Les récepteurs volumiques pour centrales solaires à concentration : état de l'art et perspectives

LABORATOIRE PROCÉDÉS, MATÉRIAUX et ENERGIE SOLAIRE

.UPR 8521 du CNRS. conventionnée avec l'université de Perpignan

PROCESSES, MATERIALS and SOLAR ENERGY LABORATORY

Cyril
Caliot

CNrS

PROMES

UPVD

Plan

- Introduction
- Typologie de récepteurs volumiques
 - Récepteurs sélectifs
 - Récepteurs à air atmosphériques
 - Récepteurs à air pressurisés
 - Récepteurs à particules
 - Récepteurs-réacteurs
- Futures recherches (Optisol)
- Conclusion

Introduction

- Plus la <u>température</u> du fluide caloporteur est <u>élevée</u> plus le <u>rendement</u> du cycle thermodynamique sera <u>élevé (</u>Carnot).
- L'intérêt pour les *récepteurs volumiques* (RV) vient d'une <u>limitation</u> <u>en température</u> des récepteurs surfaciques.
- Pour <u>diminuer le coût</u> de production, une solution est d'améliorer le <u>rendement thermique</u> du récepteur et le <u>rendement du cycle de</u> <u>conversion en électricité</u>.
 - Utilisation des récepteurs volumiques (RV) avec
 - L'effet volumique,
 - La sélectivité spectrale

Introduction

• Comparaison des coûts de l'énergie (\$/MWh)

Rayonnement solaire concentré : collecteurs, récepteurs 4 et stockage

Exemples de récepteurs

Rayonnement solaire concentré : collecteurs, récepteurs et stockage

Principe des récepteurs

Récepteur surfacique

Sélectivité spectrale d'une surface

Rayonnement solaire concentré : collecteurs, récepteurs et stockage

Typologie des récepteurs volumiques

- Récepteur métallique (fils, canaux)
- Récepteur céramique (canaux, mousse, tiges, fibres)
- Récepteur à particules (entraînées, lits)

Utilisations des récepteurs volumiques

- <u>Thermo-électricité solaire</u>
 - T<800°C : récepteurs à air atmosphérique pour la génération de vapeur (cycle Rankine indirect)
 - T>800°C : récepteurs à air atmosphérique pour un cycle de Brayton indirect
 - T>800°C : récepteur à air préssurisé pour un cycle de Brayton direct (Cycle Combiné) Solar Unit Receiver Combiné
- <u>Carburant solaire</u>
 - T>800°C : Gaz de synthèse,
 - H2, etc.

SOLAIRE

diff 2

IR

Longueur d'onde

RV sélectifs

RV sélectifs

Pitz-Paal et al, Sol Energ Mat, 1991 :

RV bi-couche, nid d'abeille en Si et SiSiC : 75% @ 1000°C

Mono-couche, SiC : 68% @920°C

Etat de l'art des RV

- Fin 1970 : les récepteurs métalliques (fils) et en céramiques (nid d'abeilles)
- 1985-1991 : la sélectivité spectrale des récepteurs
- Fin 1980- début 1990, les récepteurs à air atmosphérique
- Fin 1990- début 2000, les récepteurs à air pressurisés
- Depuis le début des années 80, quelques récepteurs à particules ont été étudiés (petites puissances).

Cycle à boucle ouverte : air à pression atmosphérique

- <u>1983-86</u> Mk-1 (3 kWth) maillage de fils fins (Suisse) : 70-90%, T<842°C
- <u>1986-87</u> Mk-2 ou Sulzer-1 (200 kWth) tests à PSA : 68% @550°C (calc 80%)
- <u>1988</u> Sulzer 2 (200 kWth) fils enroulés : 79% @550°C (points chauds, pas d'effet volumique, distorsion de la structure) ; formation du consortium <u>PHOEBUS</u>
- 1992-94TSA (2.5 MWth, PHOEBUS-TSA project) production de vapeur (480-540°C @ 35-150b), régulation :85% @700°C (succés, mais projet de 115MWth en Jordanie avorté par manque d'investissement)

et stockage

13 juin 2012

Cycle à boucle ouverte : air à pression atmosphérique

- <u>1988-89</u> Catrec 1 (200 kWth) nid d'abeilles : 80% @570°C (déformation des structures)
- <u>1993</u> Bechtel 1 (2.3 kWth) fils tressés (110 et 210μm) : 69% @820°C
- 1993Bechtel 2 (200 kWth) 3 maillages (110 et 200μm) : 66% @563°C (calc 90% @700°C) ; sensible au vent et
mauvaise distribution des débits (arrêt des recherches par Sandia mais poursuivies par CIEMAT-PSA)
- <u>1994-95</u> Catrec 2 (200 kWth) améliorations de la structure (éléments hexagonaux, jointure) : T<460°C ; détection <u>d'instabilités de l'écoulement</u>
- <u>2001</u> Sirec (250 kWth) fils tressés (Bechtel 2) : 48% @710°C ; régulation et contrôle du débit air rendus difficiles par de forts gradients dans l'absorbeur (600-760°C)

Cycle à boucle ouverte : air à pression atmosphérique

- <u>1988</u> Sandia foam (200 kWth) mousse, 20 ppi, porosité 80%, Al2O3 et peinture Pyromark : 65% @550°C (calc 85%) ; pores bouchés par les dépôts de peinture
- <u>1989-90</u> CeramTec (200 kWth) SiSiC canaux (3*3mm, L=10mm) macrostructure en créneau : 59% @782°C <u>1990</u> Conphoebus-Naples (200 kWth) SiSiC canaux en cavités multiples avec des créneaux : 60% @788°C

Cycle à boucle ouverte : air à pression atmosphérique

- <u>1995</u> Hitrec 1 (200 kWth) R-SiC nid d'abeilles : 75% @800°C (régulation simple, démarrage rapide, homogénéité des températures, déformation de la structure)
- 1995 Hitrec 2 (200 kWth) R-SiC nid d'abeilles : 72% @800°C ; bon comportement de la structure

Rayonnement solaire concentré : collecteurs, récepteurs et stockage

Cycle à boucle ouverte : air à pression atmosphérique

- 2001-02 Solair 200 (200 kWth) Test de 3 RV (modules carrés):
 - 1 36 re-SiC, nid d'abeilles (81% @700°C, 75% @800°C)
 - 2 18 re-SiC et 18 SiSiC, nid d'abeilles (83% @700°C, 74% @800°C)

JE SFT, Paris,

13 juin 2012

- 3 fibres poreuses en face avant : T<800 °C
- 2003 Solair 3000 (3 MWth) 270 R-SiC : 70-75% @750°C (2006, décision pour une centrale semi-commerciale)
- 2009 Centrale solaire de Julich (1.5 MWe) 1000 re-SiC ; cycle Rankine, vapeur surchauffée, 485°C et 25b

Rayonnement solaire concentré : collecteurs, récepteurs et stockage

Etat de l'art des RV pressurisés

Cycle à boucle fermée : air pressurisé

<u>1989</u> PLVCR-5 (5 kWth) mousse Si3N4 revêtu de Pyromark, hublot en dôme elliptique : 4.2b, 71% @1050°C
<u>1993</u> PLVCR-500 (500 kWth) mousse Si3N4 revêtu de SiC, pyramide tronquée, dôme sphérique en quartz : 4.15b, 57% @960°C ; la tenue mécanique du hublot reste un problème (flexibilité, éviter les gradients)

Etat de l'art des RV pressurisés

Cycle à boucle fermée : air pressurisé

1992-97DIAPR (28-40 kWth)
récepteur Porcupine (porc-épic, 60% Al2O3 40%SiO2), hublot conique (2.25mm) :
20b, 75% @1200°C ; production de haute température à haute pression (Weizmann Institute)1996-99DIAPR multi-étage (30-60 kWth)
4 étages de préchauffage (récepteurs tubulaires) : T<1000°C</td>2009Tulipe d'Aora (100 kWe + 170 kWth)
cycle Brayton hybride, 1100 °C et 20b

Etat de l'art des RV préssurisés

Cycle à boucle fermée : air pressurisé

- <u>1996-01</u> REFOS (350 kWth) maillage de fils (Inconel 600), hublot elliptique (8mm, 19.5b), CPC : 15b, 67% @800°C ; conception d'un CPC performant et léger, mauvaise isolation du récepteur, dégradation du hublot (DLR-CIEMAT à PSA)
- <u>2001-06</u> SOLGATE multi-étage (400 kWth) 3 étages, (1^{er} récepteur tubulaire, 2^{ieme} REFOS, 3^{ieme} REFOS avec une mousse SiC 20ppi), 3 CPC : 15b, 70% @960°C ; augmentation de température d'air par étage, 200 à 250°C

Avantages/ Inconvénients

- <u>Avantages</u>
 - Haute température
 - Haut rendement (R&D effet volumique, sélectivité)
 - Modulaire (pas de partie mobile)
 - Peu de contraintes sur les absorbeurs
- Inconvénients
 - Hublot (forme, refroidissement)
 - Déformation de la structure porteuse (refroidissement)
 - Mauvaise distribution du débit d'air (point chaud, instabilités, flux incident variable, le vent dans le cas des RV atm.)
 - R&D pour les chambres de combustion /turbines (cycle hybrides)
 - Coût de l'investissement

Réacteurs Volumiques

<u>1990</u> DCAR (3.5 kWth) mousse Al2O3 (5ppi, 10ppi, 20ppi) avec un dépôt de Rhodium (catalyseur), tests à SNL, reformage de CH4 à base de CO2 (production de gaz de synthèse)

<u>1991</u> CAESAR (3.5 kWth) mousse Al2O3 avec un dépôt de Rhodium (catalyseur), (SNL/DLR) reformage de CH4 à base de CO2, η_{CH4} = 66%, T>1200°C, dislocation de l'absorbeur, désactivation du catalyseur

Rayonnement solaire concentré : collecteurs, récepteurs 23 et stockage

Réacteurs Volumiques

 <u>1998-02</u> <u>HYDROSOL (10 kWth)</u> R-SiC canaux (2*2mm), tests à DLR Cologne, cycles à base de ferrites déposés, 800<T<1300°C, η_{H2} = 90% ; difficulté de régénération des matériaux
<u>2002-06</u> <u>HYDROSOL 2 (100 kWth)</u> tests à SSPS PSA, 2 modules pour réaliser les deux étapes (réduction/oxydation) ; température de dégradation du matériau proche (1250°C) de la température de réduction (1150°C)

Avantages/ Inconvénients

- Avantages (idem RV)
 - Grandes surfaces spécifiques pour les réactions
- Inconvénients (idem RV)
 - Réalisation du matériau (dépôt, dopage, etc.)
 - Dégradation du matériau
 - Comportement au cyclage en température (régénération)

Recherches futures

- Maîtriser les propriétés des matériaux :
 - Sélectivité spectrale (rayonnement)
 - Échange de chaleur (convection/conduction)
 - Vieillissement (cyclage en T, réactions chimiques)
- Caractérisation physico-chimique des matériaux développés
- Modélisation/simulation des récepteurs et réacteurs
- Réalisation de prototypes (changement d'échelle)
- Amélioration des composants (structure, hublot)

Optisol (2012-2016)

Absorbeurs volumiques solaires haute température à propriétés optiques contrôlées

• <u>Objectif</u> : rendement thermique > 85% @1000°C (RV atm.)

MERCI POUR VOTRE ATTENTION

Rayonnement solaire concentré : collecteurs, récepteurs et stockage

ACCORT

et stockage

JE SFT, Paris, Rayonne

Rayonnement solaire concentré : collecteurs, récepteurs et stockage

ACCORT

