

Nouvelles Architectures de Nano-Systèmes Polymères Conducteurs Thermique et Electrique à base de mélanges de Nanocharges Conductrices

<u>Gisèle Boiteux</u>, Mohammad Jouni, Valérie Massardier, A. Boudenne, B. Garnier, Jérôme Faure-Vincent, David Djurado, Pavol Fedorko

 Dissipation électrostatique, EMI
 Dispositifs électroniques

 Détecteurs
 Détecteurs

Composites Polymères Conducteurs (CPCs) ≠ Nanocomposites Polymères Conducteurs (NCPCs)

Goesmann H et al, Angewandte Chemie International Edition. 2010:49(8)

Nanoparticules- « Nanoscale effect »

> Augmentation de l'interface entre la matrice polymère et la nanocharge

Objectifs

Nanotubes de carbone

- Faible densité: d ~ 1.75 g/cm³ (MWCNTs)
- Bonne conductivité électrique: $\sigma \sim 10^{-1}$ 10^3 (S/cm)
- Bonnes propriétés mécaniques et thermique

Nanoparticules d'argent

- Excellentes conductivités électriques et thermiques
- **Conductivité** de type métallique, $\sigma \sim 10^6$ (S/cm)

NCPC faiblement chargés

NCPC possédant bonne conductivité

Intérêt de créer une architecture en se basant sur le concept de mélange de nano charges de nature différente

Choix des matrices polymères et élaboration des composites

Plan

Nanocomposites PE/MWCNT

Nanocomposites PE/Ag-NPs

Nancomposites hybrides PE/MWCNT/Ag-NPs

Nanocomposites Epoxy/MWCNT

Etudes des mécanismes de conduction électronique dans les NCPC PE/MWCNT & Epoxy/MWCNT

Caractérisations des NCPC par RMN solide haute résolution

Conclusions & Perspectives

PE/MWCNT- Elaboration

Série II

Série I

PE/MWCNT- Percolation électrique

PE/MWCNT- Conductivité thermique

Nanocomposites PE/MWCNT

Nanocomposites PE/Ag-NPs

Nancomposites hybrides PE/MWCNT/Ag-NPs

Nanocomposites Epoxy/MWCNT

Etudes des mécanismes de conduction électronique dans les NCPC PE/MWCNT & Epoxy/MWCNT

Caractérisations des NCPC par RMN solide haute résolution

Conclusions & Perspectives

PE/Ag-NPs- Elaboration

Elaboration par extrusion

•T=170 °C

- •Vitesse de rotation = 100 rpm
- •Temps de mélange ~ 15 min

Micro DSM

PE/Ag-NPs- Propriétés électriques

PE/Ag-NPs- Conductivité thermique/modélisation

PE/Ag-NPs- Conductivité thermique/Loi des mélanges

Nanocomposites PE/MWCNT

Nanocomposites PE/Ag-NPs

Nancomposites hybrides PE/MWCNT/Ag-NPs

Nanocomposites Epoxy/MWCNT

Etudes des mécanismes de conduction électronique dans les NCPC PE/MWCNT & Epoxy/MWCNT

Caractérisations des NCPC par RMN solide haute résolution

Conclusions & perspectives

PE/Ag-NPs- Elaboration

•T=170 °C

•Vitesse de rotation = 100 rpm

•Temps de mélange ~ 15 min

PE/MWCNT/3Ag-NPs- morphologie

PE/MWCNT/3Ag-NPs- Propriétés électriques

PE/MWCNT/Ag-NPs- Conductivité thermique

Composites conducteurs à base de PE- Bilan

Nanocomposites PE/MWCNT

Nanocomposites PE/Ag-NPs

Nancomposites hybrides PE/MWCNT/Ag-NPs

Nanocomposites Epoxy/MWCNT

Etudes des mécanismes de conduction électronique dans les NCPC PE/MWCNT & Epoxy/MWCNT

Caractérisations des NCPC par RMN solide haute résolution

Conclusions & perspectives

Epoxy/MWCNT- Elaboration

Epoxy/MWCNT- Etat de dispersion des MWCNTs

Epoxy/MWCNT(0.4 Vol.%)

Epoxy/MWCNT- Propriétés électriques

Nanocomposites PE/MWCNT

Nanocomposites PE/Ag-NPs

Nancomposites hybrides PE/MWCNT/Ag-NPs

Nanocomposites Epoxy/MWCNT

Etudes des mécanismes de conduction électronique dans les NCPC PE/MWCNT & Epoxy/MWCNT

Caractérisations des NCPC par RMN solide haute résolution

Conclusions & perspectives

Mécanismes de conduction électronique – Mesure de $\sigma(T)$ par la technique 4 pointes

 CNT
 0.1
 0.2
 0.4
 0.7
 0.6
 1.8
 5.0
 8.5

 (vol.%)
 Image: Marcine State
 Image: MarcineState
 Image: MarcineState
 Image:

4 K<T<300 K

Chrs

Mécanismes de conduction électronique – Etude avec le modèle VRH (variable Rang Hopping)

Mécanismes de conduction électronique – Etude avec le nouveau modèle VRH

Mécanismes de conduction électronique – Vérification avec le nouveau modèle

$$\sigma(T) = 1/[o_{01}\exp(\frac{T_1}{T})^{\gamma_1} + o_{02}\exp(\frac{T_2}{T})^{\gamma_2}]$$

 γ_2 pour un transport en 1D @ basse T

$$\sigma(T) = 1/[\rho_{01} \exp(\frac{T_1}{T})^{\gamma_1} + \rho_{02} \exp(\frac{T_2}{T})^{\gamma_2}]$$

1/T1 et 1/T2 [CNT vol.%]

	Epoxy/MWCNT				PE/MWCNT				
CNT (vol.%)	0.1	0.2	0.4	0.7	0.6	1.8	5.0	8.5	
								MB	
	20698	1830	1058	237	34	18	1.5	0.57	
ρ_{01} (ohm.cm)	±367	±25	±18	±2	±1				
T ₁ (K)	733	445	462	311	200	52	14	9.0	
	±47	±25	±30	±13	±22	±9	±4	±1.5	
Y ₁	0.25								
ρ ₀₂ (ohm.cm)	5618	407	250	64.0	5.6	4.4	0.46	0.17	
	±218	±12	±9	±1.5					
T ₂ (K)	343	315	303	248	322	213	152	135.2	
	±4	±3	±3	±2	±3	±3	±3	±1.7	
Y ₂	0.5								

im

ModèleVRH:

1/T1 doit être proportionnel à la fraction volumique locale des CNTs

(« aux états électroniques au niveau de Fermi)

 1/T2 reflète les propriétés individuelles des CNTs et doit être indépendant de leur fraction volumique dans le composite

1/T1∝[CNT] dans le cas de PE/MWCNT

> 1/T1 varie fortement dans le cas PE/MWCNT

Une augmentation de la fraction volumique locale des MWCNTs dans les régions Semi-conducteurs en gardant le volume de ces régions approximativement constant

1/T1 est approximativement constant dans le cas Epoxy/MWCNT Augmentation du volume relatif des régions semi-conductrices en gardant la même fraction volumique locale des MWCNTs

*Représentation

= e⁻ @ basse temperature

Mécanismes de conduction électronique – PE/MWCNT/3Ag

Une combinaison de deux régimes de transport correspondant à un VRH -1D et 3D est

nécessaire pour décrire nos systèmes

Des modèles de morphologie ont été proposés à partir de leurs analyses

• La matrice Epoxy amorphe (hydrophile) présente un seuil de percolation dix fois plus

faible (MWCNTs) que la matrice PE semi-cristalline (hydrophobe)

Nanocomposites PE/MWCNT

Nanocomposites PE/Ag-NPs

Nancomposites hybrides PE/MWCNT/Ag-NPs

Nanocomposites Epoxy/MWCNT

Etudes des mécanismes de conduction électronique dans les NCPC **PE/MWCNT & Epoxy/MWCNT**

Caractórisations dos NCPC par RMN solido hauto résolution

Conclusions & perspectives

Elaboration des NCPC présentant faibles seuils de percolation électriques et bonnes propriétés conductrices: PE/MWCNT, PE/Ag-NPS, PE/MWCNT/Ag-NPs et Epoxy/MWCNT

Composite	P _c (vol.%)	σmax (S/cm)	λ _{max} (W/K.m)	λmatrice/ charge	
PE/MWCNT	0.39	6.3E-5 (@ 5 vol.%)	0.78	PE=0.333	
PE/Ag-NPs	9.9	5.8E-2 (@ 22 vol.%)	2.13 (@ 22 vol.%)	PE=0.333 Ag-NPs= 430	
PE/MWCNT/ <mark>3</mark> Ag- NPS	0.39	5E-3 (@ 5vol.% CNT-3vol.% Ag)	0.93 (@ 5vol.% CNT-3vol.% Ag)	MWCNT= 160-6000	
Epoxy/MWCNT	0.05	5E-4 (@ 0.7 vol.%)	0.27 (@ 0.7 vol.%)	Ероху=0.27	

 L'analyse des mécanismes de conduction électronique a permis de montrer une différence dans la structuration du réseau percolant selon la matrice.

✤ Les matrices amorphes, hydrophiles (Epoxy) peuvent être plus favorables que les matrices semi-cristallines, hydrophobes (PE) pour donner des NCPC avec de bonnes propriétés électriques.

- **Application de la RMN solide haute résolution sur les NCPC:**
- Détection d'un effet d'écran, origine de la perte du signal RMN dans les composites

PE/Ag-NPs

Perspectives ...

- Stratégie pour préparer Epoxy/MWCNT/Ag avec une bonne dispersion des nanocharges
- Envisager d'autres combinaisons matrices/charges pour des matériaux présentant d'autres propriétés de fonction
- TEM pour confirmer nos hypothèses sur la morphologie des systèmes
- Caractérisation de composites modèles pour évaluer les interactions chargematrice en RMN solide, analyse de la dynamique moléculaire de ces systèmes
- Utilisation d'une extrudeuse haute vitesse

