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Abstract

The system identification technique is used in ptddormulate a reliable direct model to be used i

an inverse heat transfer problem. This approacimdoseveral practical applications in thermal

sciences for raisons that will be developed intehe. For clarity, we will restrict our presentatito

monovariable linear systems relating the tempegatione point in the system to one heat flux gctin

on the system. Two approaches are presented incthisse. In the first one, the non parametric

method only used the temperature and heat flux mneaent by calculating the cross correlation or

power spectral density. The second set of metheldses to the parametric methods that consist in

identifying the parameters of a model that expr#ise successive time derivatives of the tempegatur

tot

he heat flux.

Nomenclature

a Thermal diffusivity ni.s* S, power spectral density betwerandy
C, correlation function betweenandy | T temperature, K

C, specific heat, J KhK™ T time, s

D" derivative of real order X, = [ X, ys] sensor coordinates

e measurement error y temperature measurement, K

h, impulse response Y Loss function

h exchange coefficient, W iK™ At Sampling time

H transfer function ¢ heat flux density W i

1" integral of real order P density, kg 7

k thermal conductivity, W mK™
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1 Introduction

The system identification framework is a well knodomain that has applications in automatic (for
control purpose mainly) and in signal processinf]1For several years the heat transfer scientifi
community found very interesting applications odgh methods for the modelling of heat and mass
processes that occur in thermal systems [6][7]f8khis course we present the system identification
technique as an efficient tool in order to formelatreliable direct model that can be used to dblee
corresponding inverse heat transfer problem. le cdisamonovariable systenas that represented in
Figure 1, the inverse procedure will consist irineating the heat flux acting on the studied system
from temperature measurement at one point in teesy Let us highlight now that the methods that
will be present below can be obviously generalimethultivariable systems (several heat flux or heat
sources acting on a system equipped with sevensbss). As an additional constraint, we will also
restrict the presentation of the methoddiniear systemslt means that the thermal properties of the
system will not depend on temperature. Howevertesyddentification has been developed for non
linear systems but mathematical derivations of gechniques are largely beyond the scope of this

course.

high order model

sensorx, =(x, Y, 1494 elements

oot

Z:{ki’pi ’Cpi}

Figure 1: example of a 2D monovariable linear sysis.

Why scientists working in the field of heat transfed more particularly in measurements inversion
are interested with system identificatiohe first answer relates to model reduction. ldgdee
whatever the implemented inverse technique, inearsequires simulating a direct model in an
iterative manner to approach the solution. Stasistnethods as the Bayesian technique one calls upo

the direct model a huge number of times and contipui times could become dramatically long. As
an example, let us consider the 2D system repregémt-igure 1. The domahkis characterized from

its thermal properties (thermal conductivity, specific heat per unit volum€, an densityp, ). A
heat flux densityy is imposed on the boundadf2 whereas the remain part of the outdoor boundary

is subjected to convection with the coefficiemt and the temperature of the surrounding fluid is
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denotedT

ext*

Finally, the inner boundaries are insulated. dbjective here is to estimate the heat flux
density from temperature measurements in the plates thus assumed that a sensor has been
embedded in the plate and the temperature of theosés denoted’m(t). Although this problem is
quite simple, only a discrete method (finite eletsefor example) can be used to solve the heat
diffusion equation and associates boundary angliibnditions in order to simulate the temperature
of the sensor. A mesh is thus built (see Figurthd) leads to calculate the temperature at each.nod
This discrete model is so-called hegh-order model the order referring to the mesh degrees of

freedom. Simulating this model leads to resulthase presented in Figure 2.

Surface: Temperature (K)

Figure 2: simulation of the temperature field att=10 sec and of the time dependent temperature

of the sensor for a step heat flux density.

The reliability of the direct model rests on thewacy on two sets of data: the thermal properties

{Ig,Cpi e h} and the locationX, =[xS ys] of the sensor. Uncertainties on those data walli [® a

very low confidence domain for the estimated hkat [©].

This system identification approach is described sthematic way in Figure 3. The goal is to apply

known heat fluxg (t) on the system and to measure the signal at thmghesensor. We must note as

a first point that it is not requirealibrating the sensofthe link between the measured signal and the
absolute temperature) since the same sensor is husgdfor the identification system and the
inversion. Given to those data it is then posdiblestimate “a” modd\l that relates them. However,

it must be emphasized that this estimated modelomhs significance on the measurement time-
domain.Predictionis therefore a main issue of system identificati®acondly, the measurements are
affected by an error (noise) that will have anuafice on the identified model. It is generally atkuli
that the imposed heat flux is generally fully knoand that it is errorless. Thus, all the error is

reported on the sensor signal.
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Obviously the objective is to have the model M thais more accurate than that obtained from

the FEM with uncertainties on {Ig,Cpi 0, h} and X, =[x, yJ.

{ Measured

Tn ()

—— measured
o simulated with the identified systgm

4 5

0 1

2 3
time (sec)

phi (W/m?)

identified

time (sec)

system

Figure 3: thermal system identification procedure.

Once the thermal system has been identified, ithmmsed in order to solve the inverse problem,
which is to estimate the heat flux from modéland temperature measurement at the sensors. The

classical procedure is described in Figure 4.

30r
25¢

Tm (t) 15 ‘."/'”
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identlfled 5 1 %ime (seca; 4 5
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Figure 4: use of the identified system to solve thiaverse procedure (estimating the heat flux).
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It means that if the identified system described e thermal behaviour for the heat flux sequence
represented in Figure 3, it is then expected tdexat this sequence applying an inverse technique
from the identified modeM and temperature measurement represented in FRjuFdis is what
suggests Figure 4.
According to our previous description, it can baestipossible now to drawn the main advantages and
drawbacks of this approach.
Advantages
= The system identification approach will be firsteresting to obtain a reliable and accurate
low order modethat will require less computational time for siation.
= There is no need to know the thermal propertieth@fsystem (thermal conductivity, density,
specific heat, heat exchange coefficients, themasistances at the interfaces, parameters
related to thermal radiation...).
= [tis not required to know the sensor locationdesihe system.
= [tis not required calibrating the sensor.
= The identification procedure is fast (this will éeewed later with the description of the
different techniques).
Drawbacks
= The model identification must be achieved in theaotly same conditions as those
encountered during the inversion (heat exchangaselea the surrounding and the system
must remain the same for the two configurations).
= The prediction of the identified model rests orosty assumptions (in particular, it is better
reaching the stationary behaviour during the sysantification process). In general, the

identified system is only valid for the time dumatiof the system identification process.

2 The system identification approach

2.1The impulse response

The temperaturd, (t) of the sensor is related to the heat flux dengify) thanks to the impulse

responsehm(t) on the form of the following convolution produdtat is a direct mathematical

formulation of the Duhamel’s theorem:
Tm(t):hm(t)m(t):jhm(t—r)ﬂr)dr (1)
0

For monovariable linear systems, the impulse respdully characterizes the thermal behaviour.
Therefore, any kind of inverse strategy can be dbasethe direct model expressed as the impulse

response of the system. However, as we said ifitstesection, this response will depend on the
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following quantities:{lg,cpi e h} and X, =[xS ys] . According to the uncertainty that affects those

guantities, the user could imagine measuring dyréle impulse response from an experiment. It will
consist in replacing the heat flux on the real obby aknownphotothermal excitation, as a laser
for example, and to measure the temperature o$e¢hsor when the heat flux is delivered as a pulse.
However, this approach is not reliable since thpulse response magnitude is very low, especially

when one wants to preserve the linear behaviotineiystem. As an illustration it is calculated the

temperature of the sensor for the previous studmdiguration with ¢ =10° x exp(—tz/rz) where

r =1pusecis small enough to consider the excitation asradiunction. The simulation is presented

in Figure 5. The maximum amplitude of the respasseery low and it must considered additional
further impact of the measurement error.

x10°

impulse response

time (sec)

Figure 5: simulation of the impulse response usinthe FEM.

Another solution could consist in derivating thepstesponse represented in Figure 2 (at the right)
retrieve the impulse response. Again, it is natlable technique since the derivation will amplifye
measurement error and will lead to a very inaceuirapulse response, especially at the short times.
Several powerful techniques have been developehbeirsystem identification and signal processing
domains that lead to more accurate impulse respoinge system. These techniques are classified in

two sets of methods: the non parametric methodgtengarametric ones.

2.1The non parametric approach

2.1.1 The deconvolution technique

A very easy technique for the deconvolution ofigltp consider the discrete form of this relati@h [

k

kAt=IZ;:hﬂ( )AYg(ka)=> h(kadg(( k- )ad (2)

i=0
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Assuming the duration of the experimenttis= NAt, where At is the sampling time interval,

relation (2) can be expressed on the form:

T bo Mo
T|_[2 % Pns

3)
Ty Py o P Dol P
With T, =T(kAt) and ¢, =¢(kAt). Assuming an additive measurement error of nodistibution

(zero mean and constant standard deviation), ttesunement temperature is expressed from the real

one as:
Kk
Yo (KA =T (kA)+ g kA )=> h( B )p(( k )oY+ € B ) (4)
i=0
Given thatlim,__h, =0, it is reasonable to truncate the series frkm Q and thus relation (3)
becomes:
Yo | [ %o | & ]
Y1 ¢ P o e
oo ‘. hm1 N 5)
yQ ¢Q ¢1 ¢0 : Q;)
: R : : o :
L Yn _¢N “ Pn_on ¢N—Q_ Ho [&]
Yy D, E,

Vector H, can thus be estimated in the least square senseder to minimize(EN ENT) and it is
obtained:
-1
Ho = (®y @) @Y, (6)

However this procedure is quite long according lie value ofQ and N and very sensitive to
measurement errors.

2.1.2 The correlation technique
A better and faster approach consists in identifyihe impulse responsb(t), from the cross
correlation product of the system response thﬂhéstemperaturél’m(t) of the sensor and the heat

flux ¢(t) [1]. Indeed, let us rewrite relation (1) takingdraccount of the measurement errors:

V()= [ (t-7) @ (r)dr + & § @
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Now let us multiply the two members of this equality the heat fluxg (t—r) and integrates from

t=0 to infinity. We obtain then:

[yn(Q)(t=r)dt=[ [, (=)@ (r) ¢ (t-7)dtar + [ ¢(t-7) o ®)

0 00

We see appearing the convolution product betweeln feaction as:
Cyps (1) = [ M(t=7)C,ps ()dT + Ry (-7) Cy (1) (9)
0

If one chose the excitation sequen;lz:@) as a white noise:

C,y (1)=0(1) (10)
And finally, if one admits that the noise measuretig not correlated to the input sign&( =0),

one has:
C,4(7)=h(7) (11)

It thus appears that the impulse response can feetlgi deducted from the correlation function
between the temperature of the sensor and theflogatin practice the correlations functions are
calculated using he Fast Fourier Transform of tigmads (see next section and Matlab code in
Appendix 1).

The correlation analysis interest is the physigatesm identification possibility under less energy
constraints density. Indeed in opposition to palsalysis, the energy does not have to be depdsited
an intense way during a very short time (closest Rirac function). An interesting feature of swh
approach is that the linearity and stationarityuaggtions are clearly satisfied and that the comicge

domain of the estimated impulse response is the sdlnover the explored frequency range.
2.1.3 Spectral technique

Nevertheless, this approach is very sensitive & tloise measurement magnitude and practically it

the better using the power spectral density instdéalde correlation functions [4]:

FFT[C, ,(7)]= FFT{Ihm(t—r) Cy (7) dr}: Y, ( lo( )= s,( 9 (12)

and

FFT[C,y () ]= FFTﬁgb(t—r)gp(r) dr} =o(f)’=5s,(f) (13)
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Y,(f) and®(f) are the Fourier transforms of the temperaturetaadieat flux respectively as well
as S, (f) and S, ,( f) are the auto and cross PSD. Then, by applying=theier transform on

relation (9) it is immediately obtained:
S, (1)=H(1)S( )+ () (14)
Finally, assuming that the noise measurement iscootlated with the heat quxsge( f) =0), the

expression of the transfer function is:

H(f)= SSW(:)) (15)

¢¢(
Since the length of the experiment is set to adfalue 7, the real input signal is:

. () =9 (t)N, (1) (16)

In this relation,l'lr(t) =1 whenO<t<r and O elsewhere. Then applying the Fourier transfon

the heat flux leads to:

CDH(f):CD(f)E(TM] (17)

mr f
It appears that the Fourier transform of the h&at is convoluted by the sinus cardinal function.
Usually, the heat flux is pre windowed by a spedifinction g,(t) which decreases the influence of

the functionr, (t) as:

¢, (1) =9 (1), (1) (18)

For example, it is often used of the Hanning windd}4] defined by:

g,(t) = 0.5{ 1- CO{ZTMD (19)

It is also used an improved estimation®f, ( f) and S,, ( f) proposed by Welch [5]. The method
consists in dividing the time series data into fmesoverlapping segments, computing the auto and
cross power spectral densities and averaging tiraagss.

2.2The parametric approach

The principles of the system identification mettewsd presented by Ljung [1]. Assuming a linear and
stationary system, that means that the thermaleptieg of the system do not vary with temperature

and time, the method consists in identifying theapgeters involved in a linear relation between the

heat flux ¢(t) and the temperatur€, (t) of the sensor, from measurements of these twotitjean
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Without any kind of physical consideration of theah transfer process, it is assumed a general

relationship of the following form:

2
T, (t)+a, dTgt(t) +a, d -;rtnz(t) +-=Bg(t)+ B, d¢d(t) +., dzﬁz(t) Foen (20)
This kind of model is consistent with the behaviofithe dynamical systems and it is also in case of
thermal systems since the heat diffusion equatstsron the first order derivative of the tempeagatu
for all the points of the system. It is thus readwe to admit that the temperature at timeaust
depend on the heat flux value at tiheand also at previous times. On the other handesin
temperature at times before t depend on the haatall previous times also, it is not surprisingt tha
they appear in the model.

Let us illustrate it on a simple configuration ynsidering the one dimensional heat transfer irakh w

(thermal conductivityk and thermal diffusivitya) subjected to the heat flux dens'gb;(t) at x=0 and

insulated on the other face at e. The model thus:

AT (x1) __ 0*T(x 1)

=a , 0<x<et>0 21
ot x> D)
Boundary conditions are:
_kaT(x,t)=¢(t), x=0,t>0 (22)
0X
aT(X,t):O, Xx=ge1t>0 (23)
0x

And the initial condition is chosen as:

T(xt)=0,0sx<et=0 (24)
Let us examine the temperaturexat e and we noteT, (t) = T(x= e ). Using the Laplace transform
L{ } to solve previous problem it is obtained:

T (0= 6009 = gmniaa LA = e g (3 @)

Where: S =,/s/ a. The hyperbolic function can be expressed asdihenfing series:

) B ) 22n+1
sinh(z) _§(2n+1)!' Ozz 0 (26)

Replacing this expression in relation (25) it iarid:

10
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1 1
Hm(s) =W¢(S) R o2 gl (D( g (27)
kB2 (ans1): 2o (2n+1)!

That can be also written as:
3,8 6,(9=9(9 (28)
n=0

] . B e2n+1
With: a, =k AT (2n+ 1)

At this stage we must remind us an important prypeglated to the Laplace transform of the

derivative of a function:

dt" at*

L[dnf(t)jzsn F(S)_:Z:,§_k_ldkf(0) 29)

Given to the initial condition (24) it thus appéhat relation (28) is equivalent to:

>a, =02 g (30)

n=0
It is therefore demonstrated that the heat tramsfadel expressing the temperaturexat e according
to the heat flux¢(t) imposed atx =0 can be put on the form of the relation (20). Ictfthe series in

(30) can be significantly truncated and we willghabtain dow order model
Using the discrete form of the derivatives an egla@nt form of relation (20) that lead to express th

temperature at tim&At from the heat flux and the temperature at previouss as:

To(K)=Re(K+hg(k-1)+ b(k2)+-— aF( k)= aJ( k- (31)

Let us note that replacing the temperature at pteviimes with the measurement in relation (313ead

to the predictive model as:

Tu(k)=bg(K+p(k-1)+ bp(k2)+— a y( k- ay( k- (32)
Relation (31) is called the output error model vélasr relation (32) is called the predictive model.
Identification of parameteréai,q) will significantly differ according to the choiagf the model as

represented in Figure 6.

Y (K)

K
system Ym (9 system

# (K £k 9K

ek

predictive
model ?m ®

output error
model | T _(K)

11
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Figure 6: parameter identification according to themodel representation (output error or
predictive).
In case of the output error model configuratiore #ensitivity functionsS(q)=dT,(9/da and

S(h)=dT,()/dh depend on the parametess and b,. It means that the minimization of

N
p(N)=>"g(k)* requires non linear minimization algorithm. On théher side, the sensitivity
k=0

N
functions do not depend anymore on the parametees winimizing the quantity (N)=>_e( k).

k=0
It means that estimation of the parameters in adsthe predictive model appeals on a linear

minimization algorithm.
2.2.1 Output error model
Let us assume that the number of parameterdds a and (1+1) for b;. The sensitivity functions of

the temperature at timieAt with respect toa andb; are:

s%(k)="T;aEk), i=1...n 33)
Sq(k)=aTgk§k), =0...n (34)
According to relation (31), it is obtained:
S(KW+ag(k)+-+ag( k- X k)i 41, (35)
With: S, (0)=§ (1)=--=§( m1)=0
And :
boS;(l<)+l?§( k-1)+---+ b §( ¥ )I’F¢( 4(),] 30,.., (36)

with: §, (0)=§ (1) == §( w1 =0,

Therefore, the output error at tinke\t is:

e()=v(K-T(H=2 §(a & $( ) | @)

n
i=0
Let us imagine that measurements are collected findrh up to NAt. It is thus obtained a matrix

representation of (37) on the form:

12
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pa,]
9]y
_|e(n+l) | _|Aa |
= : =S Ab, = SA© (38)
g(N) E
|2, |

Where:

s() - 80 s(h - sn

s=| ; ; ; (39)

SN g (N g(H - SN

Solving relation (38) in the least square sensg fea
re=(s'g S E (40)

It is thus possible to obtain the optimal valueafusing an iterative scheme as:

©,=0,,+A0, (41)
2.2.2 Predictive model
Relation (32) can be put on the form:
Yn(K)=H (k)OO + ¢ K (42)
Where ©' =[a1 -oa, b o Q] andH is the regression vector defined as:
H(k)=[-yn(k=2) - -y (k=1 ¢(B - ¢(k 1] (43)
Let us imagine that measurements are collected fén up to N At. Therefore, relation (42) leads
to:
Yy =W, O+E, (44)
Where:

Y =ln(n) (N ] W =[H() - (N )] andE =[e(n) - o N+ 1]
It is obtained an estimation @ in the linear least square sense as:
o=(w, W) WY, (45)

Despite of the rapidity of the method, it must lmed that the estimation is biased. Indeed, let us
replace the expression of the identified parametedation (45), in the model, relation (42). It is

found:

13
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Oo=0+(v, W) W E, (46)
It is demonstrated in the literature that:
-1
e{e}=o+(E{H(WH (X'} HH (K" ¢ 8} (47)

It thus appears that #(k) is correlated wittH (k) or if E{e(k)} in not zero, the estimation is biased

and E{@)} 0.

In order to accelerate the identification &f, it can be used a recursive scheme. The vector of

parameters at instahis estimated from parameters estimated previoulslymn(t —1) according

to:
O(K)=0(k=-1)+L (K)| %(K-H(RO( k1) ] (48)
With:
_ P(k-1)H(K)'
-0 = T H P (k=R (]
And:

_ofu o P(k=1)H(K)" H(K)P(k-1)
P = Pl ) = TR (P (k- H (1)

where the initial values ar@)(o) =0, andP(O) =101, , with O, andl, are zeros vector and ones

matrix respectively with dimensidd = 2N .

Remark: unbiased approaches are proposed in #ratlite that consist in whitened the sequence

e( k) in relation (42). This is the instrumental varebimethod, and methods based on the change of

the model structure (auto regressive with exogepeti model, auto regressive with adjusted mean

and exogene input model for example).
3 Application

Let us consider the heat transfer problem preseattesle and let us generate a heat flux sequence on
the form of the pseudo random binary sequence septed in Figure 7. The choice of such a
sequence for the excitation is that it is quiteygasnake in practice and it is also very closea tehite

noise in terms of the power spectral density asesgmted in Figure 8.

14
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Figure 7: image on the left — heat flux generatedrothe form of a PRBS; image on the right —
measured temperature of the sensor and comparisonitir the simulation of the identified

system.
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Figure 8: power spectral density of the heat flux gnerated as a PRBS.

Using the correlation method described previouslis obtained the impulse response represented in
Figure 9. As viewed on this figure, the impulsepm@sse reconstructed using the correlation technique
is very sensitive to noise measurement.

In a second stage, we used the parametric appinagtder to find the model on the form of the
relation (32) that fits the experimental measures@rigure 7) at the best. The choicefdE [na, nti
(nais the number of parameteas andnb is the number of parametelss) is made by collecting in a
matrix all the values ofA to be investigated and looking on the value of Alilcake [1] criterion

defined by

_1+n/N
1-n/N

V, n=na+ nbt+1l (49)

15
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wheren is the total number of estimated parameters\aisdhe loss function defined by

(50)

Standard errors of the estimates are calculated fne covariance matrix @ . If the assumptions of

additive, zeros mean, constant variamceand uncorrelated errors are verified, the covagamnatrix

is expressed as
cov(@)) = (HT H )_1 o?

(51)

An estimate of the variancg?, denoteds?, is:

(52)

It is found the optimal set of parametges,h) as:

a, 1 0 ag 0.0166 0.0054

a 0.2823 0.01364 b, 0.0007006 5.348e-006
a, 0.2539 0.01368 b, 0.0006788 1.19e-005
a, 0.2715 0.01375 b, 0.0004693 1.404e-005
a, 0.2047 | 0.01427 | b, | 0.0002561 1.365€-005

The loss function i¥=0.000123859.

Simulating the response with the heat flux sequdhde obtained a very good agreement with
measured data as represented in Figure 7. Thergfgesimulated the impulse response from the
identified system and it is reported the result&igure 9. It is found a very nice agreement withtt

calculated from the FEM. The main difference ocairthe short time.

16
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Figure 9: real impulse response and impulse respoagound using the correlation method and

the parametric method.

4 Let's go a little further

Let us consider again the configuration of heatdfer in a wall studied before but let us focus rmow
the temperaturél’m(t) at x =0 where the heat flux is applied. Using the Laplaeasform to solve

the heat diffusion equation with associated boundad initial conditions (relations (21) to (24i})is
obtained [10]:

{10} =009 = oy O ) = (3 )

Where: 8 =,/s/a. The hyperbolic functions can be expressed afotleaving series:

cosk(z):z(zn)! and sinhz):z(2n+1)! 0z (54)

6,(8)=— = o9 BALV_g4 55)
kﬁi(ﬂe) K> oS
Z(2n+1)! Sa™(2n+1)!

That can be also written as:

17
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S, 6,(9=3 5, <0( 3 (56)
n=0 n=0
h K 2n+1 q eZn
With: =K— —
o a™(2n+1)! and4, a"(2n)!

Given to the initial condition (24) and using theomerty (29) it thus appear that relation (56) is

equivalent to:

ian — = iﬁn d'¢ (1) (57)

It is therefore demonstrated that the heat tramsfatel expressing the temperaturexat0 according

to the heat fluxg (t) imposed atx =0 can be put on the form of the relation (20). Hogrewf one

tries to fit experimental data by simulating thed®bin relation (57) it appears that it is necegsar
keep a very important number of terms in the sdrniesrder to reproduce accurately the transient

response at the short times. In that case relg&@h cannot be viewed as a lower order model and

moreover, the identification of paramete{ran,ﬂn} becomes inaccurate whenbecomes large. It

means that the model structure on the form of #lation (20) is not optimal for all the possible
configurations.

Let's try first to understand such an observatiamddet’s try to find a better low order model

structure that would approach the searched optitpali

The raison why model (20) is not available for discg the behaviour at the short times is given in

the expression of the asymptotic behaviour at fioetgimes. Indeed, relation (53) shows that:

cosr(e\/_s/\/_a) 1

lim, = (58)
keJs'Vasinh( o/ 84 3 Kk/Vay's
On the other hand taking the same limit for rela{ig5) give:
YA
lim, == AS _2n+il (59)

e ia o a s ekas
n
n=0

It is thus obvious that relation (53) and equivalezlation (55) do not have the same asymptotic

behaviour at the short times. In other words treceasymptotic behaviour, described by relatior),(58
is that of the semi infinite mediumD(]/\/g) whereas that of the equivalent model describes a
capacitance effect({1/s). It means that the contribution of an infinitenmeer of derivatives is

theoretically required to approach the semi infitiehaviour of the system.
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It is then possible to find a better low order miotthat will respect the asymptotic behaviour at the
short times? The answer is fortunately yes thawkshe works of Liouville in the 1®century
[11][12]. He demonstrated that the property:

L(dvf—(t)}s” F(s)- §§klde(o) (60)

dt” r at’

Remains exact even if is real and more generally comple®!{ f (t)} =d"f (t)/dt" is called the

derivative of real order (often called the non integer derivative in ortierdiscriminate from the

classical derivative) and is defined as [13][14][15
D*{f () =D {I*{f ()}} nON, Re(v)> 0, n- 1< Rgv)<n (61)

where the integral or real ordeiis defined in the Liouville sense as:

{1 (1) = r(lv)i(t—u)“ f(udu, Rev>0 (62)

With:
F(V)zTuV‘1 exp(-u)du (63)

Regarding to relation (58), it is now clear that:

Finally, we can assert that, instead of relatidd),(2n optimal structure of a low order model feah

transfer problem by diffusion must be of the follog/form:

S0, 04{1, (0} = 58,07 (1) )

Let us demonstrate it on the 1D heat diffusion [gwbin a wall whenT, (t) is the temperature at
x=0. We saw that we could not find an equivalencehefdaxact solution (53) on the form of relation
(65). In fact it comes from the manner we haveaegd the hyperbolic functions with their seriest Le
us use the expression of the hyperbolic functioos fthe exponential:
e e)

cosh(z) = ere’ 5

(66)

And:
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gt er(-1r e
sinh(z) = £ Ze =° ( 2+ ) (67)

Replacing these expressions in relation (53) give:

8.()=— (g 68
S)=—————P(s
m kﬁ(ezﬂe _1) ( )
The series of the exponential is:
w2
e=>=, 0Oz (69)
n=0 n!
Replacing this decomposition in relation (68) Iéad
>p, 8"
G.(s)=—=2—(s) (70)
ZG' S(I’l+l)/2
n=0
With:
. ket , et
an—m and ﬂn—m (71)

It is now well finding a consistent equivalent eagsion of the exact solution whose asymptotic
behaviour at the short timez & « ) is exactly the relation (58). Going back to timelation (70)
becomes [16][17]:

>, DT, (1) =3 5,0 {p (1) (72)

n=0

Let us insist on the fact that relations (57) ang) (@are both exact. The difference lies in the that

an infinite number of terms are required in relat{d7) to describe the response at the short times,
when the system behaves as a semi infinite medidmareas only one is necessary using relation (72).
The Matlab code for the implementation of the téghe is given in Appendix 1. It is used the
recursive approach presented previously for thessatal (with integer derivatives) parametric
technique.

5 Conclusion

System identification is a powerful tool that allowhe user to obtain a direct model to solve an
inverse problem. In fact, this approach will cohsis applying a known thermal excitation and to
measure the temperature at the sensors in orderdi@ relationship between these two quantities.
Obviously, this approach find an interest if thetsyn is not well characterized in terms of its tneir

properties (thermal conductivity, specific heatnslty, heat exchange coefficient at the boundaries,

20



Metti 5 Spring School Roscoff — June 13-18, 2011

thermal resistance at the interfaces). Moreovas, tifchnique does not require knowing the exact
locations of the sensors in the system as welhas tlynamical behaviour. It means that it is not
required making a calibration of the sensors stheg are used both for the system identificatiod an
the inversion. The constraints encountered withhsan approach are that the system must be
identified in the same configuration in which itMde during the inversion. It means first that thee
range for the system identification will define ttime domain of use for the direct model. On the
other hand, all of the boundary conditions expexehduring the system identification must remain
identical during the inversion.

Finally, it must be emphasized than the computatiimes for the inversion will be decreased very
significantly even if the thermal system is compléxis a very interesting feature of this approach
since the simulation of the identified system istéa than that based on a discretization of thé hea

equation.
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7 Appendix 1: Matlab codes

We denote z=[y u], the experimental data, where the input (heat flux) and y is the output (the

temperature of the sensor)

7.1Correlation method

function  ir=correlation(z,M)
% ir: the estimated impulse response
% M: The number of lags for which the functions are ¢ omputed

Rft = covar(z,M+1);
ri;,1) = (-M:1:M)
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r(M+1:2*M+1,2:3) = Rft([1 4],:)";

r(1:M,2:3) = Rft([1 4],M+1:-1:2)";

scir = Rft(4,1); sccf = sqrt(Rft(1,1)*Rft(4,1));
r(M+1:2*M+1,4) = Rft(2,:)'/sccf;

r(1:M,4) = Rft(3,M+1:-1:2)'/sccf;

ir = r(M+1:2*M+1,4)*sccf/scir;

function  R=covar(z,M)

% Computes the covariance for z

% M: The maximum delay - 1, for which the covaria
estimated.

[Nft,nz]=size(z2);

nfft = 2.7ceil(log(2*Nft)/log(2));
Yft=fft(([z(:,1)" zeros(1,Nft)]),nfft);
Uft=fft(([z(:,2)" zeros(1,Nft)]),nfft);
YUft=Yft.*conj(Uft);
UAft=abs(Uft)."2;
YAft=abs(Yft)."2;

RYft=fft(Y Aft,nfft);
n=length(RYft);

sumnft = sumnft+Nft;
R=real(RYft(1:M))/n;

7.2Spectral method
function  H=TF(z,N,M)
% The transfer function H is estimated at N equally
between 0 (excluded) and pi.

% A smoothing operation is performed on the raw spe
Hamming Window, giving a frequency resolution of ab

[Ncap,nz] = size(z);

M= M/2; % this is to make better agreement with SPA.

M1 = fix(I/M);sc=l/(2*N);

u=2z(;2);

y =1z(.1);

nfft = 2*ceil(Ncap/N)*N;

Yft = fft(y,nfft,1);

Uft = fft(u,nfft,1);

Yft = [Yft(I-M1+2:1,2); YTt];

Uft = [Uft(I-M1+2:1,:); Uft];

Yft = Yft.*conj(Uft);

Uft = abs(Uft).”2;

ha = .54 - .46*cos(2*pi*(0:M1)'/M1);

ha = ha/(norm(ha)"2);

Yft = filter(ha,1,Y);

Uft = filter(ha,1,U);

Yd = Yd+Yft(M1+fix(M1/2)+sc:sc:M1+fix(M1/2)+/2,:,:
Ud = Ud+Uft(M1+fix(M1/2)+sc:sc:l/2+M1+fix(M1/2),:);
H = Yd./Ud;

7.2.1 Parametric estimation

function  [n_ord,num,d_ord,den,rsdi,ecn,ecd] =
ni_sid_ident_rec(u,y,time,num_def,den_def,adm,adg,t
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%

% Fonction ni_sid_ident_rec

%

% Identification of non integer model using recusiv
%

% Input Argument

%

% u,y: system input and output

% time: time vector

% num_def: numerator (first line orders and secon
% parameters else give the value)

% den_def: denominator (first line orders and sec
% parameters else give the value)

% adm: Adaptation mechanism. adg: Adaptation gain
% adm="ff", adg=lam: Forgetting factor algor
lam

% adm='kf', adg=R1: The Kalman filter algorit

% matrix of the parameter changes per tim

% adm="ng', adg=gam: A normalized gradient al
% adm='ug', adg=gam: An Unnormalized gradient
% tetaO: initial value of the parameters

%

% Output Argument

%

% num,den: denominator and numerator coefficent

e least square algorithm

d line 0 for unknown

ond line 0 for unknown

ithm, with forg factor

hm with R1 as covariance
e step

gorithm, with gain gam
algorithm with gain gam

% n_ord, d_ord: order of the numerator and denomi nator
% rsdi: residuals
% ecn, ecn: standard deviation for the estimated parameters
%
% Jean-Luc Battaglia
%
adm=Ilower(adm(1:2));
if ~(adm=="'ff' |adm=="kf" Jadm=='ng’ [adm=="ug'
error(  'The argument ADM should be one of "ff", "kf", "ng", or
"ug".' )
end
if adm(2)== 'g' ,grad=1; else grad=0; end
%
n_ord=num_def(1,:); d_ord=den_def(1,:); %
derivation order
d_ord_ukn=find(den_def(2,:)==0); n_ord_ukn=find(num _def(2,:)==0); %
orders associated to unnkown parameters
d=length(d_ord_ukn)+length(n_ord_ukn); %
number of unknown parameters
d_ord_knw=find(den_def(2,:)~=0); n_ord_knw=find(hum _def(2,:)~=0); %
orders associated to unnkown parameters
%
p=10000*eye(d);
if nargin < 8, teta=eps*ones(d,1); else teta=tetaO; end
if adm(l)== 'f' , Rl=zeros(d,d);lam=adg; end;
if adm(l)== 'k’ ,[sR1,SR1]=size(adg);
if sR1~=d|SR1~=d
error([ 'The R1 matrix should be a square matrix with dimen sion
‘equal to number of parameters.'
end;
R1=adg;lam=1;
end;
%
Yf=dn(time(2)-time(1),y,d_ord); Uf=dn(time(2)-time( 1),u,n_ord); % matrice

de régression compléte (pour tous les ordres)
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%
phi=[-Yf(;,d_ord_ukn) Uf(:,n_ord_ukn)]; % regression vector
%
yn=[Yf(:,d_ord_knw) -Uf(:,n_ord_knw)]*[den_def(2,d_ ord_knw)
num_def(2,n_ord_knw)]’;
%
rsdi=0;
for kcou = 1:length(u)-1,
yh=phi(kcou,:)*teta; % ym(t+1)
if ~grad,K=p*phi(kcou,:)'/(lam + phi(kcou,:)*p*phi(kc ou,)");
p=(p-K*phi(kcou,:)*p)/lam+R1; % p(t+1)
else K=adg*phi(kcou,:); end;
if adm(1)== 'n' , K=K/(eps+phi(kcou,:)*phi(kcou,:)"; end;
epsi=yn(kcou)-yh; % y(t+1)-ym(T+1)
rsdi=rsdi+epsi*2;
teta=teta+K*epsi; % pmc(t+1)=pmc(t)+k(t+1)*(y(t+1)-ym(T+1))
end;
rsdi=sqgrt(rsdi/kcou);
ec_teta=(rsdi/2).*sqrt(diag(p));
%
% Transfert function parameter computation from tet a vector
den(d_ord_knw)=den_def(2,d_ord_knw);
den(d_ord_ukn)=teta(1:length(d_ord_ukn));
ecd(d_ord_knw)=0;ecd(d_ord_ukn)=ec_teta(1:length(d_ ord_ukn));
num(n_ord_knw)=num_def(2,n_ord_knw);
num(n_ord_ukn)=teta(length(d_ord_ukn)+1:end);
ecn(n_ord_knw)=0;ecn(n_ord_ukn)=ec_teta(length(d_or d_ukn)+1:end);

function  [dy,Erreur]=dn(time,x,n)

% [dy,Erreur]=dn(time,x,n)
%

% k(t+1)

% This function computes the derivate of order n, w ith n complex vector,

% of the data x ; time is the sampling period or th e time vector
%
% Argument in :

% time : vector time of the vector x (scalar vect or) or sample (scalar)

% X : data (complex matrix)

% n : order of the derivate (complex vector)
%

% Argument out :

% dy : data (complex matrix)

%

%

S_time=size(time);

S_x=size(x);

S_n=size(n);

%sampling time interval
h=[time(2);time(2:end)]-[time(1);time(1:end-1)];
Ak=binome(n,S_x(1));

A=AKk;

%derivative computation
dy=zeros(S_x(1),S_x(2));
y=zeros(S_x(1),1);

for col=1:S_x(2)

y=conv(x(:,col),A(:,col));
dy(:,col)=y(1:S_x(1))./h.*n(1,col);
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end;

8 Appendix 2: the non integer calculus

Let us considerf (t) an integrable function integrable, definite andited, on(a, ) upon which

we maken successive integrations. One obtains:

-1 t

a0 ()= fdu fdu | H(y) dq]z(nil)!j(t— 0™ (g du 1)

Since (n-1)!=r(n), it is easier to generalize the previous relatmmny numben real, and more

generally complex, and then to define the integfakal orderv (Rev >0), or more simply the non
integer integral as:

2 )= = [~ F0)du, Rev>0 2)

rv):

With (V) the Eulerian function of second specie defined by:

r{v)=[u""exd~u)du (3)
0
The non integer integral is similar to the convimotproduct between functiot’™ and function
f(t). It is usual to restrain the lower bound of thegmal toa= 0 that corresponds to the initial time
of the experiment. This leads to the definitionttod non integer integral of orderin the sense of
Reimann-Liouville and we not& f(t)=,1" f(t). The additive property upon the integration orier

expressed as:

Ivll-’f(t)=|V+/-1f(t)' 0 Re(V,,U)>O (4)
This leads to the non integer derivative of ondas:
D"f(t)=D" I""f(t) nON, Re(v)> 0, n- 1< R¢v)<n (5)

From those definitions, it appears that the nomgat derivation of functionf (t) at timet is

expressed according to the entire set of valugkeofunction from the initial time until time This
operator has therefore an infinite memory effeat ttistinguishes it fundamentally from the cladsica
derivative of integer order. However, the valueghaf function previous to timeare weighted by a
fforgotten factor that is as high as one approthesnitial time.

The discrete representation of the non integevdeve has been given by Grunwald and is expresses

as:
Vet o A0 ()

A, represents the non integer increase defined by:
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N

& £0)=3 (-2 mf(t- i), t=Nh @

j=0
With :

vy_viv-1)---(v-j+1
i
Let us note that the sampling time interliahust be necessary constant with this definition.
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