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Dense spray – 
convoluted interfaces : 	
 Dilute spray. 	


Intermediate region:  
progressive coarsening 
downstream. 	


Typical structure and simulation strategy	
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Dense spray – 
convoluted interfaces : 
Full DNS necessary for 
accuracy	


Dilute spray: 
droplets may be 
accurately modelled 
as Lagrangian 
particles.	


Intermediate region: modelling 
necessary	


Simulation methodology	
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VOF methodology	
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- 1 Compute an evolving surface : computational geometry	

 	

-  Solve	

	

  2 the Navier-Stokes equations with 	

	

  3 surface tension,  	

	

and 	

	

  4 variable viscosity and density, 	

	

  5 ensure robustness,	

	

  6 have a multiscale approach. 	
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Old Codes:	

	

  Surfer	

  Gerris  gfs.sf.net 	

	

New codes	

	

  Basilisk   basilisk.fr	

  ParisSimulator   parissimulator.sf.net	

	

Improvements: better stability, accuracy, faster, HPC-compatible.	

	

All our codes are free. 	
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Gerris is very accurate: Capillary wave test. L2 error norm:	


(Gerris)	




8/79 
 

But Gerris is slow.   ParisSimulator and Basilisk are faster	
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Atomization	
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Kelvin-Helmholtz instability : unstable shear flow	
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2D simulations of the planar « Grenoble » setup. 	


Gas 

Liquid 

The Grenoble quasi 2D experiment set up	
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Use Gerris flow solver with adaptive oct-tree and quad-tree grids	
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Elementary multiscale treatment: Navier-Stokes with variable minimum grid size	

according to a subdivision of the computational domain. 	


Gas 

Liquid 

small 
minimum Δx	


medium 
minimum  Δx	


large 
minimum Δx	
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Simulation with a separator plate at density ratio (1/r = 100)	


m	
 r	
 Reg	
 Rel	
 Weg	
 Wel	
 M	


0.017	
 0,01	
 2640	
 290	
 19	
 8	
 2,4	


Movie by Daniel Fuster and Jérôme Hoepffner using the Gerris Flow solver	
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Compare to experiments in Grenoble (Cartellier, Matas) . Flow from right to left. 	

Video with help of Jérôme Hoepffner and Jon Soundar. 	
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To compare numerical results with theory , we need: 	

	

	

Linear stability theory of the Kelvin-Helmholtz instability: 	

Viscous, Error-function profiles	

	

a)  Yecko, Fullana, Boeck, Zaleski,	

b) Gordillo, Perez-Saborid, Ganan-Calvo,	

c)  Spelt, Valluri, O’Naraigh	

d)  Matas	
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Convective/absolute instabilities	

	

	

1) Absolute: a spatially localized perturbation at x=0 and t=0	

 grows in the entire space	

	

	

	

	


	
 	
unstable region	

	

	

	

	

	

	

	

	

corresponds to a well-defined oscillator frequency in the entire	

domain, a so-called « global mode ». Upstream turbulence has little influence. 	

	

	


time	


space	
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2) Convective instability: a spatially localized perturbation at t=0	

 is convected downstream with the flow	

	

	

	

	

	

	

	

	

	

	

	

	

	

No single frequency is observed but instead, broadband noise is seen. 	

The system is seen to be a noise amplifier. Upstream turbulence matters	

	


Convective/absolute instabilities	


time	


space	


unstable region	
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Linear theory has an enormous dependence on the wake flow 
correction. 	


Wake flow 

So what does linear theory say about our problem ? Is it convective or absolute ? 	
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Simplified base flows	
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       Effect of upstream turbulence on instability growth. 	

	

	

The effect of upstream turbulence will be important if the spatial 
analysis reveals a convective instability. 	

	

It will be unimportant if an absolute instability is found. 	
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Most « important » parameter: momentum flux ratio	

(or ratio of dynamic pressures. It is the only parameter that 	

does not involve small-scale characteristics of the flow)	


M =
!gug

2

!lul
2
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convective, noise amplifier                 ambiguous                   absolute, global mode	


Grenoble experiments: Cartellier, Matas, Marty	
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Now the ultimate test !  Compare  :	

	

- Experiments	

- Numerics	

- Linear theory	

	

	

We need linear theory, again but for spatially developping flows. 	

	

For that, we need to know what are absolute and convective instabilities ! 	
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What about the simulation ?	
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Comparison experiment-simulation	
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3D flows	
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Air-Water 	

uliq = 0.6 m s−1, ugas = 35 m s−1  	

	

injection diameter D = 7.8 mm	

	

Reg  = 16000, Weg = 200	

based on D1	

	

Reδ  = 400	

	

Simulation :  six weeks on 64 AMD 
processors 	

	

line of eight 5123 boxes – (equivalent 
regular mesh but we use octree 
adaptation)	

	

Difficult to go to higher levels of 
refinement	

	


The iconic Marmottant-
Villermaux case	
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Boundary layer size	

157 µm	

	

smallest	

grid size 50 µm	

	

25µm case currently 	

running	

	

 	

Injector thickness	

comparable. 	
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Simulation: Gilles Agbaglah	
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Particle size distributions	

	

experimental and computed	

at UPMC	

	

	

u2 = 35 m / s	
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Lagrangian Point Particle model	
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The modelling depends on the type of simulation. 	


With oct-treeAMR we will move from more or less resolved cases. 	

	

Do simultaneously VOF->LPP conversion and  massive grid coarsening ?	

	

Question: ( unanswered) how much accuracy do we lose by going from a	

fully resolved drop to a « very unresolved » one	

	

In a first step we work on a regular cubic grid code without AMR, ParisSimulator	
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Test case : driven cavity flow with LPP.   Re=16, Rep=0,34	




36/79 
 

Pulsed Diesel-type jet 	
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VOF to LPP conversion  - Higher Reynolds	


time	
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Conditions de l’article de Deschamp et al dans lequels les trajectoires	

de particules sont mesurées	

	

Reδ  = 1000	

	

Simulation 64 x 256 x 512	
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Coflowing air and liquid jets (moderate density ratio)	
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Simulation 128 x 512 x 1024	
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PDF of droplet diameters - (a) t = 0.4s, (b) t = 0.41s, and (c) t = 0.42s. �
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Immediate Perspectives:	

	

	

   - A well understood, consistent, verified theory of the 3D instability: at present many	

theories, and almost no numerics.	

	

  - A proof of convergence of the Lagrangian point particle model.	

	

  - VOF technology: AMR-VOF-LPP with basilisk. (new octree code).	

	

	

Longer term perspectives: 	

	

  - coupling with thermal / reaction effects.	

	

  - use DNS to develop and validate large-scale particle ejection models. 	

	

  - full combustion chamber simulations.	
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High resolution	


LPP	


Still a lot of work !	


Simulation methodology	
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The End	
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