

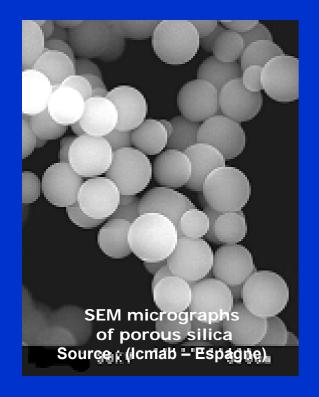
TRANSFERTS DE CHALEUR ENTRE DEUX NANOCRISTALLITES DE SILICE

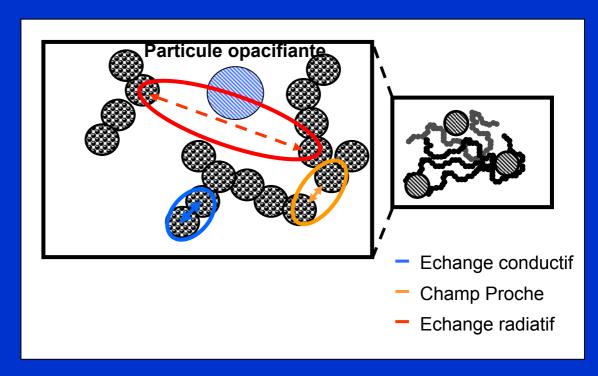
Journée SFT
Thermique des matériaux nanoporeux

G. Domingues, S. Volz, K. Joulain, J-J. Greffet Travaux soutenus par le CEA/Ripault

Jeudi, 27 Janvier 2005

APPLICATION: LES AEROGELS DE SILICE





Conductivité thermique : 4 mW.m⁻¹.K⁻¹ (air : 25 mW.m⁻¹.K⁻¹)

Modèles macroscopiques : $\lambda_{\text{éq}} = \lambda_{\text{gaz}} + \lambda_{\text{solide}} + \lambda_{\text{radiatif}}$

APPLICATION : DESIMER OF GELS DE SILICE

Déterminer la conductance d'échange thermique entre deux nanoparticules de silice hors contact et en contact

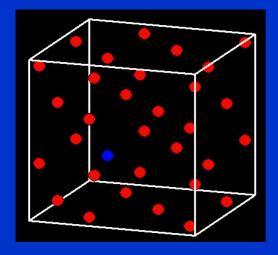
DYNAMIQUE MOLECULAIRE

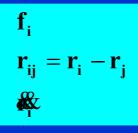
- ullet Simuler les nanoparticules (NPs) distantes de d < quelques nanomètres
- Simuler le contact entre deux NPs
- Calculer le flux échangé entre les NPs
- Caractériser l'évolution des échanges en fonction de la distance de séparation ou des sections de contact

PROB**EEMATIQUE**

- **➤** Présentation de la Dynamique Moléculaire
- **➤** La silice massive
- **➤** Les échanges hors contact
- **➤** Les échanges en contact
- Conclusion et perspectives

PR**PSEDBAEMATIQUE** DM

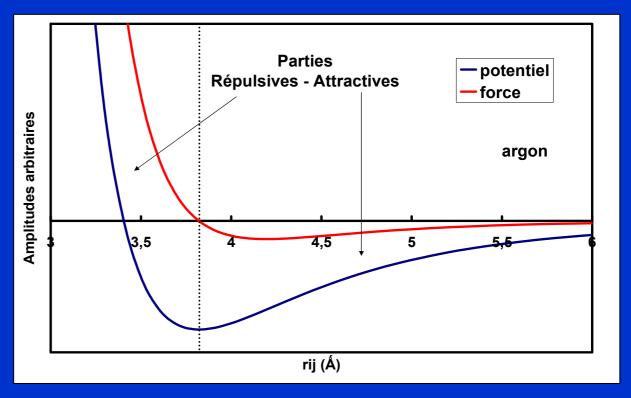




Force exercée sur l'atome i Vecteurs positions

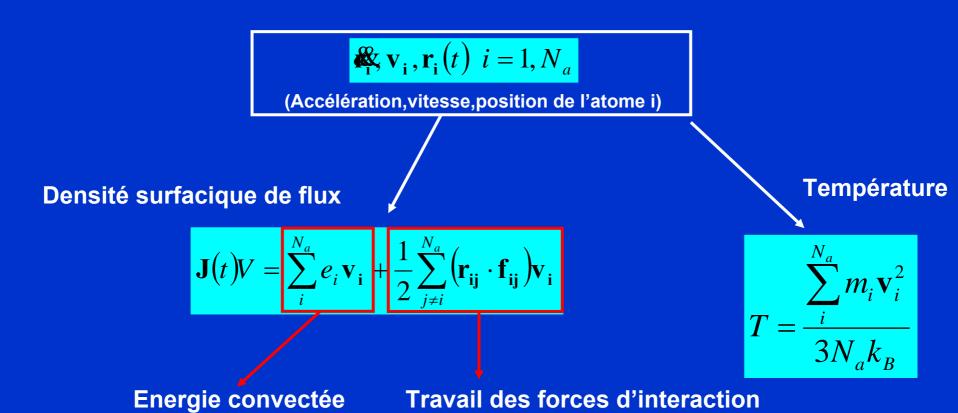
Accélération et masse de l'atome i

Potentiel d'interaction U_{ij} Lennard Jones



PRESENTATION DE LA DM

Variables microscopiques ——— Variables macroscopiques thermiques



- J, V Densité surfacique du flux de chaleur, volume de simulation
- e_i Energie particulaire
- **T** Température

LA SILIERENSESASIIXEIONEDEDEDITAENDIMEL BKS

$$U(r_{ij}) = \frac{q_i q_j e^2}{r_{ij}} + A_{ij} \exp(-B_{ij} r_{ij}) - \frac{C_{ij}}{r_{ij}^6}$$

Potentiel de Coulomb

Généralement décomposé en sommes d'Ewald

Potentiel de Buckingham

Forces attractives (terme en r-6)+ forces répulsives (exponentielle négative)

$$q_i, q_j$$

$$A_{ij}, B_{ij}, C_{ij}$$

$$e^2 = \frac{q_e^2}{4\pi\varepsilon_0}$$

 q_e

 $\boldsymbol{\mathcal{E}}_0$

Charges partielles

Paramètres propres à la Silice

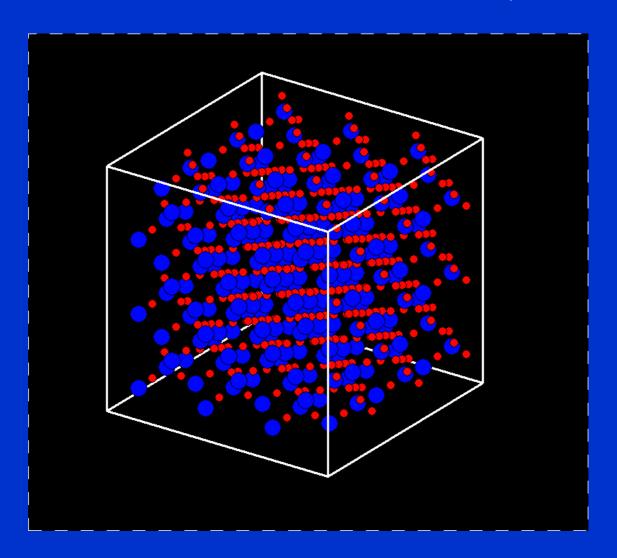
Carré de la constante de Coulomb

Charge de l'électron (C)

Permittivité du vide (Fm⁻¹)

LAASHICE WASSEVE:: LE POTESTOBABINS

- Propriétés mécaniques proches de celles de la silice amorphe
- Transfert thermique lié à la rotation des unités SiO₄



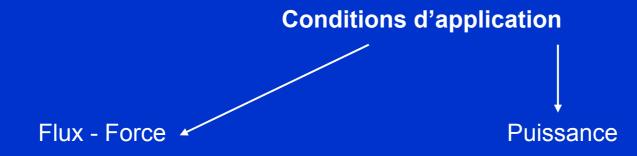
LA SLEIS E CHASISCHES: HLCERSOC ENTITIECTEKS

Deux voies parallèles :

L'Electrostatique fluctuationnelle

L'approche mécanique : DM

LES ECHANGES HORS LOCATION GESTHORREMOENFLACOTTUATION-DISSIPATION



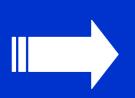
$$I(\omega) = G(\omega)U(\omega)$$

$$Q = 1/2 \operatorname{Re}(U \cdot I^*)$$

THEOREME (Fluctuations d'équilibre)

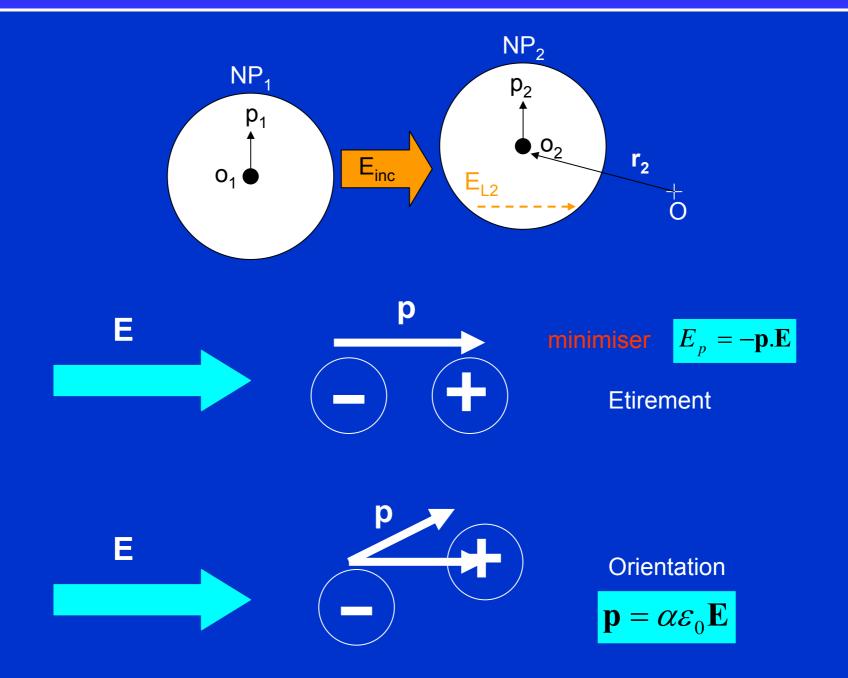
$$\int_{0}^{\infty} \langle I(0) \cdot I^{*}(t) \rangle e^{i\omega t} dt = \operatorname{Re}(G(\omega)) \Theta(\omega, T)$$

$$\Theta(\omega,T) = \frac{\eta\omega}{e^{\frac{\eta\omega}{k_BT}} - 1}$$

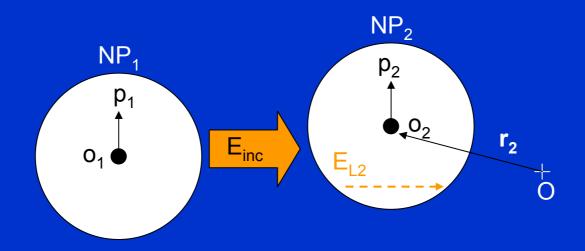


$$\operatorname{Re}(G(\omega)) = \frac{\int_{0}^{\infty} \langle I(0).I^{*}(t) \rangle e^{i\omega t} dt}{\Theta(\omega, T)}$$

LES ECHANGES HORS CONTACT : L'ELLECTROSMEAFLONCE L'AUTONUAIS SIRMELONE



LES ECHANGES HORS CONTACT : L'ELECTROSTATIQUE FLUCTUATIONNELLE



Flux émis par NP₁ et dissipé dans NP₂

$$Q_{1\to 2}(\omega) = \frac{1}{2} \operatorname{Re} \int_{NP2} \mathbf{J}_{2}(\mathbf{r}', \omega) \cdot \mathbf{E}_{L2}^{*}(\mathbf{r}', \omega) d^{3}\mathbf{r}'$$

1 NP = 1 Dipôle soumis à E

$$\mathbf{p_2} = \varepsilon_O \alpha_2 \mathbf{E_{inc}}$$

$$\alpha_2 = 4\pi a_2^3 \frac{\varepsilon_2 - 1}{\varepsilon_2 + 2}$$

$$Q_{1\to 2}(\omega) = \frac{\omega \varepsilon_0}{2} \alpha_2^{"} |\mathbf{E}_{inc}(\mathbf{r}_2, \omega)|^2$$

LES ECHANGES HORS CONTACT : L'ELECTROSTATIQUE FLUCTUATIONNELLE

$$\left|\mathbf{E}_{inc}(\mathbf{r}_{2},\omega)\right|^{2} = \left\langle p_{1\alpha}(\omega)p_{1\beta}^{*}(\omega)\right\rangle \mu_{0}^{2}\omega^{4} \sum_{n,m} \left|\overline{\mathbf{G}}_{n,m}(\mathbf{r}_{2}-\mathbf{r}_{1},\omega)\right|^{2}$$

$$\int_{V_1} \mathbf{J_1.E_{L1}} d^3\mathbf{r} = -i\omega\mathbf{p_1.E_{ext}}$$
 Flux dissipé dans NP₁ Force Flux
$$\frac{-i\omega(\varepsilon_1+2)}{3V_1} \mathbf{p_1} = \frac{-i\omega(\varepsilon_1+2)}{3V_1} \varepsilon_0 \chi_1(\omega) \mathbf{E_{L1}} = \mathbf{J_1}$$

Application du théorème

$$Q_{1\to 2}(\omega) = \frac{\mu_0^2 \varepsilon_0 \omega^4}{2\pi^2} \alpha_2'' \left(\frac{4\pi}{\omega} \varepsilon_0 \alpha_1'' \Theta(\omega, T_1) \delta_{\alpha\beta} \right) \sum_{n,m} \left| \overline{\overline{\mathbf{G}}}_{n,m} (\mathbf{r_2} - \mathbf{r_1}, \omega) \right|^2$$

$$\sum_{n,m} \left| \overline{\overline{\mathbf{G}}}_{n,m} (\mathbf{r}_2 - \mathbf{r}_1, \omega) \right|^2 \approx \frac{3}{8\pi^2 \left(\frac{\omega}{c}\right)^4 |\mathbf{r}_2 - \mathbf{r}_1|^6}$$

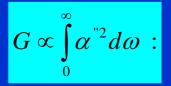
LES ECHANGES HORS CONTACT : L'ELECTROSTATIQUE FLUCTUATIONNELLE

Flux échangé

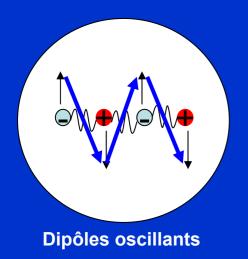
$$Q_{1\leftrightarrow 2} = Q_{1\to 2} - Q_{2\to 1}$$

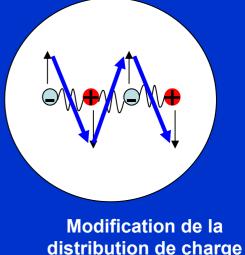
$$G = \frac{3}{4\pi^3 d^6} \int_0^\infty \alpha_1''(\omega) \alpha_2''(\omega) \frac{\partial \Theta(\omega, T)}{\partial T} d\omega$$

- Energie d'un mode pour une pulsation ω et une température T :
- d Distance entre les centres de masse
- Polarisabilité des nanoparticules : $\alpha_{1,2}$
- Rayon des nanoparticules a_{1.2}
- Permittivité diélectrique des nanoparticules ε_{1,2}

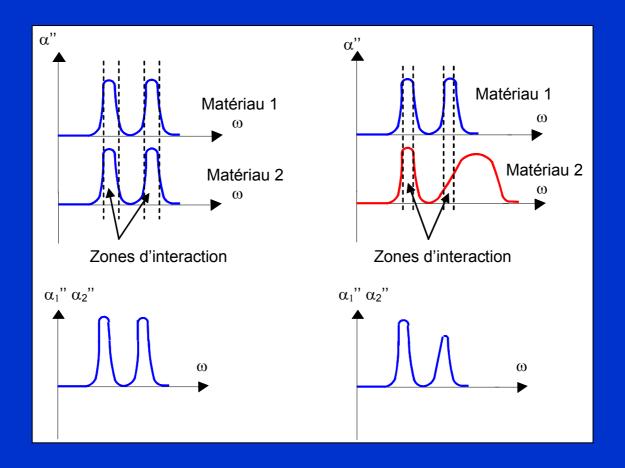


Couplage analogue aux phonons- polaritons





distribution de charge



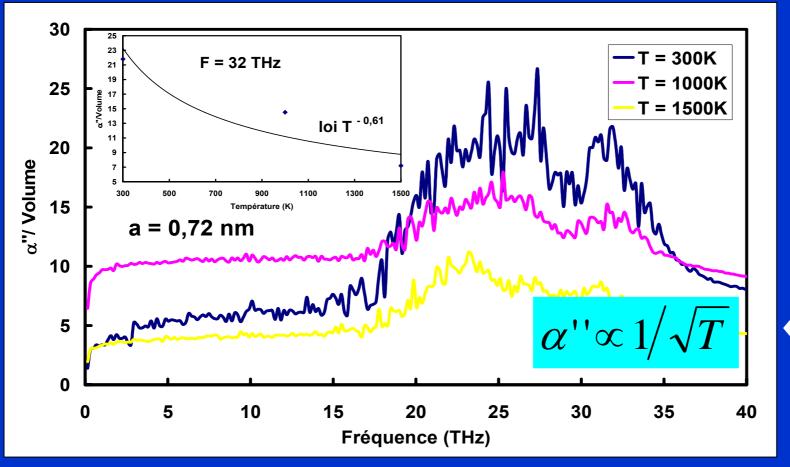
Efficacité maximum pour deux matériaux semblables

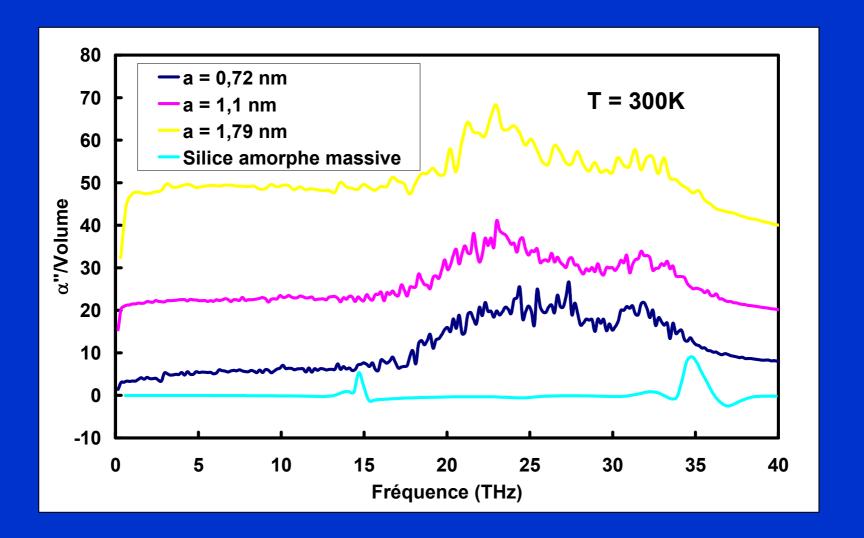
$$\alpha_{massif} = \alpha_{nanoparticules}$$
 ?

Simulation de la polarisabilité d'une NP par DM

$$\operatorname{Im}\left\langle\left\langle p_{\alpha}(0)p_{\beta}^{*}(\omega)\right\rangle\right\rangle = \frac{\varepsilon_{0}}{\omega}\alpha^{"}(\omega)k_{B}T_{0}\delta_{\alpha\beta}$$

$$\mathbf{p} = \sum_{i \in NP} q_i e \mathbf{r_i}$$





- Répartition étalée aux fréquences optiques \longrightarrow Absence de modes collectifs Effet de la polarisabilité α ''sur la conductance G
- Polarisabilités simulées plus importantes —— Rotation des molécules amplifiée en surface

LES ECHANGES HORS CONTACT :: A PAPROLOHRISA BECTE

Flux échangé

$$Q_{1\leftrightarrow 2} = \sum_{\substack{i \in NP1\\j \in NP2}} \mathbf{f_{ji} \cdot v_j} - \sum_{\substack{i \in NP1\\j \in NP2}} \mathbf{f_{ij} \cdot v_i}$$

Application du théorème fluctuation- dissipation aux fluctuations de flux Calcul de la conductance thermique

$$\frac{Q_{1\leftrightarrow 2}}{T} = flu$$

$$\Delta T = force$$

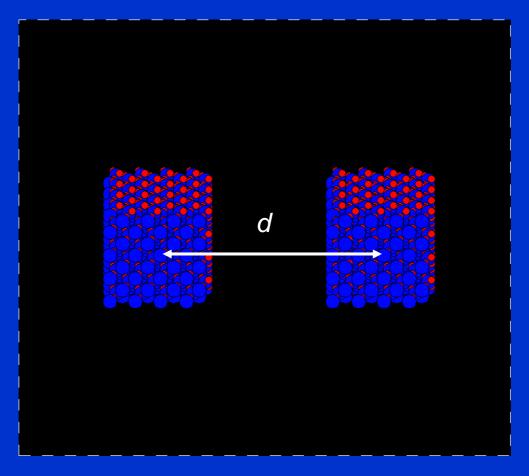
$$\frac{Q_{1\leftrightarrow 2}}{T} = flu$$

$$\Delta T = force$$

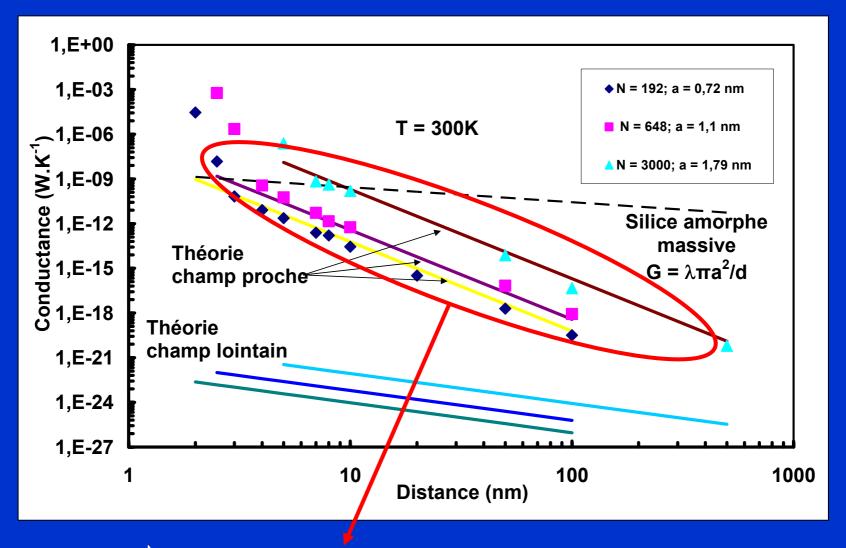
$$G_{1\leftrightarrow 2}^{th} = \frac{\int_{0}^{\infty} \langle Q_{1\leftrightarrow 2}(0) Q_{1\leftrightarrow 2}(t) \rangle dt}{k_B T_0^2} dissip\acute{e} = Q_{1\leftrightarrow 2} \frac{\Delta T}{T}$$

LESSECHANGES HORRSCOON ACCT: SAMPRACION SOCIEDA

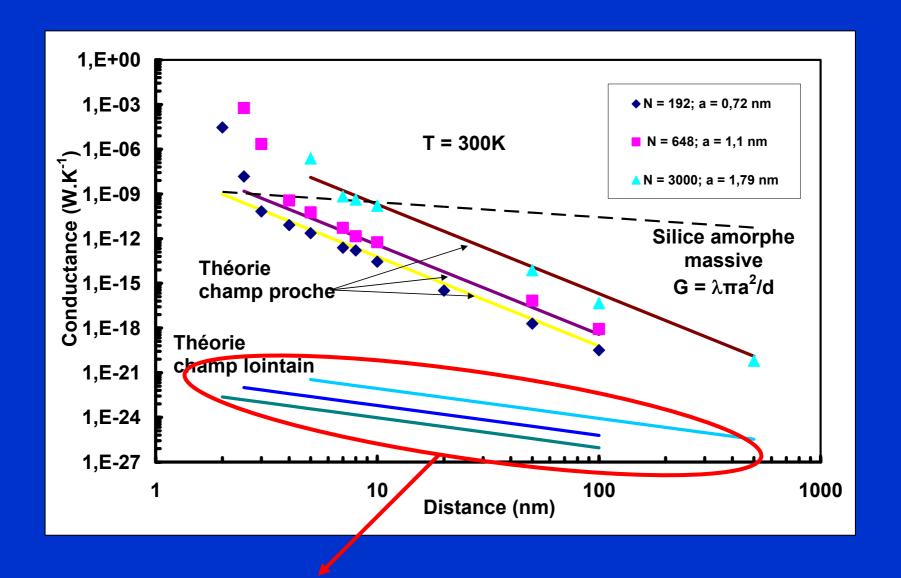
- Aucune condition limite appliquée
- Génération de deux cristaux de β- cristobalite distants de d
- Action des forces de van der Waals
- Application d'un critère de 10% sur la distance initiale



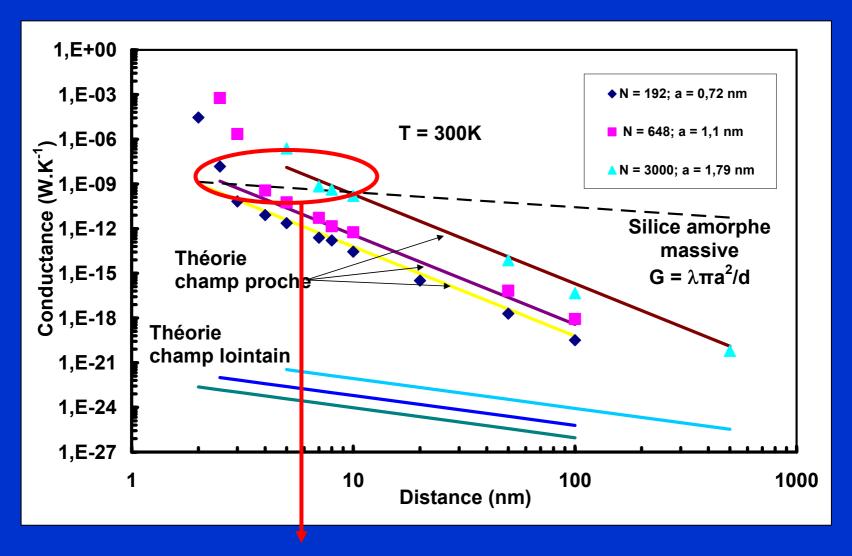
LESSECHANGESHORRSCONTACT: REBULLIATIONES AND NYSE



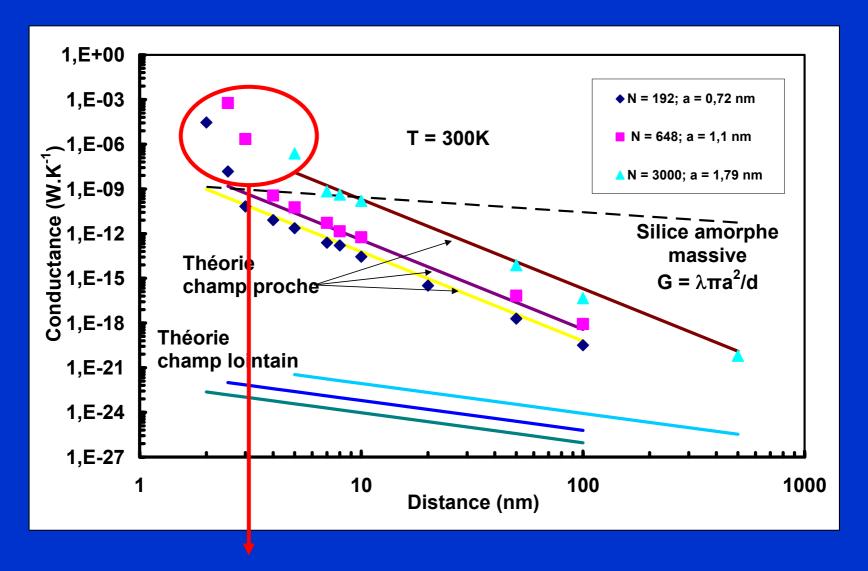
Portse concordance entre les deux approches d > 4a
Validation des calculs de polarisabilité
Loi en d-6



Champ lointain faible aux petites distances



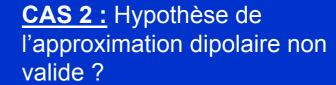
• G_{Hors contact} = G_{massif}

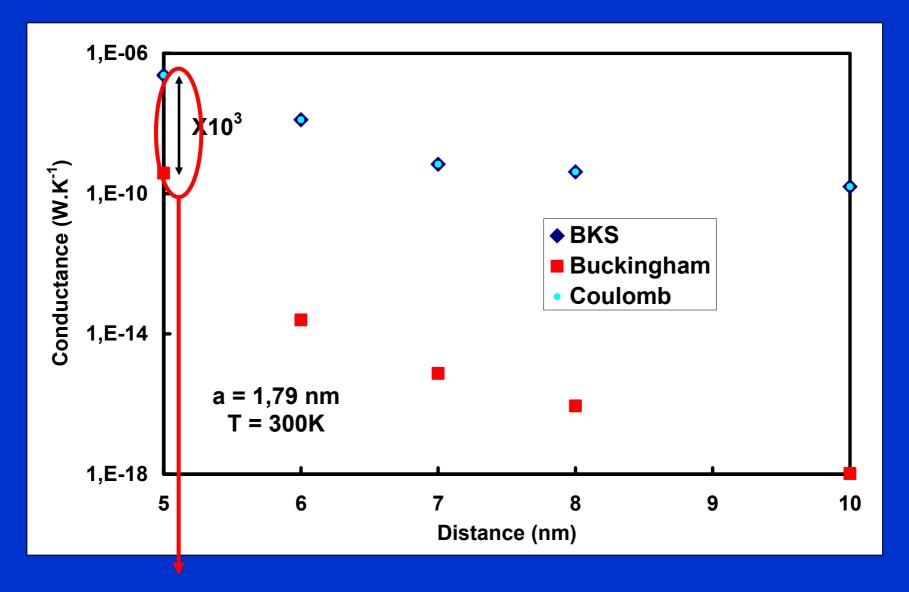


Déviation par rapport à la loi d-6

Divergence entre les deux approches aux petites distances

CAS 1 : Influence considérable des interactions du potentiel de Buckingham ?



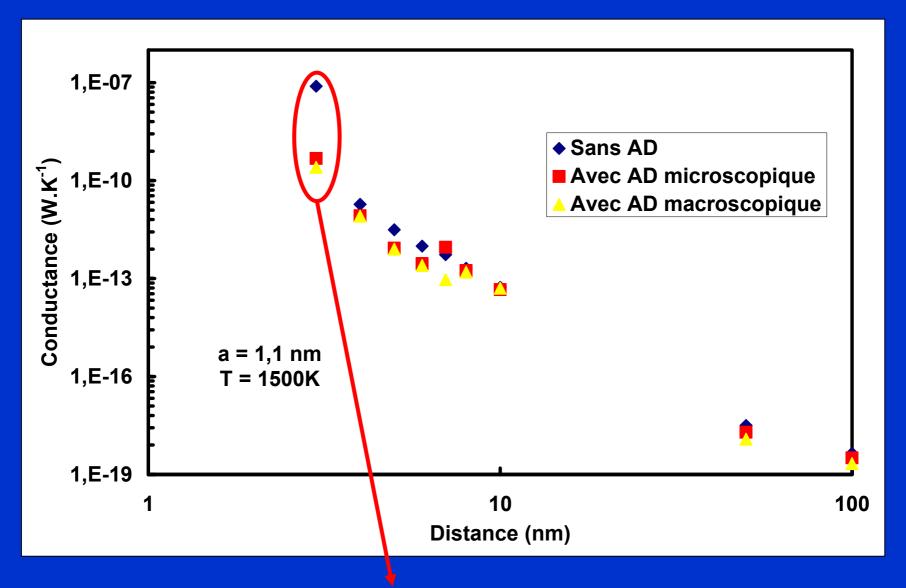


Interactions de Buckingham négligeables

Trois méthodes pour calculer le flux en DM:

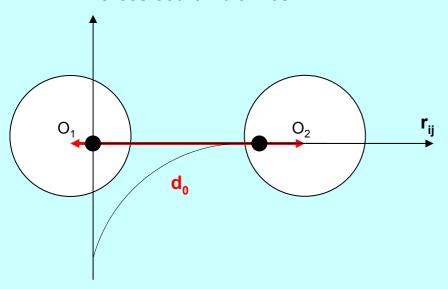
Approche éléctroiquagisétiquepave i Alatio inodipadiquique D

$$Q_{1\leftrightarrow 2} = \sum_{\substack{i \in NP1\\j \in NP2}} \left(q_j e \mathbf{v_j}\right) \left(Q_{1\leftrightarrow 2} = \sum_{\substack{i \in NP1\\j \in NP2}} \mathbf{f_{ji}.v_j} - \sum_{\substack{i \in NP1\\j \in NP2}} \mathbf{f_{ij}.v_i}\right) \left(\frac{1}{4\pi\varepsilon_0} \frac{3\mathbf{n}(\mathbf{p.n}) - \mathbf{p}}{\left|\mathbf{r_2} - \mathbf{r_1}\right|^3}\right)$$

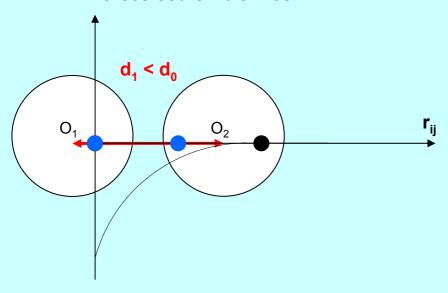


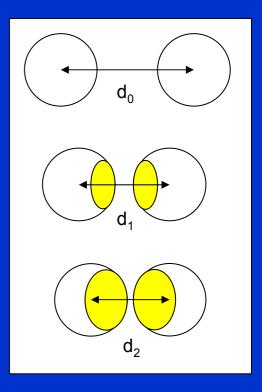
 Hypothèse de l'approximation dipolaire non valide aux petites distances de séparation

Forces coulombiennes



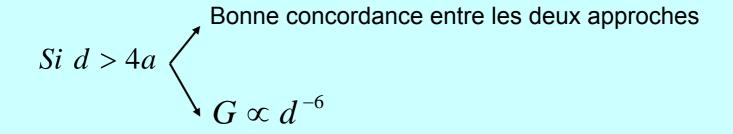
Forces coulombiennes





$$d_2 < d_1 < d_0$$

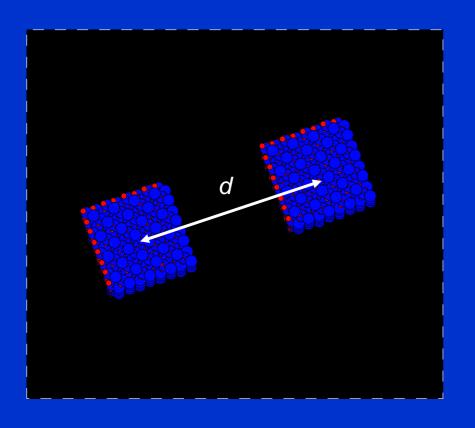
Comparaison des deux approches :

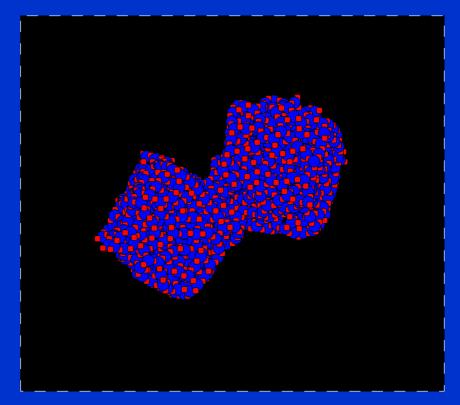


- **➤** Interactions de Buckingham négligeables
- > Hypothèse de l'approximation dipolaire non valide

LES ECHANGES EGROCOTATACTEMENTATIONES DET DEN VALMBE

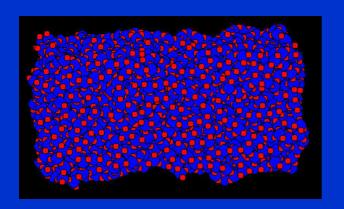
- Aucune condition limite appliquée
- Génération de deux cristaux de β- cristobalite distants de d
- Action des forces de van der Waals
- Reprise des positions des atomes

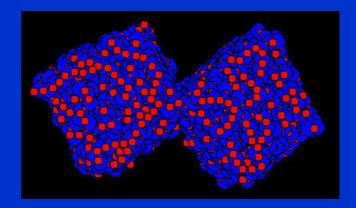




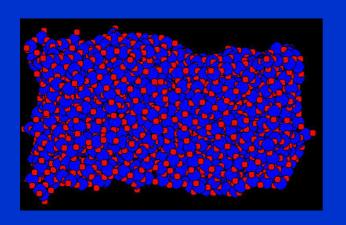
LES ECHANGES EN CONTACT : BAVISULAFIAONE DE DEUXTARES

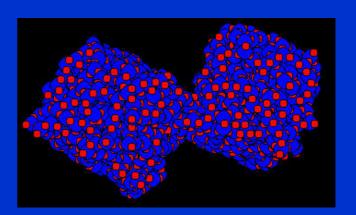
Difficulté à déterminer une surface de contact





Cas 1 : Deux nanoparticules de 3000 atomes chacune

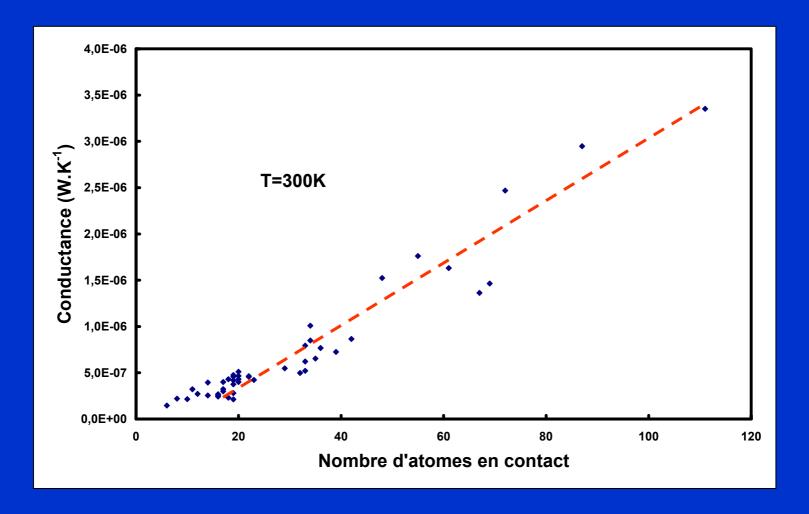




Cas 2 : Deux nanoparticules de 1536 atomes chacune

Sensibilité de la conductance au nombre d'atomes en contact, critère r_{ij} < 2 Å

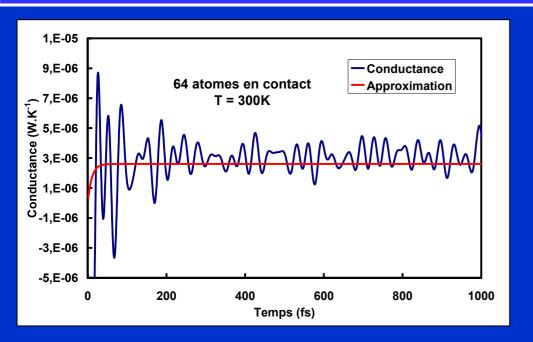
LES LES LES LES CEDATA CET OLA BIORITA E LA ECONODITA CANCE



Evolution linéaire de la conductance

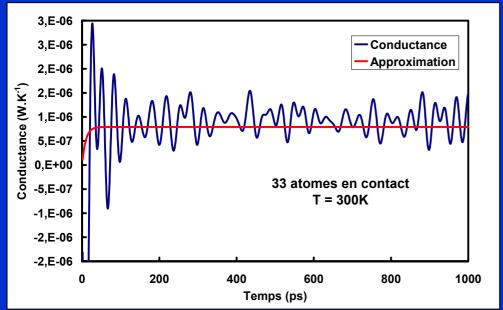
http://explicitetineataungaysin => Zone de contact domine

LESESCHANGRES EEN ENOCKONCACE VOE WITBORE DE RACOLORSDIVOYENCE



$$\tau = 10 fs$$

$$G = G_0 \tau \left[1 - \exp(-t/\tau) \right]$$

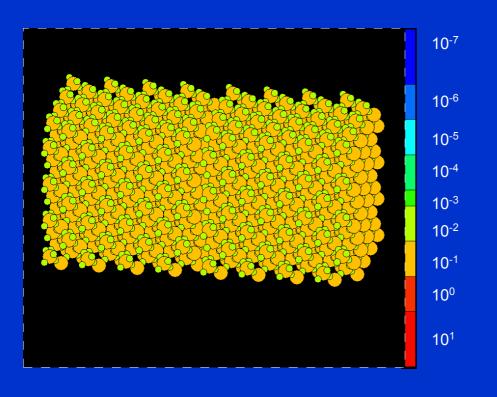


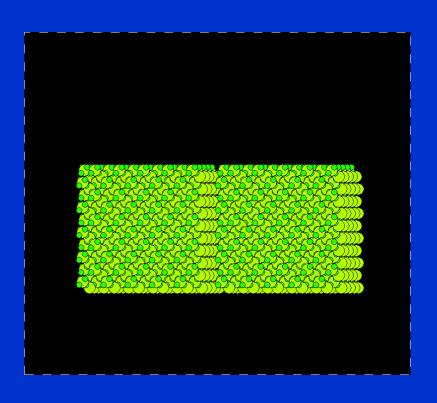
 $\tau = 8,2 fs$

INDEPENDANCE DU LPM A n_c!

LES EESIANGASCENICACITACNIFLUENCEREPLARCONRSDECORNACT

Intensité des puissances exercées (X 1,6.10⁻⁵ W)



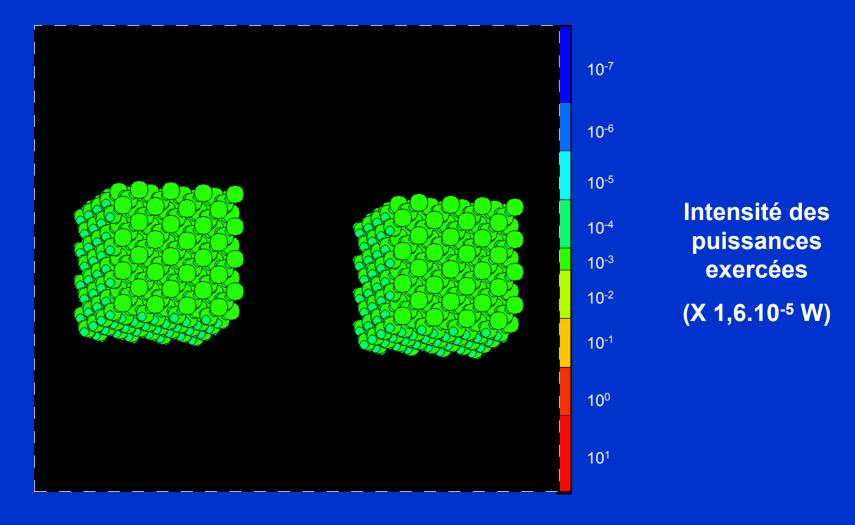


Nanoparticules de 1536 atomes chacune

Nanoparticules de 3000 atomes chacune

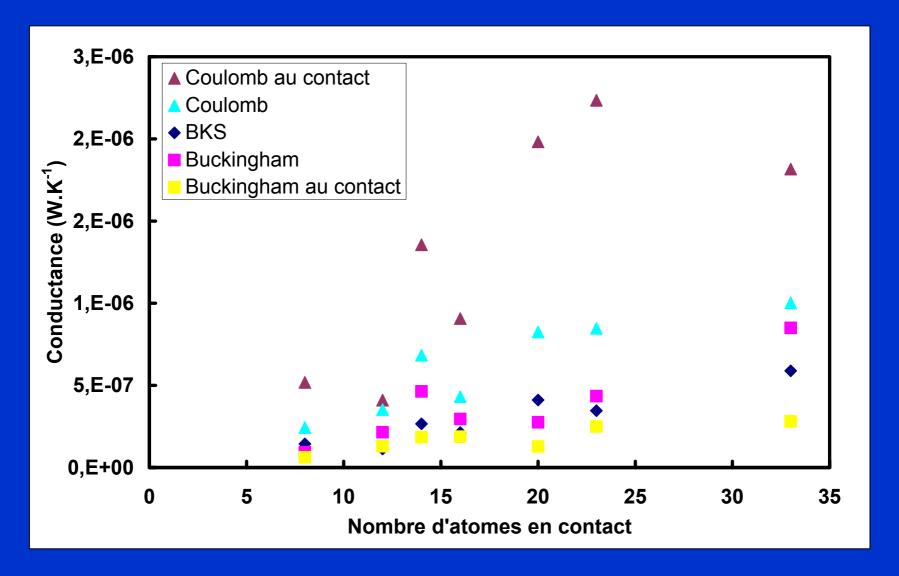
LES ZONES DE CONTACT DOMINENT LES ECHANGES

LES ECHANGES EN CONTACT : INFLUENCE DE LA ZONE DE CONTACT



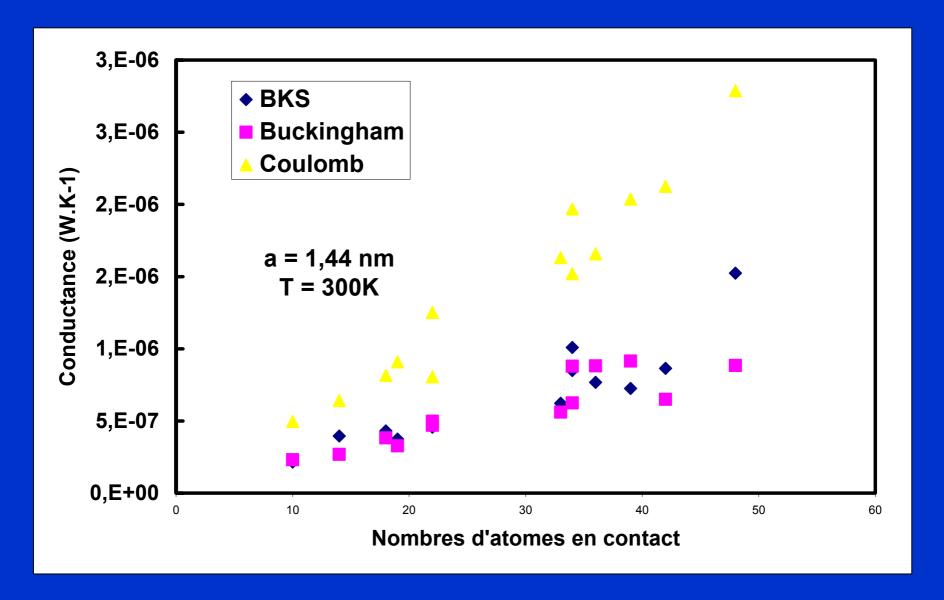
Nanoparticules de 1536 atomes chacune

LES ECHANGES EN CONTACT : INFLUENCE DE LA ZONE DE CONTACT



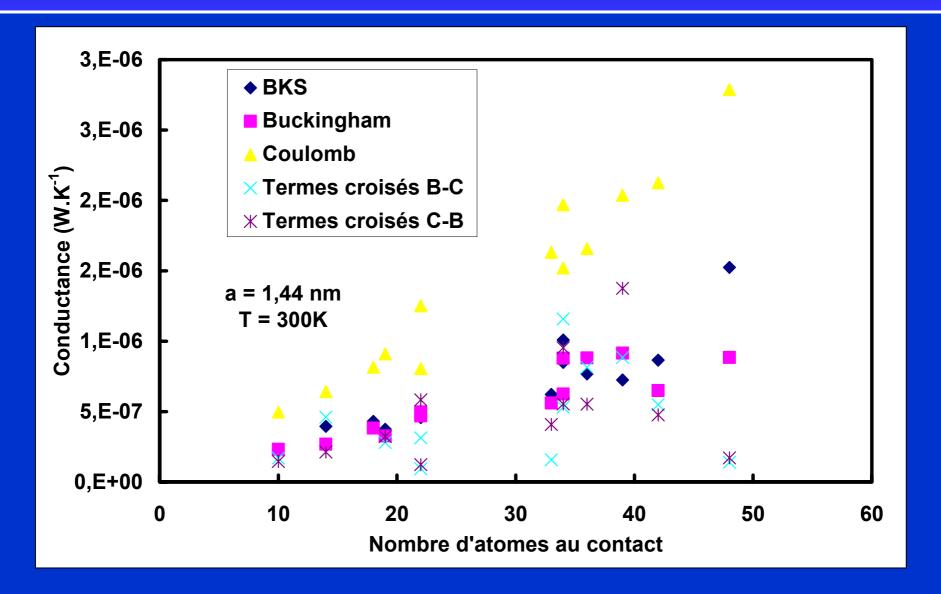
Les interactions entre les atomes en contact dominent les échanges entre les NPs
 Coulomb ou Buckingham

LES EESHENBENGENSCENICAGITAONFLIMENOENCELAESORIETIEN CIGNS ACT



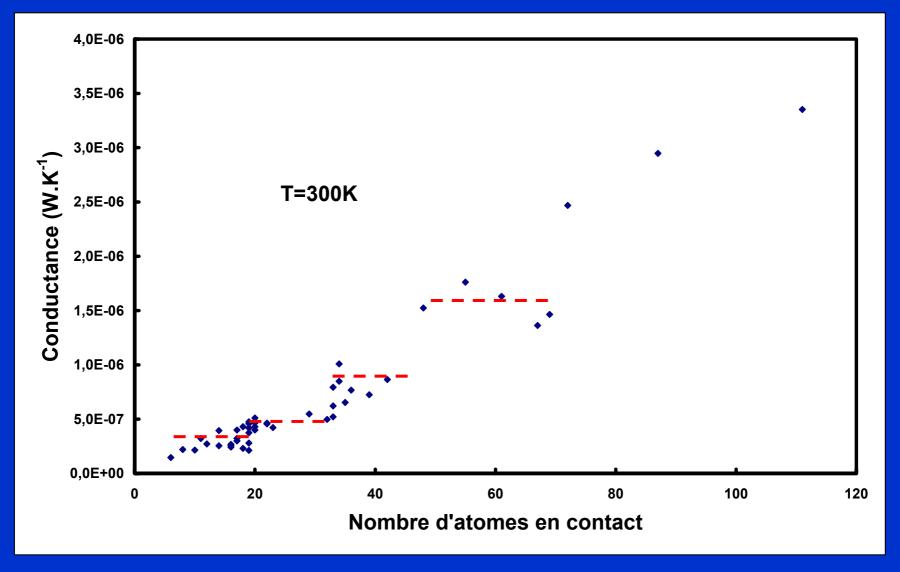
Interactions coulombiennes dominantes

LES ECHANGES EN CONTACT : INFLUENCE DES POTENTIELS



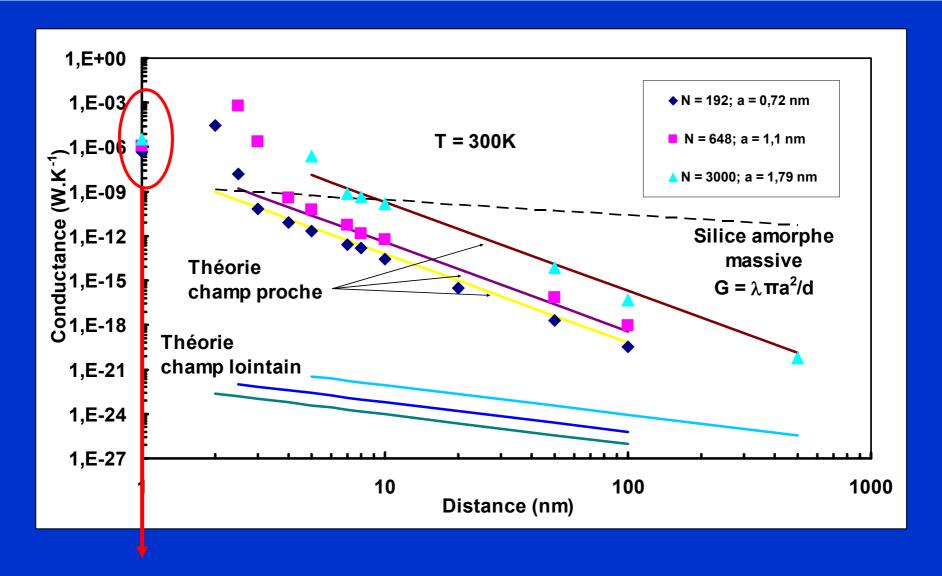
Termes croisés négatifs — Contributions de Buckingham de sens opposé à celles de Coulomb

LESESCHAHAGARSESNEGIONOTIMICATO TIN IPILEILEMENECIDEDIESS TREMTERICAREILISRE



Evolution de la conductance en 1/T

Les paliers ne sont pas liés à des quantum de conductance



Conductances en contact << conductances hors contact

LES ECHANGES EN COONTACSION CENTIFICERASISSECULAMESC LE HORS CONTACT

- Evolution linéaire de la conductance d'échange avec le nombre d'atomes en contact
- **➤** Influence importante des zones de contact
- Interactions coulombiennes dominantes
- Conductances de contact << conductances hors contact</p>
- Présence de termes croisés négatifs

Expliquer la baisse de la conductance au contact