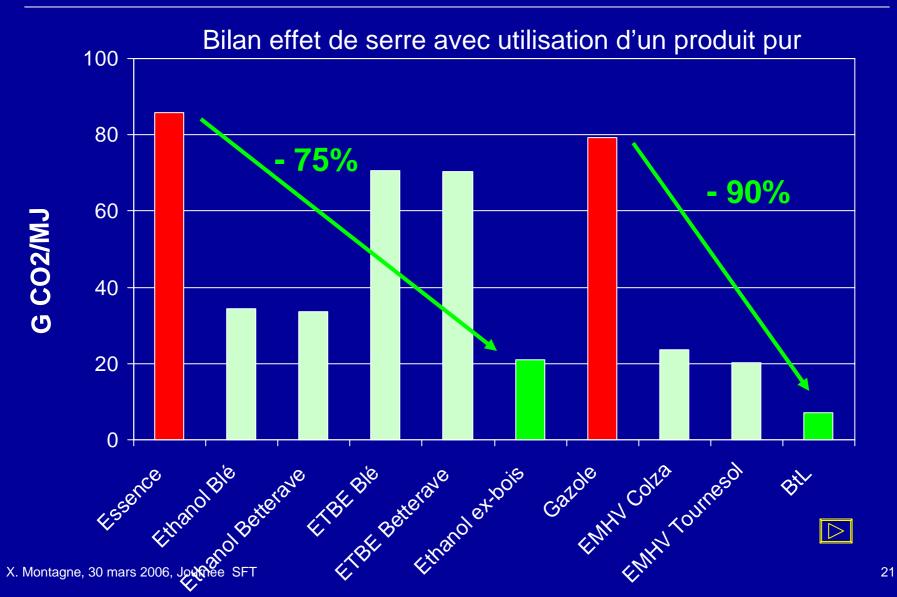
Biocarburants 1G: un bilan effet de serre positif


Bilan effet de serre avec utilisation d'un produit pur



Biocarburants 1G: un bilan effet de serre positif

Bilan effet de serre avec utilisation d'un produit pur



Biocarburants 2G: un bilan effet de serre positif

Carburants et perspectives de développement dans les 20 années à venir (1)

- Evolution continue des carburants conventionnels
 - en phase avec les évolutions technologiques requises pour franchir les étapes réglementaires
- Pénétration des carburants alternatifs :

Directive européenne (2003/30/CE)

• Emergence de carburants avancés

nouvelles exigences carburants des technologies en rupture

CONTEXTE

	Normes	Date	CO	HC	HC+NOx	NOx	Particules
Diesel	Euro 3	2000	0,64		0,56	0,50	0,05
	Euro 4	2005	0,50		0,3	0,25	0,025
	Proposition Euro 5	~2010	0,50		0,25	0,20	0,005
Essence	Euro 3	2000	2,30	0,20		0,15	
	Euro 4	2005	1	0,10		0,08	
	Proposition Euro 5	~2010	1	0,075		0,06	0,005*

En g/km – Véhicules pouvant accueillir 9 sièges

^{*}Applicable seulement pour les véhicules ayant un moteur à injection directe en mélange pauvre

Moteur à allumage commandé

Moteur

<u>Carburant</u>

Mode Conventionnel

- Post-traitement avancé
- Injection indirecte
- Injection directe
 - combustion homogène
 - combustion stratifiée
- Down sizing
- Distribution variable
- E.G.R.
 - externe
 - fort taux interne

- Soufre
- Benzène, aromatiques, oléfines
- Pression de vapeur
- Chaleur latente de vaporisation
- Intervalle de distillation
- Encrassement (additif)
- RON, MON
- Pouvoir lubrifiant
- Nouvelle approche chimique

Moteur Diesel

Moteur

<u>Carburant</u>

Mode conventionnel

Injection directe

- 7 P d'injection
- 🛂 taille trou d'injecteur
- Post-traitement avancé
- E.G.R.
- Injection multiple
- Injection précoce

- Soufre
- Poly-aromatiques
- Densité
- Viscosité, tension superficielle
- Compressibilité
- Prise en compte plus importante de la nature chimique
- Cétane (> importance du délai chimique)
- Distillation
- Génèse des dépôts (> additif)

Mode non - conventionnel
HCCI, LTC

Nouveaux modes de combustion : exemple HCCI

- Mode de combustion HCCI (Homogeneous Charge Compression Ignition)
 - Cycle diesel
 - Auto-inflammation par compression d'un mélange pauvre ou dilué air/carburant
 - Milieu "homogène"
 - Fort contrôle de la combustion par l'EGR

Avantages

- Réduit les émissions de NOx et de particules par un facteur de 10 à 100
- Rendement énergétique identique à celui d'un moteur diesel conventionnel

COMBUSTION HCCI: GENERALITES

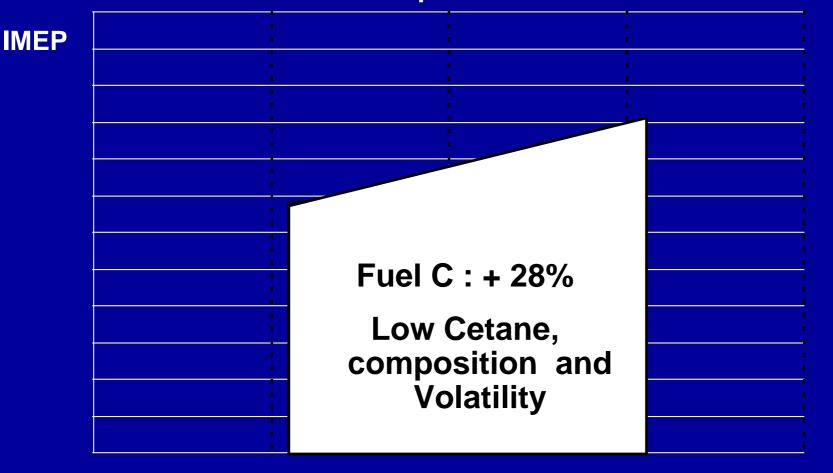
Axes à améliorer

- Diminuer des émissions d'HC et de CO
- Etendre significativement la zone de fonctionnement en mode HCCI
- Maîtriser les niveaux de bruit

Les carburants avancés : Essence ou gazole

Ils suivent de nouveaux axes de formulation permettant un fonctionnement optimal des technologies moteur/système de post-traitement avancées

• ils peuvent se placer en rupture vis à vis des carburants conventionnels


Nouveaux modes de combustion et carburants

- Une bonne maîtrise de la physico-chimie
- Un impact plus marqué des relations chimie/ mécanisme et cinétique d'oxydation
- Vers des carburants technologiques

Un exemple: Fuel Effect on HCCI Operating Range

.....but to maintain the performances out the HCCI area

1000

1500

2000 Engine speed - RPM 2500

3000

Perspectives

- Une évolution continue des carburants pour répondre aux besoins des technologies modernes
- Forte pénétration des énergies alternatives
- Possible émergence de carburants en rupture : carburants technologiques