
Journée SFT "Thermoacoustics" 10 décembre 2010, Paris

Amélioration de l'efficacité énergétique des machines Thermoacoustiques

Ph NIKA Département ENISYS/FEMTO-ST Belfort CNRS/ Université de Franche-Comté

I

 \circ \simeq ш

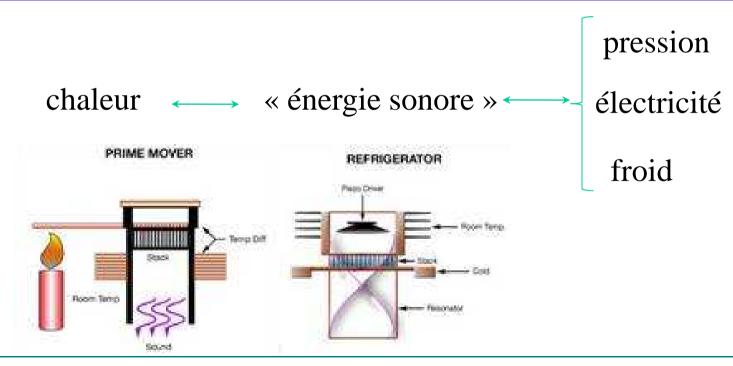
I \circ

Ш α

Ш

l'innovation, de la recherche fondamentale au partenariat

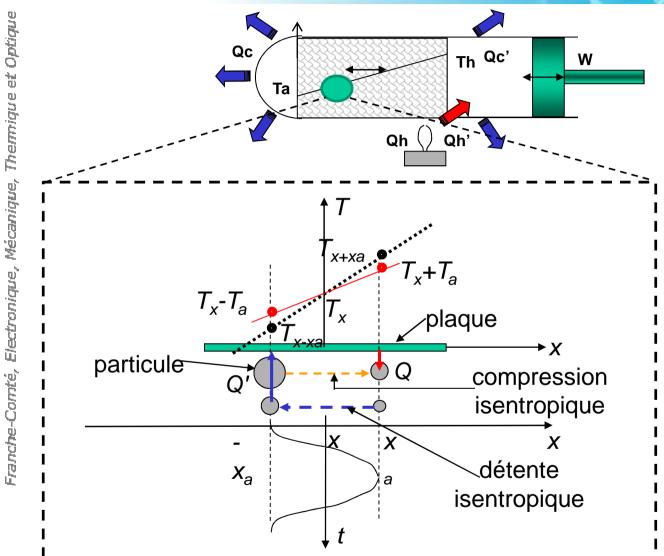
industriel

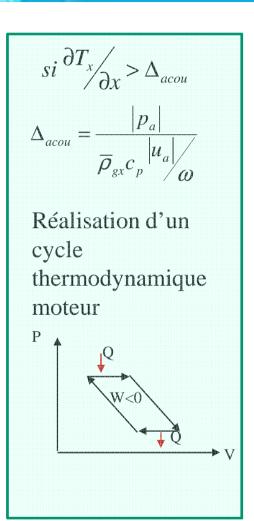


FEMTO

Qu'est ce que la thermoacoustique?

L'effet thermoacoustique résulte de l'interaction thermique entre un fluide en oscillation sous l'effet d'une « onde acoustique » (amplitude de pression et de vitesse) et une paroi solide comportant un gradient thermique ; il se traduit par le transport de chaleur dans les couches limites de fluide voisines de la paroi parallèlement à celle ci et dans une direction qui dépend de l'intensité du gradient thermique de paroi.

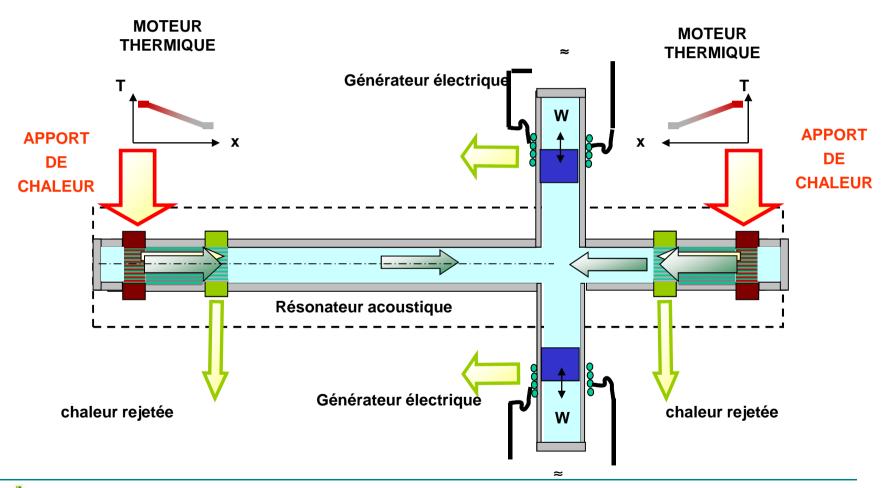




La conversion thermoacoustique de la chaleur

Avantages des convetisseurs thermoacoustiques

- •Un minimum de parties mobiles (1piston ou Haut Parleur) et pas d'étanchéités dynamiques
- •Pas de fluide toxique ou à effet de serre
- Fabrication simple et maintenance minimale
- •Utilisation de source d'énergie externes variées
- •Possibilité de générer de l'électricité avec un alternateur linéaire (ou autre) ou de pomper de la chaleur
- •Dimensions et gammes de puissance très variées (miniatures à grandes tailles)

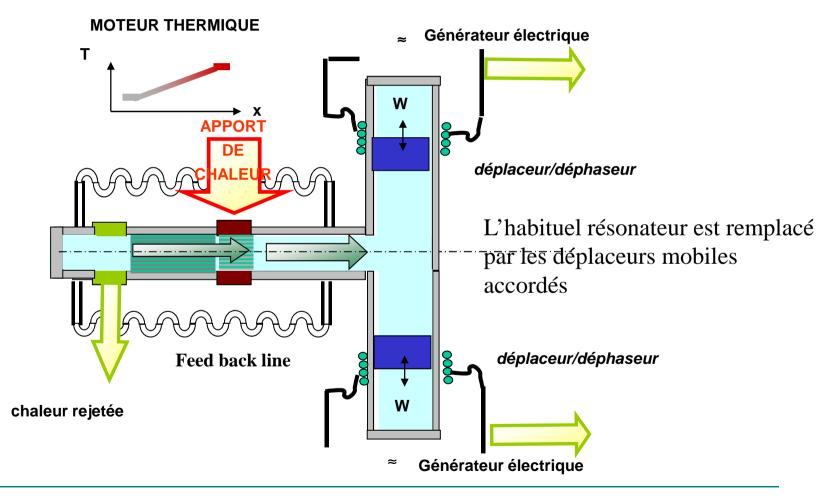


Franche-Comté, Electronique, Mécanique,

Architecture des générateurs thermoacoustiques

Moteur Onde stationnaire

Onde stationnaire : phase Pression-débit $\rightarrow 90^{\circ}$

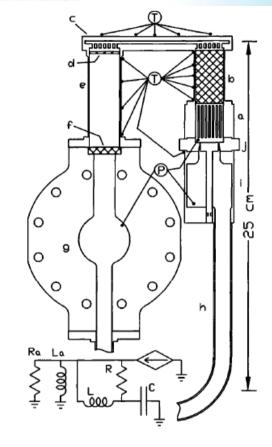


Architecture des générateurs thermoacoustique

Machine TASHE: Thermoacoustic Stirling Heat Engine

Onde progressive: phase Pression-débit ->0°

Franche-Comté, Electronique, Mécanique,



femto st Exemple de convertisseur thermoacoustique électrique

Générateur électrique NASA-Los Alamos laboratory

Type Stirling Thermoacoustique Hélium 55 bars pa/p0 = 0,065120 Hz, 650°C/30°C Puissance = $39 W_{elec}$, Efficacité globale = 0,18

fento-st Analyse exergétique des systèmes convertisseurs d'énergie

L'exergie représente l'aptitude d'un système à produire du travail, du fait de son déséquilibre thermique par rapport à la température ambiante T_0 ; elle désigne donc le travail maximum qui peut être extrait d'un système lorsqu'il se met à l'équilibre thermodynamique avec son environnement.

le bilan exergétique global d'un système thermodynamique, s' écrit:

$$\left| \sum_{k} \delta \dot{W}_{eff} + \sum_{i} \Theta_{i} \delta \dot{Q}_{i} + \sum_{j} ex_{tj} \dot{m}_{j} - A\dot{n} = \frac{dJ_{t}}{dt} \right| = 0 \quad (régime \ permanent)$$

Puissance mécanique/électrique : $\delta W_{
m eff}$

Co.Puissance chaleur: $\Theta_i \delta \dot{Q}_i$

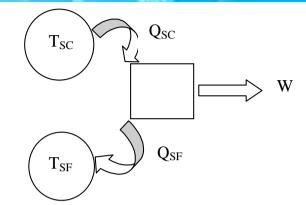
Facteur de carnot : $\Theta_i = \left(1 - \frac{T_0}{T}\right)$

Exergie totale massique: $ex_{ij} = h_{ij} - T_0 s_j = u_{ij} + P_j v_j - T_0 s_j$

Anergie ou perte exergétique: $A\dot{n} = T_0 \delta S^*/dt$ (exergie détruite au cours d'une transformation)

Co-énergie totale du système : $J_t = U_t + P_0 V - T_0 S$

écanique,


Franche-Comté,

Analyse exergétique : application à un moteur

<u>Cas du Moteur</u> $T_{SC} > T_{SF} = T_0$, $\Theta_{SF} = 0$

bilan énergétique : $Q_{SF} + Q_{SC} + W = 0$

bilan exergétique : $\Theta_{SC} Q_{SC} + W - An = 0$

Avec le rendement maximum de Carnot : $\eta_{Carnot} = \Theta_{SC} = 1 - \frac{T_0}{T_{SC}}$

Dans le cas d'un moteur , l'exergie utile : $Ex_u = W_{rev} < 0$ et l'exergie consommée : $Ex_c = \Theta_{SC}Q_{SC}$

→ Dans le cas général ou An >0, les rendements énergétiques et exégétiques s'écrivent:

$$\eta_{en} = \frac{|W|}{Q_{sc}} = \eta_{Carnot} - \frac{An}{Q_{SC}} = \Theta_{SC} \left(1 - \frac{An}{\Theta_{SC}Q_{SC}} \right)$$

$$\eta_{ex} = \frac{|Ex_u|}{Ex_c} = \frac{|W|}{\Theta_{SC}Q_{SC}} = 1 - \frac{An}{\Theta_{SC}Q_{SC}}$$

$$\eta_{ex} = \frac{\eta_{en}}{\eta_{carnot}}$$

Analyse exergétique : rendements d'un moteur

 \rightarrow Si le moteur est moteur réversible thermodynamiquement, on a évidemment : An=0

Les deux rendements deviennent simplement :

$$\eta_{en} = \frac{|W|}{Q_{sc}} = \eta_{Carnot} = \Theta_{SC} = 1 - \frac{T_0}{T_{SC}}$$

$$\eta_{ex} = \frac{|Ex_u|}{Ex_c} = \frac{|W|}{\Theta_{SC}Q_{SC}} = 1$$

Un moteur « réversible » transforme donc intégralement l'exergie consommée Ex_c en exergie utile Ex_u (mécanique)

Analyse exergétique : rendements d'un moteur

Performances actuelles:

* La Penn State University (USA) a développé un refrigérateur thermoacoustique à ondes progressives pour les "ice cream" qui a atteint 19% du rendement de Carnot

* ECN (Nederland) un refrigérateur à ondes progressives qui a atteint 25% du rendement de Carnot

Pour des systèmes Moteur + refroidisseur :

- LANL (USA) 1.2 % du rendement de Carnot
- Nagoya (Japan) 0.7 % du rendement de Carnot
- CAS (China) 2.8 % du rendement de Carnot

Pour des systèmes Moteur + pompe à chaleur : n'existent pas

Objectifs à poursuivre : $\eta_{ex} = 40\%$

Possible : Le générateur thermoacoustique haute température construit par le LANL (USA) a obtenu en 1999 une efficacité de 30%, correspondant à 41% du rendement de Carnot

Comment augmenter la puissancedes machines thermoacoustiques

Imaginons un système thermoacoustique avec de l'hélium à une pression moyenne de 25 bars, un diamètre du système de de 10 cm avec un Drive Ratio de 5%. La puissance acoustique produite est de :

$$\langle \dot{W} \rangle = \frac{p_a^2 S}{\overline{\rho}_{g0} c} = DR^2 \overline{p}_0 S \sqrt{rT/\gamma} = 30 \ kW$$

Ce qui correspond à un niveau acoustique de :

$$L_p = 10 \log \left(\frac{p_a^2}{p_{ref}^2} \right) = 10 \log \left(\frac{DR^2 \overline{p}_0^2}{(210^{-5})^2} \right) = 196 dB$$

C'est de l'ordre de grandeur du champ acoustique généré par un réacteur d'avion! (mais ici enfermé dans un tube)

Comment augmenter la puissance des machines thermoacoustiques

- -Augmentation de la pression du gaz de travail : pb étanchéités, sécurité
- -Drive ratio élevé, amplitude de pression maximale dans le système (= bon facteur de qualité du circuit acoustique)
- -Pression et vitesse en phase sur une grande longueur de régénérateur : conditions sur le circuit acoustiques et adaptation de la charge (étude du couplage*)
- -Réduction des phénomènes de streaming et des turbulences*: fluides présentant une viscosité minimale (mélanges hélium xénon)
- -Conduction thermique axiale réduite pour un gradient thermique donné (matériaux)
- -Conception optimale des échangeurs chauds et froid : fluide alterné*
- -Optimisation *du Stack/régénérateur (position, diamètre des pores)selon le taux d'onde progressive et la fréquence
- -Réduction de taille du système : suppression *ou optimisation du résonateur, augmentation de la fréquence
- -Systèmes avec cascades de régénérateurs (amplificateurs) et de stack (générateurs)
- Conception des générateurs électriques linéaires : contrôle ,commande*

*Points intéressants les recherches d'ENISYS

Electronique,

Analyse des pertes dans un convertisseur thermoacoustique (rendement maximal)

Pourquoi $An \neq 0$

Pertes thermiques classiques

- →Pertes par irréversibilités thermiques (transferts thermiques) et dégradations diverses
- →Pertes thermiques vers l'extérieur par défaut d'isolation thermique
- →Pertes par conduction thermique entre les parties chaudes et froides du système

Pertes fluidiques classiques

- →pertes par génération de « turbulences »
- ₹→effet du « blocage ratio » du stack et des échangeurs : réflexions d'ondes, porosité
 - →effet des coudes, changements de section, vortex, jets
 - →création d'ondes de choc pour les amplitudes importantes de la pression

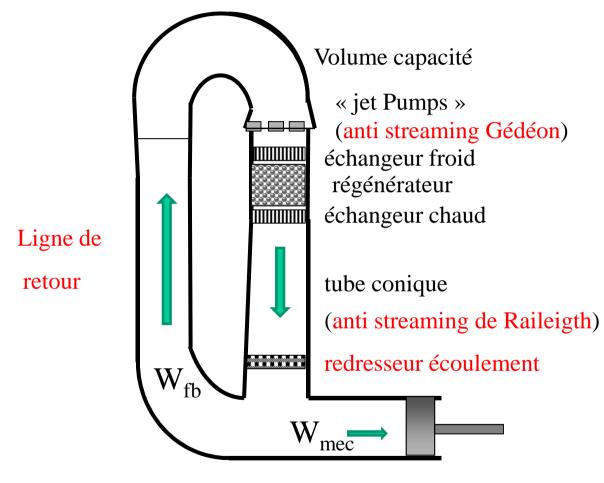
Analyse des pertes dans un convertisseur thermoacoustique

Pertes de l'énergie acoustique dans les conduits

- →Pertes par inadaptation de la phase entre la pression et le débit acoustique du fluide
- → Facteur de qualité « Q » du résonateur insuffisant (état des surfaces)
- →Pertes dues à la présence d'ondes radiales ou dans la direction transverse, ou a la forme (non plane) de l'onde
- → Mauvaise adaptation des impédances acoustiques des tronçons raccordés
- →Pertes dues au couplage des vibrations avec la structure du systèmes

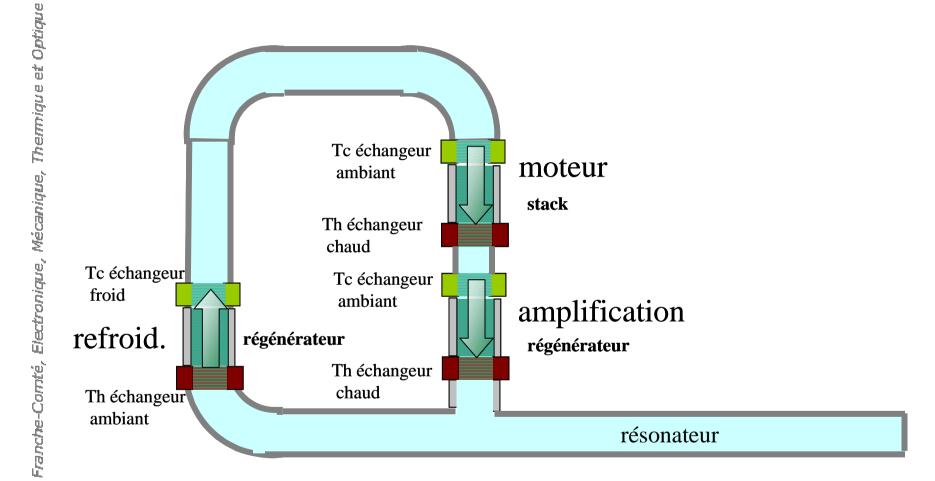
Pertes dues aux non linéarités des phénomènes

- →Pertes dues aux phénomènes non linéaires (à fortes amplitude de la pression)
- →Pertes par les divers phénomènes de « streaming »
- →Pertes dues à la présence d'harmoniques



femto-st Moyens d'améliorations des écoulements dans les moteurs thermoacoustiques

Réglage Phase P/u charge



Moteur ondes mixtes stationnaire et progressive Swift-Backhaus

Optimisation du stack/régénérateur dans les moteurs thermoacoustiques

Pertes de l'énergie dans le stack

- →Pertes par relaxation thermique de l'énergie acoustique
- →Pertes par dissipation visqueuse de l'énergie acoustique du fluide

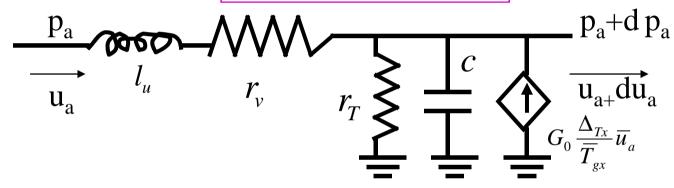
Calcul de la puissance acoustique :

$$\left\langle \dot{W}_{x}\right\rangle = \frac{1}{2} \int_{S} \Re[p_{1}\widetilde{u}_{1}] dS = \frac{S}{2} \Re[p_{1}\widetilde{u}_{1}] = \frac{S}{2} \Re[p_{a}\widetilde{u}_{a}] = S|p_{a}||\overline{u}_{a}|\cos(p_{a},\overline{u}_{a})$$

Variation de la puissance acoustique :

$$\frac{d\langle \dot{W}_{x} \rangle}{dx} = +\frac{1}{\overline{T}_{gx}} \frac{dT_{gx}}{dx} \Re[G_{0}] \langle \dot{W}_{x} \rangle + \frac{S}{2\overline{T}_{gx}} \frac{dT_{gx}}{dx} \Im[-G_{0}] \Im[\widetilde{p}_{a} \overline{u}_{a}] - \frac{1}{2r_{T}} S|p_{a}|^{2} - \frac{r_{u}}{2} S|\overline{u}_{a}|^{2}$$

$$\frac{D\acute{e}gradations}{visqueuses}$$


Analyse des pertes dans le stack

 $r_{v} = \omega \overline{\rho}_{gx} \frac{\Im[-g_{0}(s^{g})]}{|1-g_{0}(s^{g})|^{2}}$

$$\overline{u}_a = -\frac{1}{(r_u + j\omega l_u)} \frac{\partial p_a}{\partial x}$$

Résistance visqueuse et Inductance

$$l_{u} = \overline{\rho}_{gx} \frac{1 - \Re[g_{0}(s^{g})]}{\left|1 - g_{0}(s^{g})^{2}\right|}$$

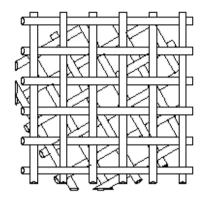
$$\frac{d\overline{u}_{a}}{dx} = -\left(j\omega c + \frac{1}{r_{t}}\right)p_{a} + G_{0}\frac{\Delta_{Tx}}{\overline{T}_{gx}}\overline{u}_{a}$$

$$\frac{p_{a}}{u_{a}} = \frac{1}{p_{0}} \left(1 + (\gamma - 1)\Re[g_{0}(s^{g}\sqrt{\Pr})]\right)$$
capacitance

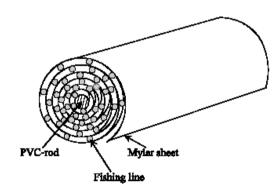
$$\frac{1}{r_T} = \frac{\gamma - 1}{\gamma} \frac{\omega}{p_0} \Im \left[-g_0 \left(s^g \sqrt{\Pr} \right) \right]$$

Résistance de relaxation

$$G_0 = \frac{\left(g_0(s^g) - g_0(s^g\sqrt{\Pr})\right)}{\left(\Pr-1\right)\left(1 - g_0(s^g)\right)}$$
terme source/puits

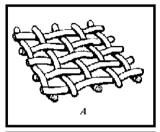


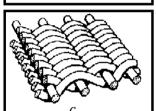
Mécanique,

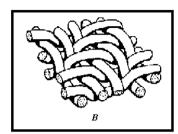

Franche-Comté, Electronique,

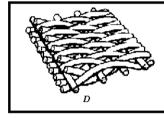
Réalisation des stacks et des régénérateurs avec écoulements alternés

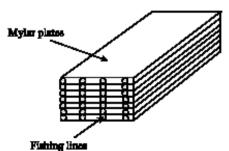
empilement de grilles métalliques

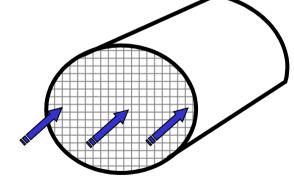

fines pour réaliser les régénérateurs




stacks enroulés ou à plaques

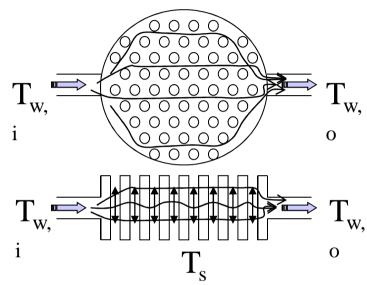


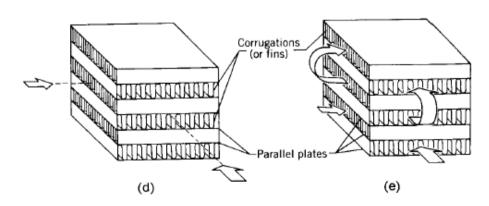




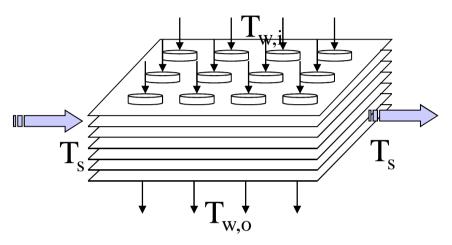
diverses structures de grilles pour régénérateur

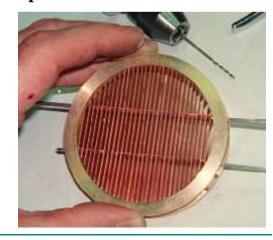
structure céramique


Département ENISYS


Franche-Comté, Electronique, Mécanique,

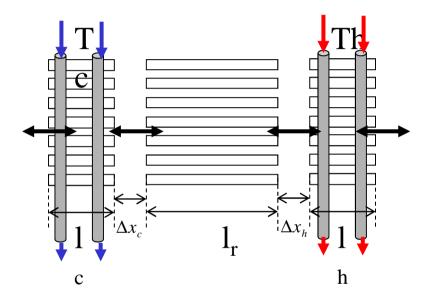
Optimisation des échangeurs avec écoulements alternés


Les échangeurs enveloppe-tubes


Les échangeurs compacts

Les échangeurs tubes-plaques

échangeur de type conductif pour faibles puissances



Le design des échangeurs à fluide alterné: un domaine encore mal connu!

Difficulté : Échangeurs thermiques en régime écoulement alterné!

- écoulements non stationnaires
- zones d'entrée prédominantes
- géométries complexes
- interaction avec les éléments voisins (effet navette)
- créations de turbulences, de jets, streaming,...

Paramètres géométriques caractérisant les écoulements alternés

Franche-Comté, Electronique, Mécanique, Themique et Optique

Ratio du déplacement du gaz « $2\bar{x}_a$ » à la longueur de l'échangeur L: $\Lambda_L = \frac{2\bar{x}_a}{I}$

$$\Lambda_L = \frac{2\overline{x}_a}{L}$$

Diamètre hydraulique des canaux : $d_h = \frac{4S_p}{p} = 4r_h$

$$d_h = \frac{4S_p}{p} = 4r_h$$

 S_n la section libre de passage du fluide

p le périmètre du canal

 r_h le rayon hydraulique

ratio relatif du déplacement au diamètre hydraulique du canal :

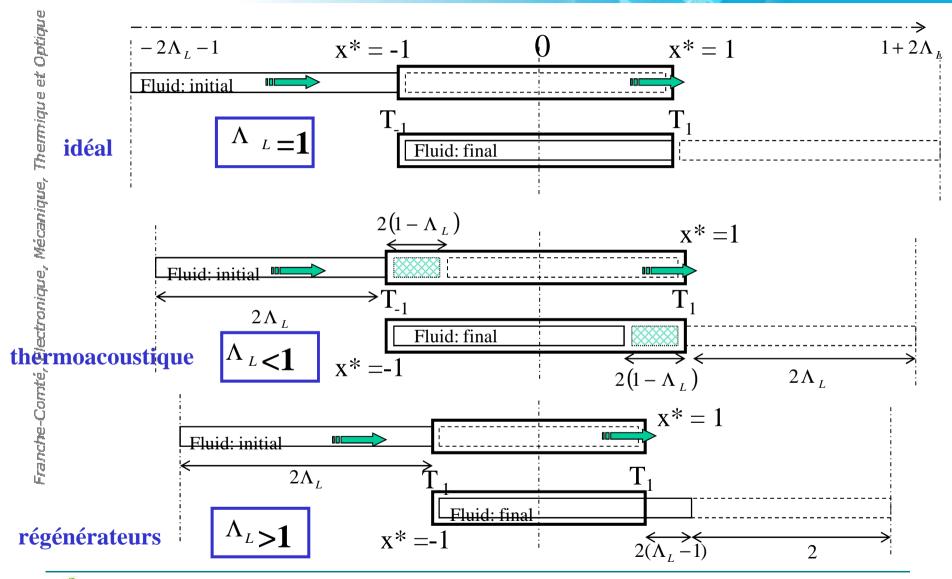
$$A_0 = \frac{2x_{\text{max}}}{d_h}$$

Ratio relatif de la longueur au diamètre hydraulique du canal:

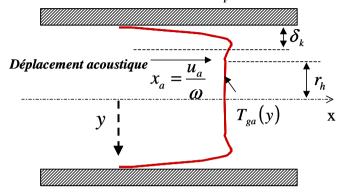
$$X = \frac{L}{d_h}$$

Liaison \rightarrow $A_0 = \Lambda_L X$





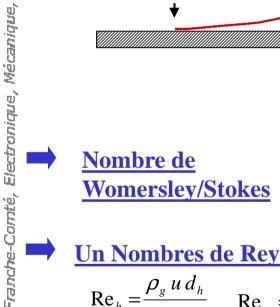
Importance du ratio de déplacement : fluide résiduel ou passage rapide



Paramètres fluidiques caractérisant les écoulements alternés

paroi solide isotherme T_n constante

épaisseur de la couche limite thermique


$$\delta_k = \sqrt{\frac{2k_g}{\omega \overline{\rho}_g c_{pg}}} = \frac{\delta_v}{\sqrt{\Pr}} \qquad \text{the viscosit\'e dynamique du gaz,}$$

 $k_{\rm g}$ la conductivité thermique du gaz

épaisseur de la couche limite cinématique

$$\delta_{v} = \sqrt{\frac{2\mu}{\omega \overline{\rho}_{g}}}$$

le nombre de Prandtl du fluide :

$$Wo = s = \sqrt{\frac{\rho_g \omega r_h^2}{\mu}} = \sqrt{2} \frac{r_h}{\delta_v} = \frac{\sqrt{2}}{\sqrt{\Pr}} \frac{r_h}{\delta_\kappa} \quad \text{ou} \qquad \text{Re}_\omega = \frac{\rho_g \omega d_h^2}{\mu} = 16 \text{ Wom}^2$$

$$\operatorname{Re}_{\omega} = \frac{\rho_{g} \omega d_{h}^{2}}{\mu} = 16 \, Wom^{2}$$

<u>Un Nombres de Reynolds</u> : lequel ?

$$\operatorname{Re}_{h} = \frac{\rho_{g} u d_{h}}{\mu_{g}} \qquad \operatorname{Re}_{a} = \frac{\overline{\rho} u_{a} d_{h}}{\mu} \qquad \operatorname{Re}_{h} = \frac{\overline{\rho} |\overline{u}_{a}| d_{h}}{\mu} \quad \operatorname{Re}_{\max} = \frac{\overline{\rho} u_{\max} d_{h}}{\mu}$$

Liaison
$$\rightarrow$$
 $A_0 = \frac{2x_{\text{max}}}{d_h} = 2\frac{\text{Re}_{\text{max}}}{\text{Re}_{\omega}}$

Paramètres thermofluidiques caractérisant les écoulements alternés : premières difficultés

Coefficient de frottement visqueux : variable dans le temps !

$$C_f = \frac{\tau_p}{\frac{1}{2}\rho_f \bar{u}^2} = \frac{\frac{\mu \partial u}{\partial r}|_{paroi}}{\frac{1}{2}\rho_f \bar{u}^2}$$

$$C_{f} = \frac{\tau_{p}}{\frac{1}{2}\rho_{f}\overline{u}^{2}} = \frac{\mu^{\partial u}/\partial r|_{paroi}}{\frac{1}{2}\rho_{f}\overline{u}^{2}} \qquad \qquad \left\langle \overline{u} \right\rangle = 0 \qquad \Rightarrow C_{f}(t) \rightarrow \infty \qquad \left\langle C_{f} \right\rangle = \frac{1}{\pi} \int_{0}^{\overline{u}} C_{f}(t) dt$$

$$\text{vitesse movenne débitante}$$

Différence de pression ou perte de charge ??

$$\Delta P = 4C_f \frac{L}{d_h} \frac{1}{2} \rho_f \overline{u}^2$$

Retour aux sources : Équation de quantité de mouvement

$$\left(\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x}\right) = -\frac{1}{\rho_g} \frac{\partial p}{\partial x} + v \frac{\partial u}{\partial y} \Rightarrow \Delta p = \int_L \rho_g \left(v \frac{\partial^2 u}{\partial y} - \frac{\partial u}{\partial t} - u \frac{\partial u}{\partial x}\right) dx$$

Effets visqueux + accélération+ effets d'inertie

avec

Franche-Comté, Electronique, Mécanique,

Validité des modèles en écoulements alternés : calcul de la différence de pression

En fait la contrainte à la paroi : $\Re\left[\frac{\partial u}{\partial r}\Big|_{paroi}\right] = \Re[G_1]\Re[\overline{u}] + \frac{1}{\omega}\Im[G_1]\Re\left[\frac{\partial \overline{u}}{\partial t}\right]$ temporelle (oscillation sinus)

Il en découle:
$$-\frac{\partial p}{\partial x} = \frac{2\mu}{d_h^2} \operatorname{Re}_{dh} \Re \left[C_f \right] \overline{u} + \rho_g \left(1 + \frac{\operatorname{Re}_{dh} \Im \left[C_f \right]}{8Wom^2} \right) \frac{\partial \overline{u}}{\partial t}$$

Introduction d'un coefficient de frottement complexe (phase)

nombre de Womersley :
$$Wom = \sqrt{\frac{\rho_g \omega r_h^2}{\mu}}$$

Paramètres thermofluidiques caractérisant les écoulements alternés : premières difficultés

Coefficient de convection thermique :

$$\frac{\partial T_g}{\partial y}\Big|_{paroi} \qquad \overline{T}_b \qquad \text{température de mélange du fluide} \qquad \overline{T}_b = \frac{1}{S\overline{u}}\int T_g u dS = \frac{\int T_g u dS}{\int u dS}$$

$$h_b = k_f \frac{\partial T_g}{\left(\overline{T}_b - T_{w|paroi}\right)} \qquad \left\langle \overline{T}_b(t) \right\rangle \rightarrow 0 \implies h_b(t) \rightarrow \infty$$

Avec la Loi linéaire classique : $\varphi_p = k \frac{\partial T_g}{\partial r}\Big|_{paroi}$ Flux réécrit: $\varphi_p = \frac{k}{d_h} N u_b (T_W - \overline{T}_b)$

En fait dans la définition classique il n'existe pas de déphasage entre températures et flux thermique : il est supposé nul!

Franche-Comté, Electronique, Mécanique, Themique et Optique

Validité des modèles en écoulements alternés : densité de flux thermique

et moyenne

(voir thermoacoustique linéaire)

 Δ_{Tx} Gradient de température de paroi

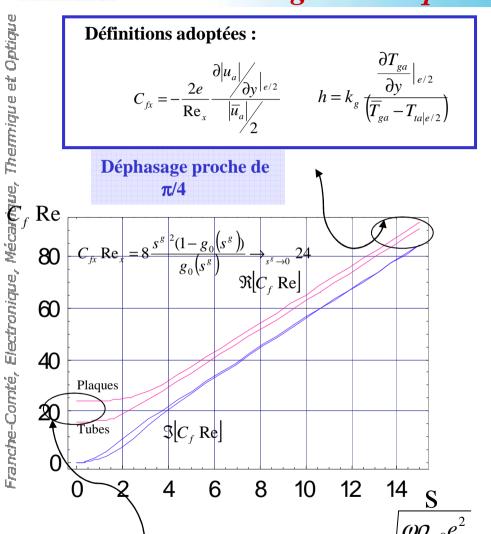
flux thermique à la paroi :
$$\Re\left[\frac{\partial T_{g_a}}{\partial r}\Big|_{paroi}\right] = \Re\left[\frac{\hat{f}_{2p}}{\hat{h}}\right] \Re\left[\overline{T}_{ga}\right] + \frac{1}{\omega}\Im\left[\frac{\hat{f}_{2p}}{\hat{h}}\right] \Re\left[\frac{\partial \overline{T}_{g}}{\partial t}\right]$$
 Variation temporelle

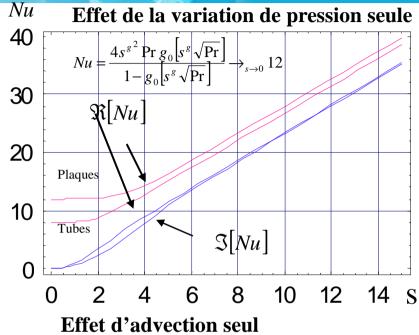
Expression modifiée du flux thermique :

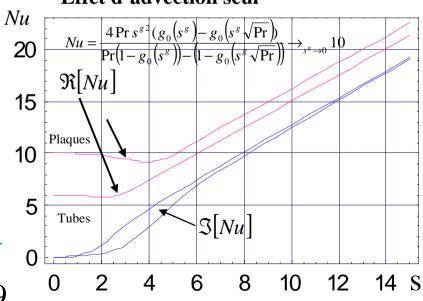
$$\varphi_p = \frac{k}{d_h} \left(\Re[Nu_i] \Re[T_W - \overline{T}_b] - \Im[Nu_i] \frac{\partial}{\partial \omega t} \Re[\overline{T}_b] \right)$$

Introduction d'un nombre de Nusselt complexe (phase)

Franche-Comté, Electronique, Mécanique,







Applications : Variations du coefficient de frottement

et d'échange thermique en écoulement oscillant établi

Déphasage proche de 0

s =

Influence des zones d'entrée en écoulement alterné dans un tube

Optique

Them

Franche-Comté, Electronique, Mécanique,

Ch Walter, H.D. Kuhl, Th Pfeffer, S. Schulz, Influence of developing flow on the heat transfer in laminar oscillating pipe flow, Forrsch ingenieurwes, (64), 1998, 55-63

Résolution numérique des équations + méthode de moindres carrés pour retrouver le flux :

$$\varphi_p = \frac{k}{d_h} \left(\Re[Nu_i] \Re[T_W - \overline{T}_b] - \Im[Nu_i] \frac{\partial}{\partial \omega t} \Re[\overline{T}_b] \right)$$

Nombre Nusselt local (basé sur
$$T_m$$
):
$$|Nu_m| = 5,78 + 0,238.10^{-3} \text{ Re}_{\omega}^{1,396} \lambda^{-0,372} + 0,0296 \frac{\overline{Re}}{\overline{R}_{e \text{ max}}}|^{0,905} \lambda^{-0,857} \text{ Re}_{\omega}^{0,568} \qquad \lambda = \frac{x}{L} \Lambda = \frac{x}{\Delta x_{\text{max}}} \Lambda = \frac{x}{L} \Lambda = \frac{x}{$$

$$Arg(Nu_m) = -0.758\lambda^{-0.235} \text{Re}_{\omega}^{0.493} en \text{ deg } r\acute{e}s$$

$$\lambda = \frac{x}{L} \Lambda = \frac{x}{\Delta x_{\text{max}}}$$

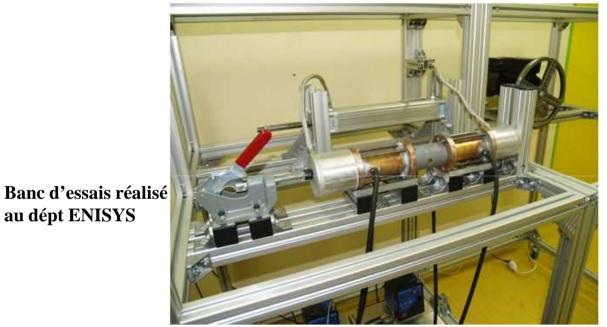
Nota: la valeur 5,78 est celle d'un écoulement laminaire « piston » (profil de vitesse plat):

Nombre Nusselt moyen sur L (basé sur T_m):

$$\left| \overline{N}u_{m} \right| = 5.78 + 0.00918 \operatorname{Re}_{\omega}^{0.969} \Lambda^{-0.367} + 0.178 \left| \frac{\overline{R}e}{\overline{R}_{e \operatorname{max}}} \right|^{0.951} \Lambda^{-0.703} \operatorname{Re}_{\omega}^{0.526}$$

$$Arg(\overline{N}u_{m}) = -0.0308 \operatorname{Re}_{\omega} en \operatorname{deg} r\acute{e}s$$

$$\Lambda = \frac{L}{\Delta x_{\text{max}}}$$



Banc de test projet PIE de ENISYSpour caractérisation de régénérateurs et d'échangeurs en écoulements oscillants

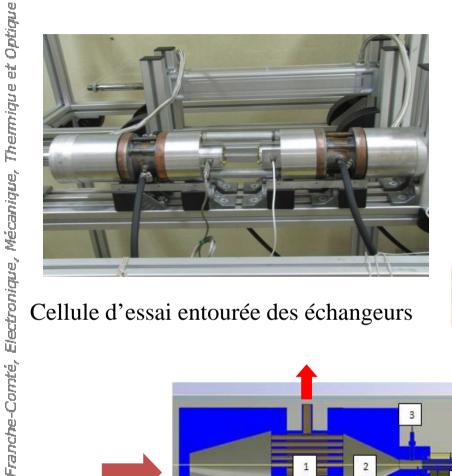
Etude des Spécificités Intrinsèques d'un Micro Cogénérateur Electro Thermique Intégré =ESIMCETI

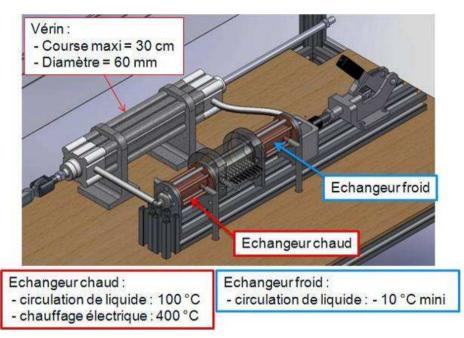
Entraînement mécanique de type bielle-manivelle + moteur électrique

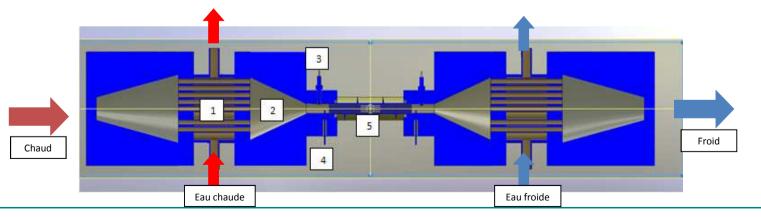
Objectifs du projet:

au dépt ENISYS

- 1/ mesurer les différences de pression en régime alterné
- 2/ mesurer les températures de fluide en régime alterné
- 3 /établir des corrélations de transferts thermiques et de frottement en régime alterné.



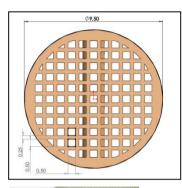


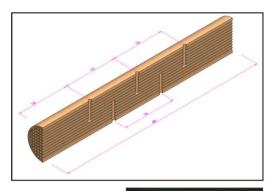


Banc de test pour caractérisation de régénérateurs et d'échangeurs en écoulements oscillants

Cellule d'essai entourée des échangeurs

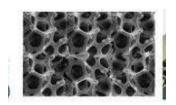






Régénérateurs testés sur Banc d'écoulements alternés

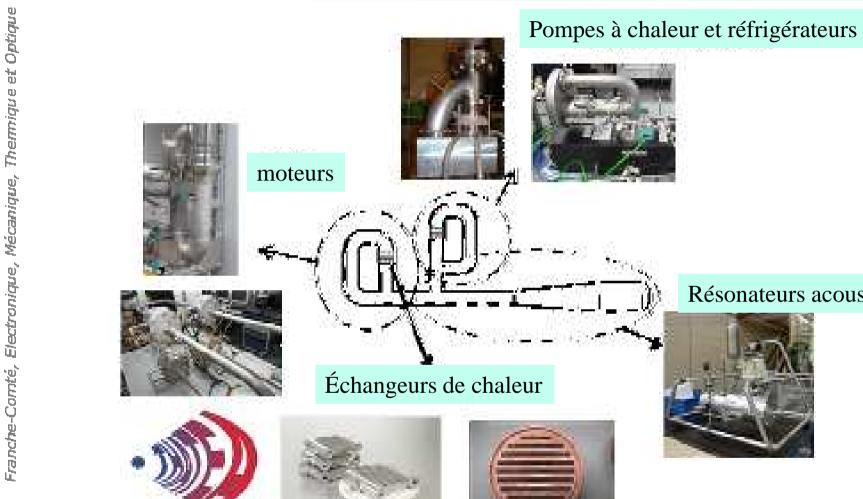
Régénérateurs à canaux métalliques (fusion laser de poudres chrome cobalt)



Echangeurs chaud/froid

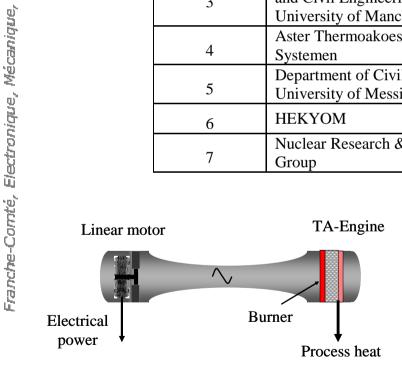
Régénérateurs mousses métalliques

Franche-Comté, Electronique, Mécanique,



Projet européen THATEA: FEMTO-ST/IPNO

Thermoacoustic Technology for energy applications



Projet européen THATEA: FEMTO-ST/IPNO

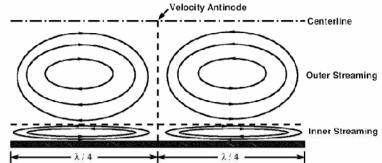
Thermoacoustic Technology for energy applications

Beneficiary Number *	Beneficiary name	Beneficiary short name	Country
1(coordinator)	Energy research Centre of the Netherlands	ECN	Netherlands
2	CNRS	CNRS	France
3	School of Mechanical, Aerospace and Civil Engineering University of Manchester	UNIMAN	United Kingdom
4	Aster Thermoakoestische Systemen	Aster	Netherlands
5	Department of Civil Engineering University of Messina	UNIME	Italy
6	HEKYOM	HEKYOM	France
7	Nuclear Research & consultancy Group	NRG	Netherlands

Objectifs de la tache WP5 CNRS/ECN :

1/ mesurer l'écoulement moyen et le champ de vitesse acoustique en présence de **streaming de Rayleigh** dans le buffer tube d'un pulse tube

2 / Valider les modèles de calcul CFD numérique .


Phenomenon: streaming

Introduction

Thermique et Optique Mécanique, ranche-Comté,

Le "Streaming":

• Un écoulement secondaire correspondant à la superposition d'un débit massique de fluide à l'écoulement oscillant (premier ordre)

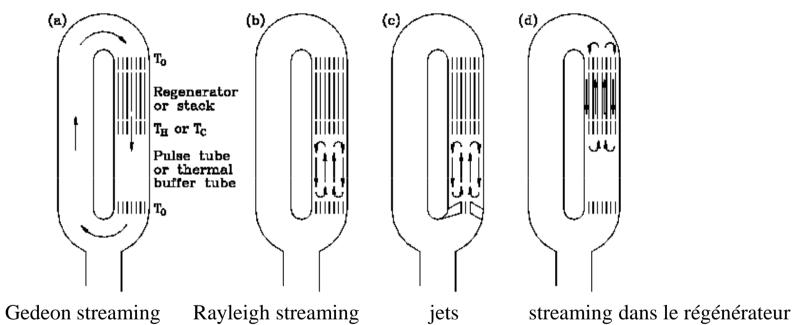
- La cause se situe aux niveau d'effets dans les couches limites proches de la paroi
- Généralement néfaste car génère des mouvements convectifs de fluide entre zone chaude et zone froide

La non linéarité des phénomènes est jugée selon la valeur d'un Nombre de Reynolds dit « non linéaire » :

$$\operatorname{Re}_{NL} = \left(\frac{\overline{u}_a}{c}\right)^2 \left(\frac{d_h}{2\delta_v}\right)^2$$

$$\delta_{v} = \sqrt{\frac{2\mu}{\omega \overline{\rho}_{g}}}$$

On considère que si $Re_{NL} << 1$ le phénomène de streaming est faible et dans le cas contraire $Re_{NL} > 1$ le phénomène de streaming est fort.



fento-st

Streaming des moteurs thermoacoustiques

Streaming types:

Thermique et Optique

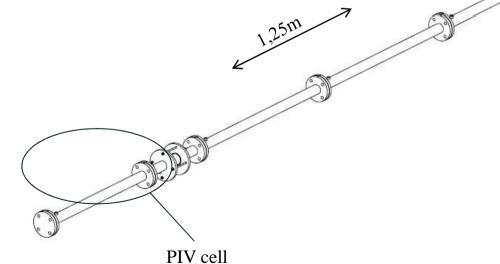
Franche-Comté, Electronique, Mécanique,

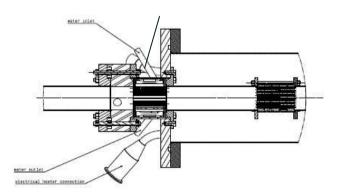
ThermoAcoustic bench

Thermoacoustic bench

Resonateur en tube d'acier : 6,5m

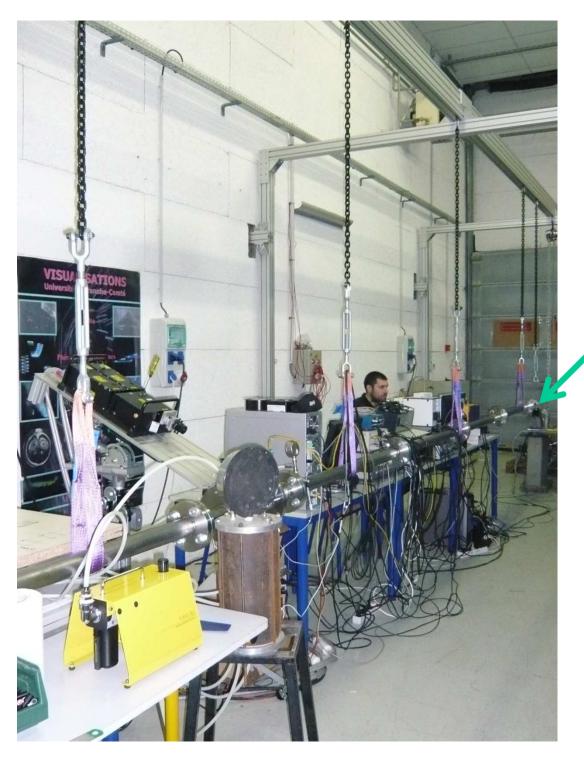
diamètre interne: 56,3mm

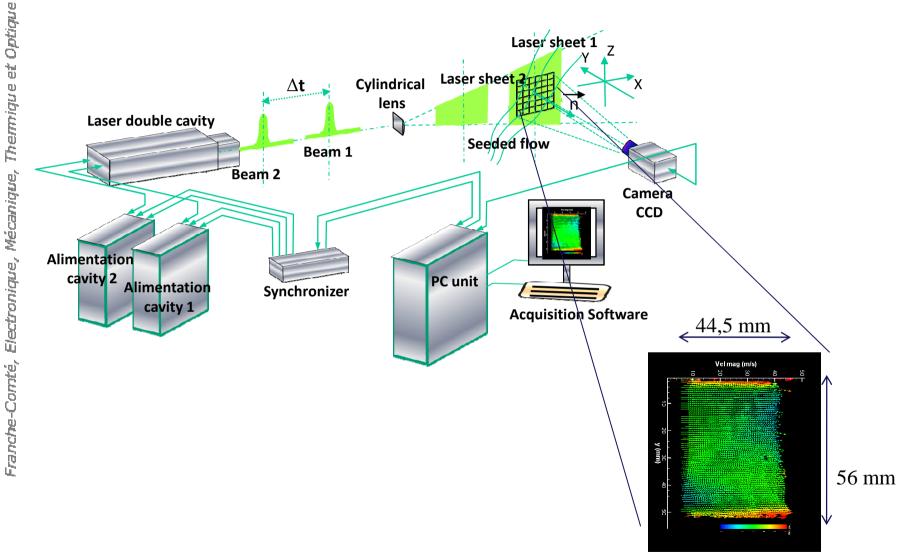

Moteur thermoacoustique: 1,3m


longueur totale: 7,8m

Fluide air : fréquence resonance 24,4 Hertz

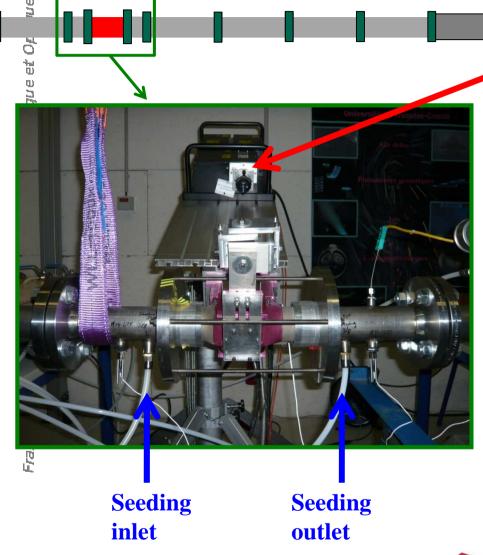
Thermoacoustic Or mechanical engine engine

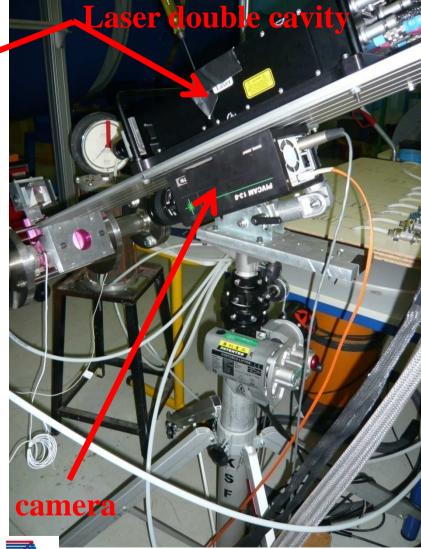



- Piston diameter: 48 mm,- Frequency range: 5-90 Hz,

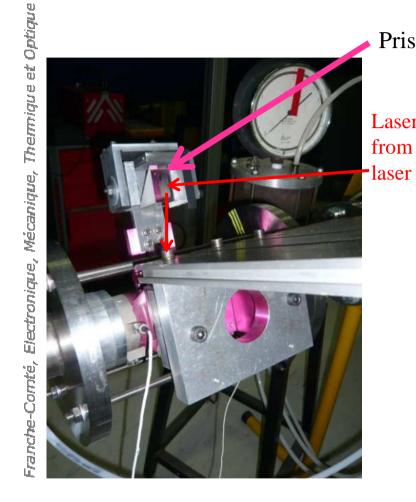
- Piston stroke: 40 mm.

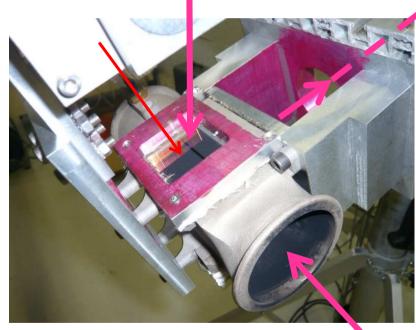
PIV measurements principles





PIV setup




PIV cell

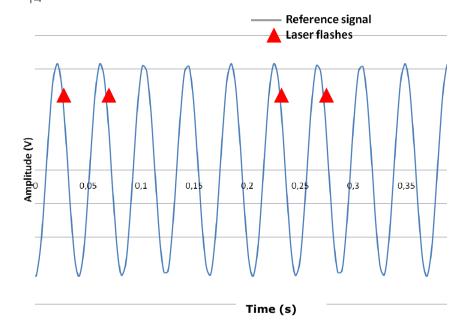
Prism
Window for the laser sheet
Laser sheet
from the

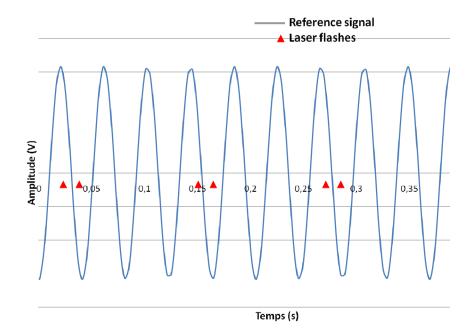
To the camera

Gaz flow

PIV acquisition method

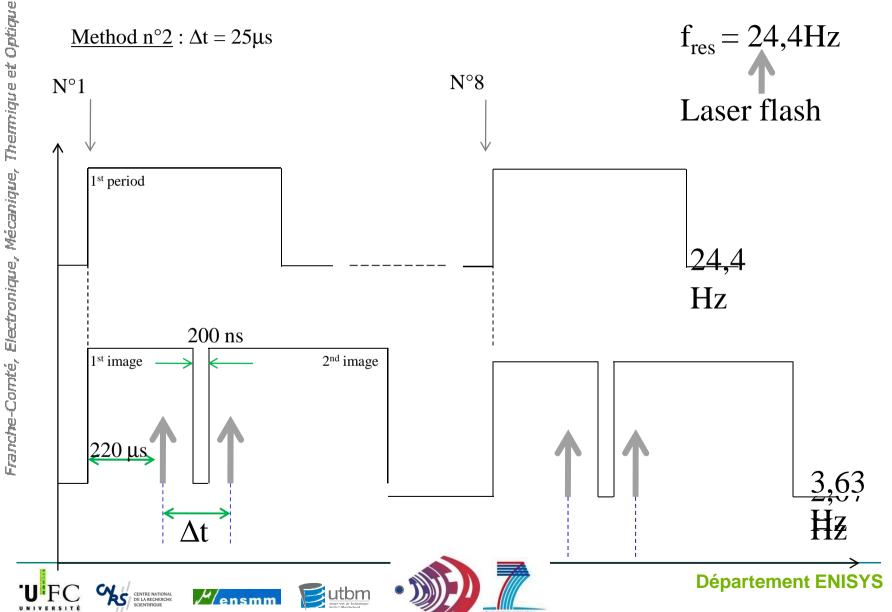
PIV methods and processing


Thermique et Optique


Method n°1

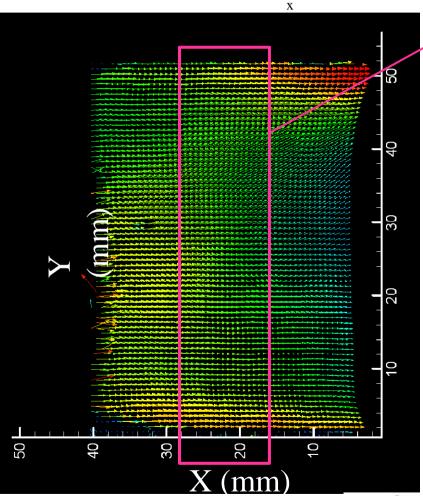
$$\Delta t = 1/f_{res}$$

$$\Delta t = 25 \mu s$$



PIV acquisition method II

PIV methods and processing


Thermique et Optique

Franche-Comté, Electronique, Mécanique,

Processing method

PIV methods and processing

Example at t=40ms

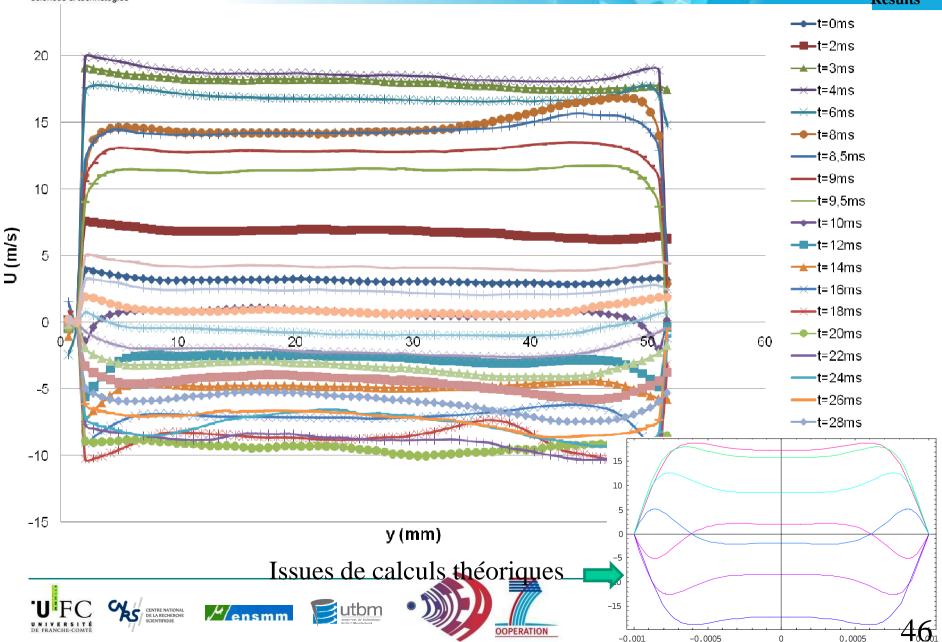
X between 15 and 25 mm

-Extraction of a velocity profile from this area.

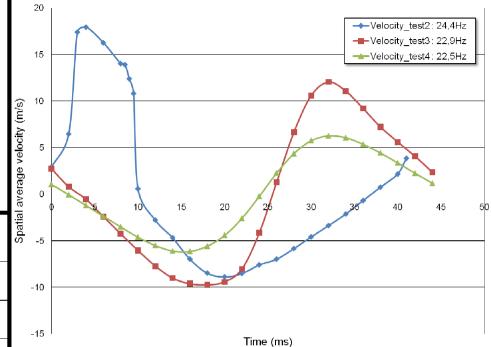
-Average of the velocity values on the profile (along y) >>

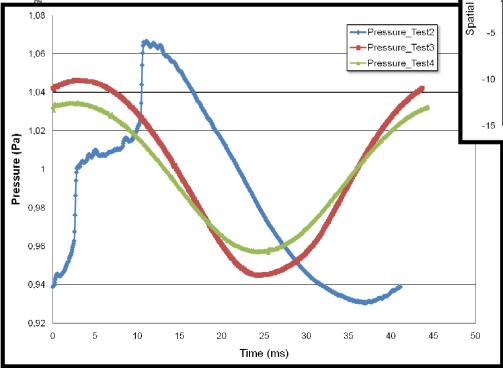
temporal variation of speed
profiles over time >>

streaming velocity profile



fento-st profils de vitesse axiale à différents instants Results


Thermique et Optique

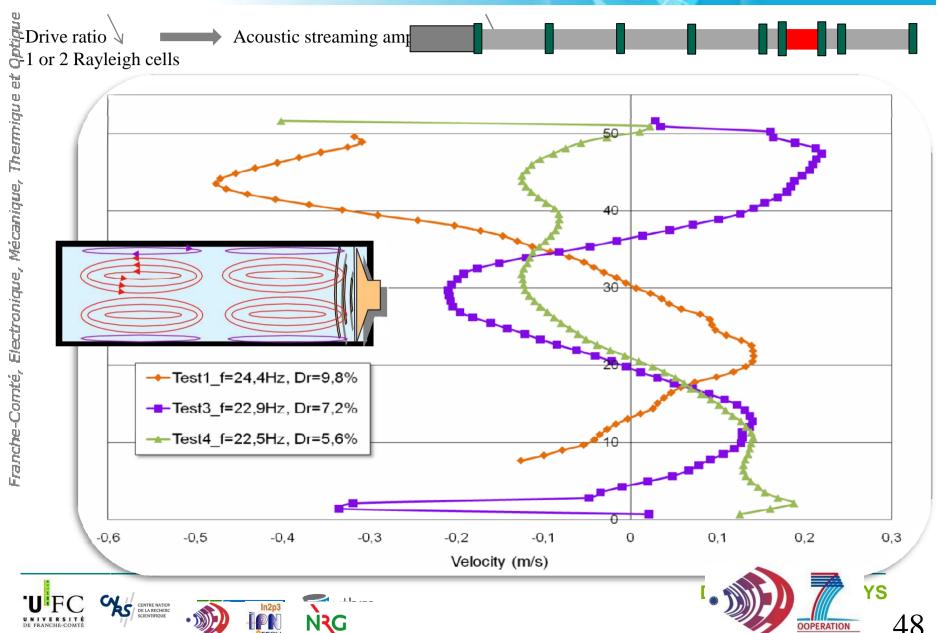

Variations temporelles de la pression et de la vitesse

Results

1	Test2	Test3	Test4
P _m abs. (bar)	0,9863	0,9983	0,9973
P ₁ (mbar)	96,2	72	55,4
P ₁ /P _m (%)	9,7	7,21	5,6
P _{atm} (bar)	0,978	0,978	0,978
T _m (°C)	21	23	23
L (m)	7,13	7,13	7,13
T (period in s)	0,041	0,0436	0,0444
f (Hz)	24,4	22,9	22,5
Engine type	Mechanical	Mechanical	Mechanical

Pressure Engine

Velocity



Streaming: profil de vitesse

Results

Amélioration de l'efficacité énergétique des machines Thermoacoustiques

Merci pour votre attention

Expression de la puissance thermoacoustique générée

Ondes stationnaires ou progressives

→ Pour une onde stationnaire pure: déclanchement de la conversion thermoacoustique de l'énergie thermique-mécanique Thermique

$$\langle \dot{W} \rangle \approx \frac{1}{4} \Pi \delta_{\kappa} \Delta x \frac{(\gamma - 1)}{\gamma} \frac{\omega}{p_0} |p_a|^2 \left(\frac{\Delta_{Tx}}{\Delta_{crit}} - 1 \right) - \frac{r_u}{2} \Delta x S |\overline{u}_a|^2$$

Source/puits

Dégradations visqueuses

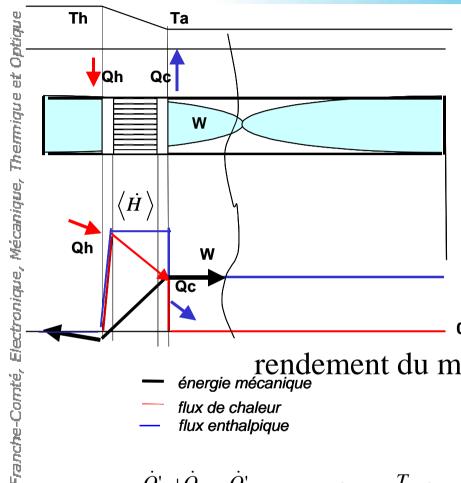
$$\Delta_{crit} = \frac{\gamma - 1}{\gamma} c \omega \overline{T}_g \tan \left(\frac{2\pi x}{\lambda} \right)$$

→ Pour une onde progressive pure: renforcement ou atténuation des ondes selon le gradient thermique du régénérateur

$$\Delta \langle \dot{W} \rangle = \langle \dot{W}_{s} \rangle - \langle \dot{W}_{e} \rangle \approx \frac{T_{re,h}}{T_{re,c}} \langle \dot{W}_{e} \rangle - \frac{r_{u}}{2} S \Delta x |\overline{u}_{a}|^{2} - \frac{1}{2r_{T}} S \Delta x |p_{a}|^{2}$$
Relaxation thermique

amplification thermique

Electronique, Mécanique,



Moteur ondes mixtes stationnaire et progressive Swift-Backhaus

$$Q'_{c} = W_{feed \ back}$$

$$Q'_h = W_{sortie\ rég}$$

$$\left\langle \dot{H} \right\rangle = Q_c + W_0 = Q_h + W_{sortie\ rég}$$

$$W = W_0 - W_{feed\ back}$$

rendement du moteur

- énergie mécanique
- flux de chaleur
- flux enthalpique

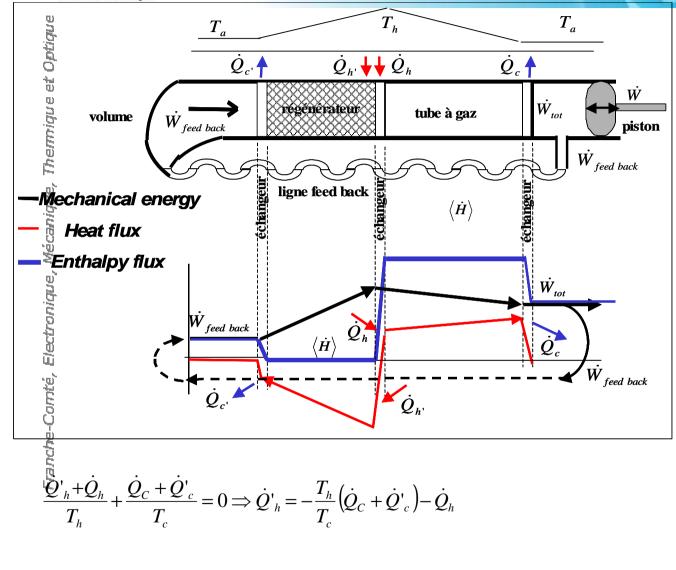
$$\frac{\dot{Q'}_{h} + \dot{Q}_{h}}{T_{h}} + \frac{\dot{Q'}_{c}}{T_{c}} = 0 \implies \dot{Q'}_{h} = -\frac{T_{h}}{T_{c}} \dot{Q'}_{c} - \dot{Q}_{h}$$

$$\eta_{en} = W / Q_h$$

$$Q_{SF} + Q_{SC} + W = 0$$

$$\Theta_{SC}Q_{SC} + W - An = 0$$

$$\Theta_i = \left(1 - \frac{T_0}{T_i}\right)$$



Moteur ondes mixtes stationnaire et progressive Swift-Backhaus

$$\dot{Q}'_{c} = -\dot{W}_{feed\ back}$$
 $\dot{Q}'_{h} = -\dot{W}_{sortie\ r\acute{e}g}$
 $\left\langle \dot{H} \right\rangle = Q_{c} + W_{tot} = Q_{h} + W_{sortier\acute{e}g}$

$$W = W_{tot} - W_{feed\ back}$$

$$\eta_{en} = \frac{\dot{W}}{\dot{Q}_h + \dot{Q}'_h}$$

$$\eta_{ex} = \eta_{en} / \eta_{carnot} = \frac{\Delta \langle \dot{W} \rangle}{\left(1 - \frac{T_a}{T_h}\right) \dot{Q}_h}$$

