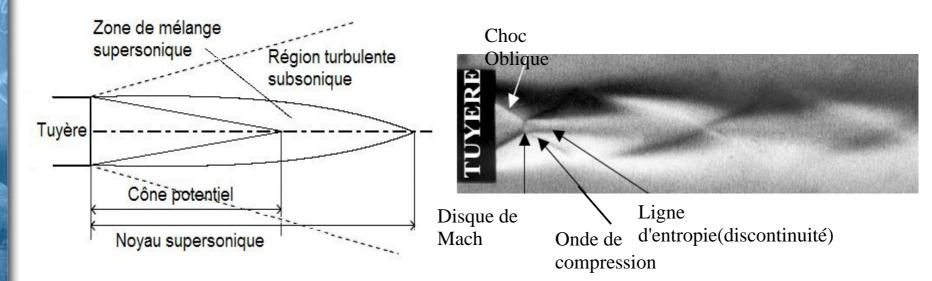


Contexte industriel

- Simulation de la rupture d'une conduite d'air chaud sur avion
 - Haute pression (10 bars) : jet sous-détendu
 - Haute température (260°C)
 - Fort débit (jusqu'à 500 g/s)
- Echauffement des structures soumises à l'impact
 - Composites sensibles à la température
 - Dimensionnement de protections thermiques
- Besoin de corrélations pour le transfert de chaleur

Plan

- Synthèse bibliographique
 - Jets sous-détendus
 - Transferts de chaleur à l'impact de jet
- Méthode expérimentale
 - Montage banc d'essais
 - Méthode d'identification
- Résultats
 - Effet de la distance jet paroi
 - Effet de la courbure de la paroi d'impact



Synthèse bibliographique

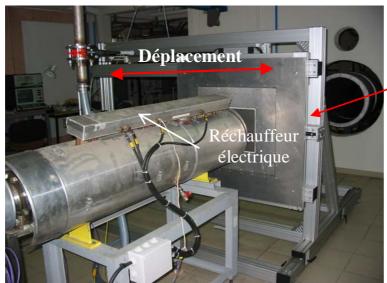
Jet libre supersonique : chocs, ondes de détente, zones de mélange

Schéma d'un jet parfaitement détendu

Visualisation d'un jet sous détendu par strioscopie

Synthèse bibliographique

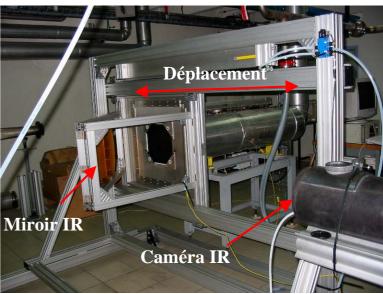
- Impact : point d'arrêt, développement d'un jet radial, phénomène de recirculation
- Mécanismes du transfert thermique : convection forcée
 - Grandeurs caractéristiques
 - Température adiabatique de paroi : T_{AW}
 - Coefficient d'échange convectif : h_{CV}
 - Nombre de Nusselt : Nu_d
 - Paramètres influents
 - Diamètre de la buse d
 - Distance buse-paroi adimensionnée H/d
 - Courbure de la paroi d'impact
 - Nombre de Reynolds Re_d



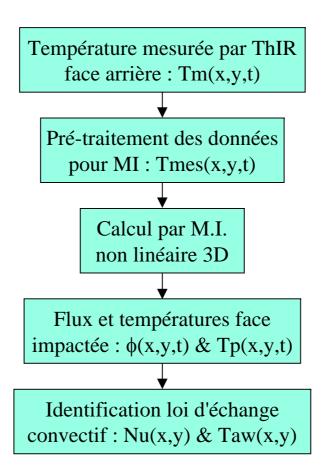
Plan

- Synthèse bibliographique
 - Jets sous-détendus
 - Transferts de chaleur à l'impact de jet
- Méthode expérimentale
 - Montage banc d'essais
 - Méthode d'identification
- Résultats
 - Effet de la distance jet paroi
 - Effet de la courbure de la paroi d'impact

Montage banc d'essais

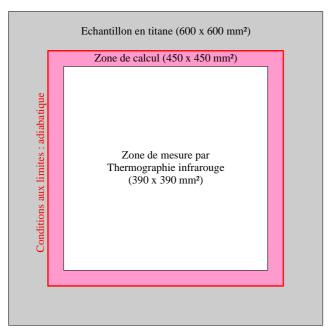


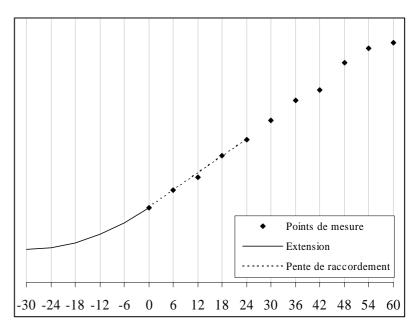
Support échantillons



Montage bane d'essais

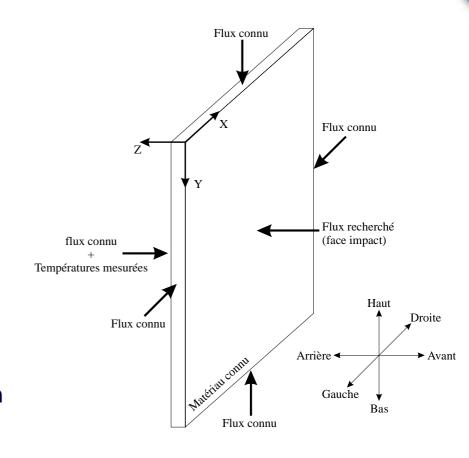
- Moyens de mesure
 - Thermographie infrarouge
 - Caméra CEDIP JADE LWIR
 - Résolution spatiale 6 mm (à 2,60 m)
 - Vélocimétrie Laser (non présenté)
 - Chaîne TSI
 - Post-traitement des données ASSA
 - Contrôle des températures d'ambiance et des conditions de jet
 - Chaîne d'acquisition NI


Principe



Pré-traitement des données

- Extension de la zone de mesure pour C.L. adiabatiques
- Prise en compte du temps de conduction (essai < 1 min.)</p>



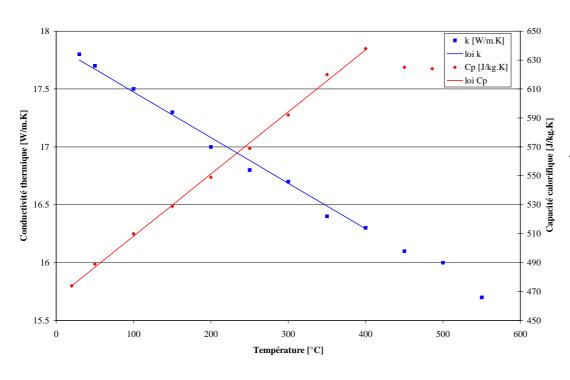
- Méthode inverse non linéaire3D de conduction (PICC)
 - Géométrie plaque plane/courbe d'épaisseur constante
 - Bords adiabatiques
 - Loi d'échange convectoradiatif en face arrière

$$\varphi_{Ar} = h(T_{mes} - T_{amb}) + \varepsilon\sigma(T_{mes}^4 - T_{ray}^4)$$

Equation d'observation = mesures de température en face arrière

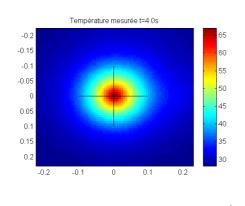
- Méthode de résolution du PICC : séquentielle de Beck
 - Minimisation de la fonctionnelle R

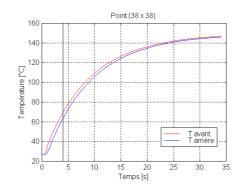
$$R = \sum_{k=1}^{r} \sum_{(i,j)=1}^{Nmes} (Y_{i,j}^{n+k} - T_{i,j}^{n+k} (q^n + \Delta q^{n+1}))^2$$

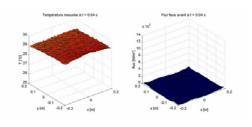

 Résolution d'un système matriciel basé sur le calcul des sensibilités

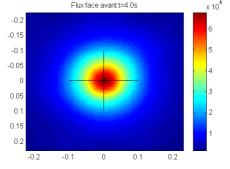
$$\left[\Delta q^{n+1}\right] = \left[S^n\right]^{-1} \left[D^n\right]$$

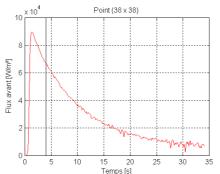
- Utilisation de la TCD : régularisation et réduction du nombre d'inconnues recherchées
 - Choix des composantes principales de la carte $\left[\Delta q^{n+1}\right]$

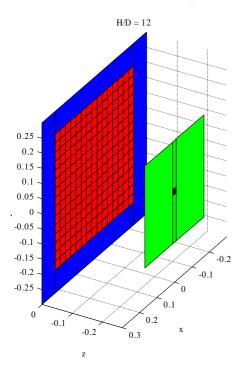

- Plaque d'impact : Titane T40, épaisseur 5 mm
- Propriétés thermophysiques




$$\begin{cases} k = 17,87 + 3,94 \times 10^{-3} \cdot T \ [W/m.K] \\ Cp = 465,4 + 0,4291 \cdot T \ [J/kg.K] \\ \rho = 4507 \ [kg/m^{3}] \end{cases}$$

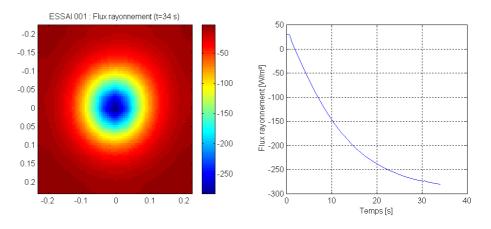



Exemple de résultat : température & flux, face impactée
 D=22 mm, H/d=12, qm=126 g/s (sortie sonique)



Flux calculé par M.I.

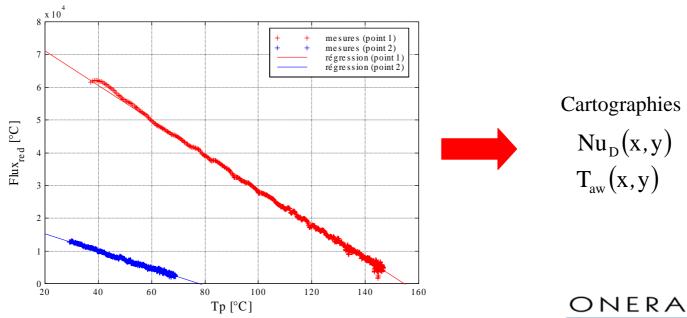
$$\varphi_{total} = h \cdot (T_{aw} - T_P) + \varphi_{rav}$$

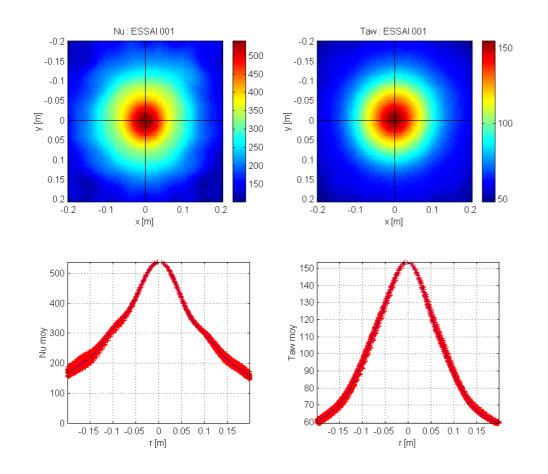


Correction de rayonnement face avant

Géométrie simplifiée plaque - injecteur

Terme de rayonnement dans le flux total





Identification de la loi de convection :

$$\varphi_{cv} = h_{cv} \cdot \left(T_{aw} - T_P\right) \quad \text{avec} \quad h_{cv} = \frac{Nu_D \cdot \lambda \left(T_f\right)}{D} \quad \text{où} \quad T_f = \frac{T_P + T_{aw}}{2}$$

$$= \text{Loi linéaire}: \quad \varphi_{red}\left(x, y, t\right) = \frac{D \cdot \varphi_{cv}\left(x, y, t\right)}{\lambda \left(T_f\left(x, y, t\right)\right)} = Nu_D\left(x, y\right) \cdot \left(T_{aw}\left(x, y\right) - T_P\left(x, y, t\right)\right)$$

Pour les cas axisymétriques : extraction d'un profil radial moyen

- \vee Nu_d(r)
- V $T_{aw}(r)$

ONERA

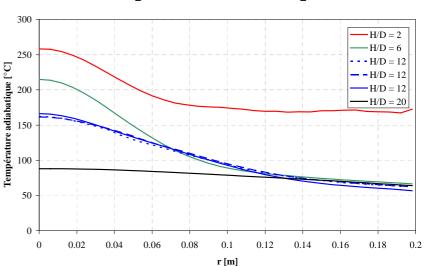
Plan

- Synthèse bibliographique
 - Jets sous-détendus
 - Transferts de chaleur à l'impact de jet
- Méthode expérimentale
 - Montage banc d'essais
 - Méthode d'identification
- Résultats
 - Effet de la distance jet paroi
 - Effet de la courbure de la paroi d'impact

Résultats des essais

Paramètres explorés

- Débit du jet : 70 à 550 g/s
- Diamètre de buse : 22, 32, 40 mm
- Distance buse paroi : H/D = 2 à 20
- Angle d'impact : 0°, 30°, 45°, 60° (p/r à la normale)
- Courbure de la paroi d'impact : Rc = inf., 400 mm, 100 mm
- Matériau de la paroi d'impact : T40 composite


Résultats

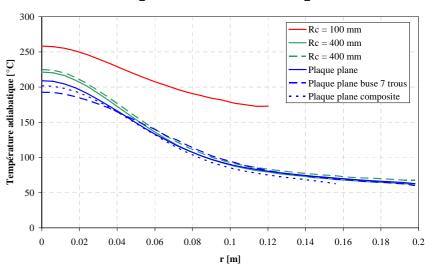
- Effet de la distance buse paroi d'impact
 - $q_m=166 \text{ g/s} d=22 \text{ mm} \text{plaque plane}$

Nombre de Nusselt

900 H/D = 2800 700 -H/D = 12H/D = 12600 H/D = 20300 200 100 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 r [m]

Température adiabatique

Phénomènes d'intermittence des conditions d'injection

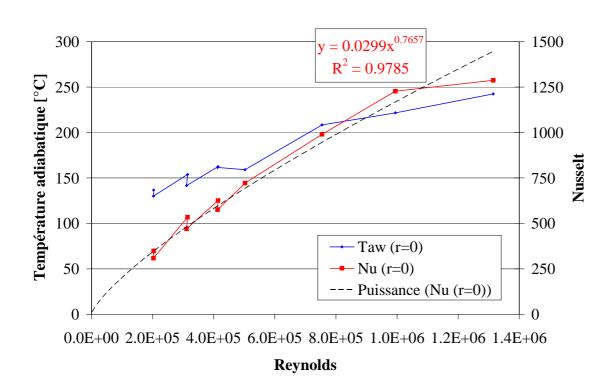

Résultats

- Effet de la courbure de la paroi d'impact
 - $q_{m}=126 \text{ g/s} d=22 \text{ mm} H/D=6$
- Comparaison buse 1 trou / buse 7 trous à surface équivalente
- Vérification sur plaque composite

Nombre de Nusselt

900 Rc = 100 mm800 Rc = 400 mm-Rc = 400 mm700 Plaque plane - Plaque plane buse 7 trous 600 Plaque plane composite Nusselt 400 300 200 100 0 0.16 0.2 0.02 0.08 0.12 0.14 0.18 r [m]

Température adiabatique



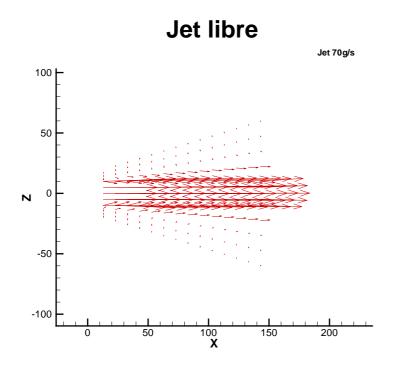
Résultats

Effet du débit du jet : point d'impact

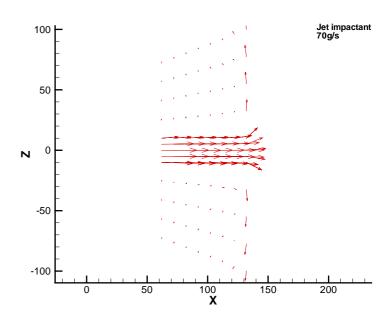
 $\sqrt{d=22 \text{ mm} - H/D=6}$

Corrélation au point d'impact :

$$Nu_{\rm d} = 0.03 \cdot Re_{\rm d}^{0.77}$$


Conclusion

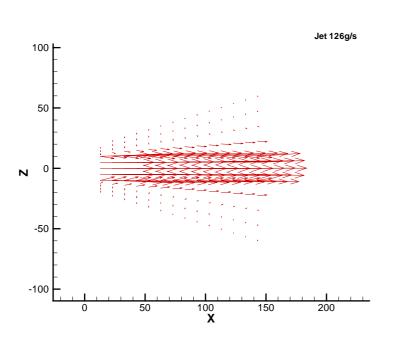
- Développement d'une méthode d'identification des cartographies du Nombre de Nusselt et de la température adiabatique de paroi
 - Méthode inverse de conduction
 - Mesures par thermographie infrarouge
 - Identification des cartographies par régression linéaire
- Analyse des transferts de chaleur à l'impact d'un jet chaud sous-détendu
 - Influence de nombreux paramètres
 - Détermination de corrélations
- Application à une plaque composite

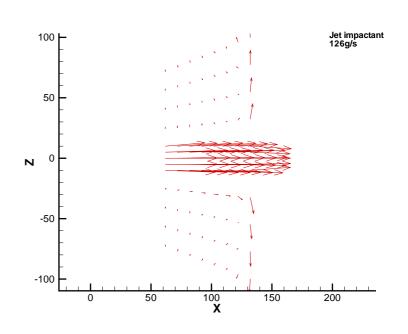


Caractérisation dynamique

Jet subsonique : qm=70 g/s

Jet impactant




Caractérisation dynamique

Jet subsonique : qm=126 g/s

Jet libre

Jet impactant

