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Abstract. This lecture presents some commonly-used numerical algorithms devoted to
optimization, that is maximizing or, more often minimizing a given function of several variables.
At first, some general mathematical tools are presented. Some gradient-free optimization
algorithms are presented and then some gradient-type methods are pointed out with pros and
cons for each method. The function to be minimized gradient is presented accordingly to three
distinct methods: finite difference, forward differentiation and the use of the additional adjoint
problem. The last part presents some practical studies where some tricks are given along with
some numerical results.
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1. Introduction
This lecture is devoted to the use of optimization methods for the solution of non-linear inverse
problems in the field of heat transfer.
The lecture first presents some basic examples of IHCP (Inverse Heat Conduction Problems)
and points out the distinction between estimation of parameters and functions. Typically, one
presents the difference between estimating λ as a parameter, λ(x) as a function of the space x
(x = (x1, x2)t for instance), and λ(T ) as a function of the state T .
The lecture then presents the most usual optimization tools for the solution of different kinds of
inverse problems. It first gives notions on the functional to be minimized, and convexity. It gives
definitions of constraints (equality and inequality) added to the functional to be minimized, the
added constraints being related to either the state or the parameter/functional.
Then, before going into details on the iterative optimization algorithms, the most usual stopping
criteria are presented.
Zero-order, first-order and quasi-second order optimization methods are briefly presented with
pros and cons for each of them.
Concerning zero order methods, both deterministic and stochatic methods are very briefly
presented with some specific examples (Simplex, PSO, and GA). This part is to be related
to the Metti-tutorial “Zero-order optimization” [1].
Within the frame of first-order methods, one presents the steepest-descent method with and
without line-search, then the conjugate gradient method for quadratic and arbitrary functions.
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Some quasi-Newton algorithms are then presented: the BFGS, the Gauss–Newton and the
Levenberg–Marquardt methods.
A comparison is given in terms of gradient needed for all previously presented method along
with convergence rate if possible.
The next part presents the computation of the functional gradient: through the finite difference
method, through the direct differentiation of the PDEs (partial differential equations), and
through the use of the adjoint-state problem. Several ways to access the adjoint-state problems
are given. A comparison of gradient computation is given on examples to emphasize the
differences.
Note that this lecture has been prepared with some well-known books such that [2, 3, 4, 5, 6].
These books being considered as “standard” famous books, some parts of this lecture are taken
from these references. Moreover, this lecture is actually an improvement of the lecture “C3b”
given in a previous Eurotherm Metti school [7].

2. Estimation in heat transfer – Optimization
2.1. Parameter and function estimation
The modelling of a physical system leans on several requirements. Added to the physical
modelling equations that include some physical parameters (e.g. conductivity coefficients), the
initial state and the sources are also to be known if the physical problem is to be solved. If all
this data is known, then the “direct” problem can be solved: this is the so-called “classical”
physical modelling.

Now if some of the previously expressed quantities are missing, the physical problem cannot
be solved any longer, but some inversion procedure may evaluate the missing quantity so that
the model output fits with some real ones (i.e. obtained through experiments).

There is nowadays a debate within the heat transfer community about the difference and
the meaning of, on one hand, “parameter identification” and, on the other hand, “function
estimation”. According to the lecture’s authors, both are almost the same, at least for the
solution procedure, even though, initially, some differences may be expressed.

Let us work on the example of a conductivity estimation to back up our methodology.

• If a material conductivity λ (scalar or tensor) is to be identified, then a parameter
identification is to be dealt with. Moreover in this case, the number of unknown
“parameters” is very low, so that specific algorithms will be used (e.g. Gauss–Newton or
Levenberg–Marquardt with the computation of the gradient through direct differentiation).
• If the physical parameter now depends continuously on the state, (e.g. thermo-dependant

conductivity λ), then one sould identify the function λ = λ(T ). Creating a projection basis
of the form λ =

∑
λiξ

i(T ) where the λi are to be evaluated, then a parameter estimation
is eventually also dealt with.
• If a physical coefficient is state-dependent, and if the state depends on, for instance, x ∈ Ω,

then the coefficient also depends on x, so that one may identify λ = λ(x). If some (for
instance finite element) discretization is used to approach the continuous-state solution,
then the function can also be discretized –actually parametrized– as above with the form
λ =

∑
λiξ

i(x) and then, as above, one searches the λi; one deals again with parameter
estimation. The basis ξi(x) may be a finite element basis for instance if this one is used for
searching the state solution, or any other basis such as polynomial, spline functions, etc.

Actually, one usually speaks of function estimation when the quantity to be evaluated depends
on the state, the location x, or the time t. Nevertheless, in final, the function to be estimated is
usually discretized, that is parametrized, so that we turn out to be back to parameter estimation.

Maybe the main difference between what is called parameter and function estimation is that
in the first case there is usually few parameters to be estimated (say less that 100 – though
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this is not the case in model reduction for instance while it is for sure parameter estimation,
see Lecture 9 [8], and in the second case there is usually a large number of parameters to be
estimated. Anyway, for the second case, one has to keep in mind that usually the parametrization
must not be “as finer as possible” for regularity considerations, and as recalled in Lecture 3 [9].

2.2. The function to be minimized
In inversion process, one usually minimizes a discrepancy between some experimental data (say
ud noted y in some other Metti Lectures) and some model data (say u noted ymo in some other
Metti Lectures). The discrepancy function (also called cost function or objective function) is
often expressed as a norm of the difference between u and ud. The most often, one uses the
L2(·) norm if some “quasi-”continuous u and especially ud are available (i.e. ‖u − ud‖L2(S) =∫
S(u−ud) ds but, when data ud is given only on specific locations (in space and/or time) , then

the squared euclidean norm is to be used: ‖u− ud‖22 :=
∑

i(u
i − uid)2 =

∫
S δ

j
i (u− ud) ds. where

δji = δ(xi−xj). Often, some function of the state and of the measure are used, for instance state
derivation, integration, weighted summation, etc. Moreover, some selection process can also be
considered. So, in order to write down a general form for the cost function to be minimized, we
use :

J (u) = f
(
‖u− ud‖2

)
(1)

without specifying any choice for the norm. The norm ‖ · ‖ is squared so that the function J
does not a priori present any discontinuity. If some regularization terms are added to the cost
function, then one uses:

J (u, ψ) = f
(
‖u− ud‖2

)
+ g

(
‖ψ‖2

)
(2)

Though the cost function is explicitly given in terms of the state u, the cost function is
actually to be minimized with respect to what is searched, i.e. the parameters ψ. Hence we
write the equality (by definition):

j(ψ) := J (u) (3)

where the function j is often called the reduced cost function, as opposed to J which is the cost
function. One actually computes the cost function in terms of the state (by (1) for instance),
but the cost function is to be minimized with respect to another quantity, say ψ.

2.3. Elements of minimization
The function denoted j in (3) is defined on K with values in R. K is a set of admissible elements
of the problem. In some cases, K defines some constraints on the parameters or functions. The
minimization problem is written as:

inf
φ∈K⊂V

j(φ). (4)

According to [2], if the notation “inf” is used for a minimization problem, it means that one
does not know, a priori, is the minimum is obtained, i.e. if there exists φ ∈ K such that

j (φ) = inf
ψ∈K⊂V

j(ψ).

For indicating that the minimum is obtained, one should prefer the notation

φ = arg min
ψ∈K⊂V

j(ψ).

Let us now recall basic definitions needed for mathematical optimization [2]:
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Definition 1 ψ is a local minimum of j on K if and only if

ψ ∈ K and ∃δ > 0, ∀φ ∈ K, ‖φ− ψ‖ < δ → j(φ) ≥ j(ψ).

Definition 2 ψ is a global minimum of j on K if and only if

ψ ∈ K and j(φ) ≥ j(ψ) ∀φ ∈ K.
Definition 3 A minimizing series of j in K is a series (ψn)n∈N such that

ψn ∈ K ∀n and lim
n→+∞

j (ψn) = min
φ∈K

j(φ).

Definition 4 a set K ∈ V is convex if, for all ψ, φ ∈ K and ∀θ ∈ [0, 1], the element (θψ+(1−θ)φ)
is in K (see figure 1).

Definition 5 A function j is said to be convex when defined on a non-null convex set K ∈ V
with values in R if and only if

j (θψ + (1− θ)φ) ≤ θj (ψ) + (1− θ) j (φ) ∀ψ, φ ∈ K, ∀θ ∈ [0, 1] .

Moreover, j is said to be strictly convex if the inequality is strict when ψ 6= φ and θ ∈ ]0, 1[ (see
figure 2).

Ending, if j if a convex function on K, the local minimum of j on K is the global minimum
on K.

φ

ψ

φ

ψ

Figure 1. Convex and non-convex domaine K

2.4. Optimality conditions
For convex functions, there is no difference between local minima and global minimum. In the
sequel we are more interested in minimizing a function without specifying whether the minimum
is local or global. It will be seen in next sections that the gradient-free optimization algorithms
may find the global minimum while the function contains local minima.

Let us derive here the minimization necessary and sufficient conditions. These conditions use
the first-order derivatives (order-1 condition), and second-order derivatives (order-2 condition)
on the cost function j. Using gradient-type algorithms, the first–order condition is to be
reached, while the second-order condition leads to fix the convexity hypothesis, and then make
a distinction bewteen minima, maxima and optima.

Let us assume that j(ψ) is continuous and has continuous partial first derivatives (∂j/∂ψi)(ψ)
and second derivatives (∂2j/∂ψi∂ψj)(ψ). Then a necessary condition for ψ̄ to be a minimum of
j (at least locally) is that:

Lecture 7: Optimization – page 4



Metti 5 Spring School Roscoff – June 13-18, 2011

θj(ψ) + (1 − θ)j(φ)

j(·)

ψ φ

j(θψ + (1 − θ)φ)

Figure 2. Convex function

i) ψ̄ is a stationary point, i.e. ∇j(ψ̄) = 0,
ii) the Hessian ∇2j(ψ̄) =

(
∂2j/∂ψi∂ψj

)
(ψ̄) is a positive semi-definite matrix, i.e. ∀y ∈ Rn,(

∇2j(ψ̄)y, y
)
≥ 0 where (., .) is a scalar product in Rn (we have dim(ψ) = n).

A point ψ̄ which satisfies condition i) is called a stationary point. It is important to point
out that stationarity is not a sufficient condition for local optimality. For instance the point of
inflexion for cubic functions would satisfy condition i) while there is no minimum. Hence the
Hessian is not positive definite but merely positive semi-definite.

The sufficient condition for ψ̄ to be a minimum of j (at least locally) is that

i) ψ̄ is a stationary point, i.e. ∇j(ψ̄) = 0,
ii) the Hessian ∇2j(ψ̄) =

(
∂2j/∂ψi∂ψj

)
(ψ̄) is a positive definite matrix, i.e. ∀y ∈ Rn, y 6= 0,(

∇2j(ū)y, y
)
> 0.

We remark that condition ii) amounts to assuming that j is strictly convex in the neighbourhood
of ψ̄.

2.5. Stopping criteria
Since the convergence of the iterative algorithms is, in general, not finite, a stopping criterion
must be applied. Here below are given some commonly used criteria. We denote ψp the vector
parameter ψ at the optimization iteration p.

‖∇j(ψp)‖∞ ≤ ε; (5)
‖∇j(ψp)‖2 ≤ ε; (6)∣∣j(ψp)− j(ψp−1)

∣∣ ≤ ε; (7)

ψp − ψp−1 ≤ ε; (8)
j(ψp) ≤ ε. (9)

For each of the above criteria, it may be judicious to demand that the test be satisfied over
several successive iterations. The four first above-presented criteria are convergence criteria

Lecture 7: Optimization – page 5



Metti 5 Spring School Roscoff – June 13-18, 2011

applied on the cost function gradient, on the cost function value itself, or on the parameters:
the first two criteria are the ‖ · ‖∞ and ‖ · ‖2 norms of the cost function gradient at iteration p;
the third criterion is related to the stabilization of the cost function from the actual iteration
with respect to the previous one, and the fourth criterion is related to the stabilization of the
parameters. These criteria are very commonly-used when dealing with optimization and optimal
control problems. The last criterion is, in one sense, more specific to inverse problems: when
the cost function reaches a critical value that depends on the variance of measurement errors,
then the optimization algorithm should stop [10]. It will be seen in the section “Examples” at
the end of this lecture that the consequence of lowering the cost function below a given criterion
based on measurement errors only affects the result in highliting its inherent noise.

3. Zero-order n–dimensional optimization algorithms
Zero-order methods, also called Derivative-free optimization (DFO) are based on a global vision
of the cost function value j. The main interest of using such methods is when the cost function
gradient is not available, or when the cost gradient is not easy to compute, or when the cost
function presents local minima. There is an increasing number of computation tools to solve
optimization problems with no gradient [11].

In the sequel, we restrict ourself in very briefly presenting a deterministic algoritm, the so-
called simplex method, and one probabilistic method, the particle swarm optimization method.

3.1. Simplex
We present here the Nelder-Mead simplex method (1965). This method is popular and simple
to code. Moreover, there exists a large number of freeware that can be used to minimize a
function using such algorithm. Let a simplex S0 be a set of n+ 1 “points” linearly independant
(n = dimψ) with S0 =

{
ψI , I = 1, . . . , n+ 1

}
. One iteration of the simplex optimization

algorithm consists in generating a new simplex closer to the minimum eliminating the point
with the higher cost function value (see Figure 3). Let ψ̄ the isobarycenter of

{
ψI , I = 1, . . . , n,

}
(without ψh) and let the ordering so that

j(ψ1) ≤ j(ψ2) ≤ . . . ≤ j(ψn+1)

and let ψ` = argI=1,...,n min j(ψI) and ψh = argI=1,...,n max j(ψI).
At each iteration, the simplex improvement is performed in three steps:

(i) [Reflexion] One builds ψR symetry of ψh with respect to the segment [ψ̄, ψ`]. According
to the value of the cost j(uR) with respect to j(ψ`), the parametric space is then extended
(step 2) or contracted (step 3);

(ii) [Extension] if j(ψR) < j(ψ`), one searches a new point in the same direction. The point
ψE is such that ψE = γψR + (1− γ)ψ̄ with γ > 1. If j(ψE) < j(ψR), ψh is replaced by ψR,
otherwise ψh is replaced by ψE ;

(iii) [Contraction] If j(ψR) > j(ψ`), the point ψC such that ψC = γψh + (1 − γ)ψ̄, γ ∈]0, 1[ is
created. If j(ψC) < j(ψR), ψh is replaced by ψC otherwise the simplex is contracted (inside
contraction) in all directions replacing ∀I 6= L ψI by (ψI + ψ`)/2.

The basic operations for n = 2 are given in figure 3.

3.2. PSO
The particle swarm optimization is a stochastic algorithm described by Kennedy and Eberhart
in 1995. One considers an initial set of individuals (particles) located randomly. Each particle
moves within the space K interacting with other particles on their best locations. From this
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ψh

ψℓ

ψ̄
ψR ψh

ψℓ

ψ̄

ψR
ψE

ψh

ψℓ

ψ̄
ψR

ψC ψh

ψℓ

ψ̄

ψh

Figure 3. Basic operations on a simplex for n = 2. Top left: reflection; top right: expansion;
bottom left : contraction; bottom right : inside contraction.

information, the particle shall change its position ψi and its velocity δψi. The general formulation
for this behavior is given by:

δψi = χδψi + λ1rand1

(
φg − ψi

)
+ λ2rand2

(
φi − ψi

)
ψi = ψi + δψi

(10)

where ψi is the position of the particle i, δψi is its velocity, φg is the best position obtained in
its neighborhood, and φi is its best position (see Figure 4). χ, λ1 and λ2 are some coefficients
weighting the three directions of the particule [11]:

• how much the particle trusts itself now,
• how much it trusts its experience,
• how much it trusts its neighbours.

Next, rand1 and rand2 are random variables following a uniform distribution in [0, 1].
There are several configuration parameters for the method, see [12]:

• swarm size, usually between 20 and 30;
• initialization of both the position of the particles and their velocity ∼ U [0, 1],
• neighborhood topology such that a particule communicates with only some other particles,
• inertial factor χ which defines the exploration capacity of the particules,
• confidence coefficients λ1 and λ2 which are constriction coefficients,
• stopping criterion which is usually the maximum of iterations, or the critical value of the

cost function j(ψ).

Usually, a circular neighborhood topology is used, along with χ = 0.72 and λ1 = λ2 = 1.46.
A large number of free software are available, see for instance [13].

Lecture 7: Optimization – page 7



Metti 5 Spring School Roscoff – June 13-18, 2011

φi

ψi

φg

δψi

Figure 4. PSO algorithm: a particle displacement.

4. One-dimensional unconstrained opimization
In order to find the optimum of a function j of n variables, we shall describe in section 5 a number
of iterative methods which require, at each step, the solution of an optimization problem in one
single variable, of the type:

Find ᾱ = arg min
α>0

g(α) = j (ψp + αdp) , (11)

where ψp = (ψp1 . . . ψ
p
n)t is the obtained point at iteration p and where dp = (dp1 . . . d

p
n)t is the

direction of descent (see section 5). As a matter of fact we have the problem of finding the
optimum of the function j, starting from the guess ψ0 in the direction of descent d0. Since this
problem must be solved a great number of times, it is important to design efficient algorithms
that deal with it.

However, one has to keep in mind that the main objective is not to solve (11) but to find the
minimum of j(ψ) through the minimum of J (u). Thus one has to design an efficient tool for
the one-dimensional algorithm that finds the minimum of g(α) or rather approach it (inexact
line search algorithm).

Note that we always assume that g′(0) = (∇j(ψp), dp) < 0 meaning that dp is indeed a
descent direction.

4.1. The Newton–Raphson method
Let us assume that the function g(α) is twice continuously differentiable. The search for a
minimum of g(α) is carried out by looking for a stationary point, i.e. ᾱ satisfying the possibly
nonlinear relationship g′(ᾱ) = 0.

If αq is the point obtained at stage q, then the function g′(α) is approximated by its
tangent, and the next point αq+1 is chosen to be at the intersection of this tangent with
the zero-ordinate axis. The relationship to pass from one step to the next comes from
g′
(
αq+1

)
= g′ (αq) + g′′ (αq) .

(
αq+1 − αq

)
= 0 which gives:

αq+1 = αq − g′ (αq)
g′′ (αq)

. (12)

It is of interest that this method has the property of finite convergence when applied to
quadratic functions. This is an interesting feature because any function which is sufficiently
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regular (at least twice continuously differentiable) behaves as a quadratic function near the
optimum [3]. On the other hand, the main drawback of this method is that it requires the
computation of the first and of the second derivative of g at each stage. That is the reason
why the secant method (next section) is also widely used, especially when there is no way for
computing the second order derivative, or when the exact second derivative is complicated to
compute or too time consuming.

g′(α)

α0 = 0 α1 α2 α

Figure 5. The Newton–Raphson line search method.

4.2. The secant method
The second-order derivative g′′(α) is approximated by (13) so that the Newton–Raphson’s
equation given by (12) becomes (14):

g′′(αq) u
g′ (αq)− g′

(
αq−1

)
αq − αq−1

; (13)

αq+1 u αq − g′(αq) αq − αq−1

g′ (αq)− g′ (αq−1)
. (14)

This method is the so-called secant method. Applied to the search of g′(α) = 0 this method
consists in searching the intersection between the zero-ordinate axis and the straight line passing
by the points

[
αq−1, g′(αq−1)

]
and [αq, g′(αq)].

4.3. The quadratic interpolation
By comparison of those of sections 4.1 and 4.2, this method has the advantage of not requiring the
computation of first or second order derivatives of the function . Let three points α1 ≤ α2 ≤ α3

such that g(α1) ≥ g(α2) and g(α3) ≥ g(α2) and let us approximate the function g on the related
interval by a quadratic function g̃ with the same values as g has at the points α1, α2 and α3.
The minimum of g̃ is obtained at the new point α4 satisfying:

α4 =
1
2
r23g(α1) + r31g(α2) + r12g(α3)
s23g(α1) + s31g(α2) + s12g(α3)

, (15)
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αk

α

g′(α)

αk−1 αk+1

Figure 6. The secant line search method.

where rij = α2
i −α2

j and sij = αi−αj . This procedure may be repeated again with the three new
selected points. Under some regularity hypothesis, this method convergence rate is superlinear
[3].

4.4. The dichotomy method
This method halves, at each step, the length of the interval which contains the minimum,
by computing the function g in two new points. By carrying out n computations of the
function g, the length of the initial interval [a0, b0] is reduced in a proportion of 2(n−3)/2. The
general procedure is the following. Starting from the interval [a0, b0] and taking the midpoint
c0 =

(
a0 + b0

)
/2 and the two points d0 =

(
a0 + c0

)
/2 and e0 =

(
c0 + b0

)
/2 one obtains five

equidistant points of length δ0 = (b0−a0)/4. Computing the cost function values at these points,
two of the four subintervals may be eliminated while two adjacent subintervals remain. The same
procedure is repeated within the selected interval [a1, b1] and so on. Since the step length is
divided by 2 at each iteration, the dichotomy method converges linearly to the minimum [3].

4.5. Other methods
A great number of other one-dimensional optimization methods may be found in the literature.
These methods may be more or less complicated and some of them may be much more optimal
than the above-presented methods. In practice both the Fibonacci method and the golden
section search method are very widely used. The cubic interpolation method is also very widely
used in practice. The reader may refer to [6, 4, 3] for more details.

5. Gradient-type n-dimensional optimization algorithms
Since in all cases, the stationarity of j is a necessary optimality condition, almost all
unconstrained optimization methods consist in searching the stationary point ψ̄ where ∇j(ψ̄) =
0. The usual methods are iterative and proceed this way: one generates a sequence of points
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b1

g(α)

b0c0

a1 c1
a0

Figure 7. The dichotomy line search method.

ψ0, ψ1,. . .ψp which converges to a local optimum of j. At each stage p, ψp+1 is defined by
ψp+1 = ψp + αpdp where dp is a displacement direction which may be either the opposite of the
gradient of j at ψp (dp = −∇j(ψp)), or computed from the gradient or chosen in another way
provided that it is a descent direction, i.e. (∇j(ψp), dp) < 0.

5.1. The gradient with predefined steps method (1st order method)
At each iteration step p, the gradient ∇j(ψp) gives the direction of the largest increase of j. The
procedure is thus to compute the gradient, and find the new point according to the predefined
strictly positive step size αp as:

ψp+1 = ψp − αp ∇j(ψ
p)

‖∇j(ψp)‖ . (16)

It may be shown that this iterative scheme converges to ψ̄ provided that αp → 0 (p→∞)
and

∑∞
p=0 α

p = +∞. One can choose for instance αp = 1/p. The main drawback of this method
is the fact that the convergence rate is usually very low.

5.2. The steepest descent method (1st order method)
In this frequently used method, αp is chosen at each iteration p so as to minimize the function
g(α) = j (ψp − α∇j(ψp)) on the set of α ≥ 0. The algorithm is thus the following. One first
chooses a starting point ψ0 and set p = 0. At each iteration p, one computes the gradient
and set dp = −∇j(ψp). One then solves the one-dimensional problem (see section 4) and set
ψp+1 = ψp + αpdp. This procedure is repeated until a stopping test is satisfied (see section
2.5). The main disadvantage of the steepest descent method is the fact that the convergence
can still be very slow. As a matter of fact, since αp minimizes g(α) = j (ψp + αdp) then
g′(αp) = (dp,∇j (ψp + αdp)) =

(
dp,∇j

(
ψp+1

))
. Hence

(
dp, dp+1

)
= 0. This means that two

successive displacements are strictly orthogonal. As a direct consequence, the number of steps
to minimize elongated valley-type functions may be very high (see figure 8 and then figure 13
page 20).
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d2

ψ0

d0

ψ1

d1

ψ2

Figure 8. When the steepest descent method is used, the two consecutive directions are
orthogonal.

5.3. The conjugate gradient method for quadratic functions (1st order method)
In this section we shall firstly assume that the cost function is quadratic. We shall then develop
the general algorithm usually applied on quadratic functions. The case of arbitrary functions is
dealt with in the next subsection. Let the quadratic functional be of the form:

j(ψ) =
1
2

(A ψ,ψ) , (17)

and let us recall the definition for two conjugate vectors. Let A be a given symmetric matrix
(operator). Two vectors x1 and x2 are A -conjugate if (A x1, x2) = 0.

The general method to optimize j is the following. Let us start with a given ψ0 and choose
d0 = −∇j(ψ0). One may remark that for quadratic functions, the one-dimensional minimization
procedure may be analytically solved. Recalling that the minimization of g(α) along the direction
d0 should lead to the fact that this current direction (d0) would be orthogonal to the next gradient
∇j(ψ1), one has: (

d0,∇j
(
ψ1
))

= 0. (18)

Using the relationship ∇j(ψ) = A ψ given by the differentiation of (17) and the
reactualization formulation ψ1 = ψ0 + α0d0, (18) becomes:(

d0,∇j
(
ψ1
))

=
(
d0,A ψ1

)
=
(
d0,A

(
ψ0 + α0d0

))
=
(
d0,A ψ0

)
+ α0

(
d0,A d0

)
.

(19)

Equaling (19) to zero gives the step size α0:

α0 = −
(
d0,A ψ0

)
(d0,A d0)

. (20)

Next, at stage p, we are at the point ψp and we compute the gradient ∇j(ψp). The direction
dp is obtained by combining linearly the gradient ∇j(ψp) and the previous direction dp−1, where
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the coefficient βp is chosen in such a way that dp is A -conjugate to the previous direction.
Hence: (

dp,A dp−1
)

=
(
−∇j (ψp) + βpdp−1,A dp−1

)
= −

(
∇j (ψp) ,A dp−1

)
+ βp

(
dp−1,A dp−1

)
.

(21)

Next, choosing βp such that the previous equation equals zero yields to:

βp =

(
∇j(ψp),A dp−1

)
(dp−1,A dp−1)

. (22)

Taking into account of above relationships, the conjugate gradient algorithm [3] is given in
Algorithm 1.

Algorithm 1: The conjugate gradient algorithm applied on quadratic functions
(i) Let p = 0, ψ0 be the starting point,

compute the gradient and the descent direction, d0 = −∇j(ψ0),

compute the step size α0 = −
(
d0,A ψ0

)
(d0,A d0)

;

(ii) At step p, we are at the point ψp.
We define ψp+1 = ψp + αpdp with:

• the step size αp = −(dp,∇j(ψp))
(dp,A dp)

• the direction dp = −∇j(ψp) + βpdp−1

• where the coefficient needed for conjugate directions: βp =

(
∇j(ψp),A dp−1

)
(dp−1,A dp−1)

;

(iii) Stopping rule (see subsection 2.5). If satisfies: End, otherwise set p← p+ 1 and return to
step (ii).

It may be proved [4] that the conjugate gradient method applied on quadratic functions
converges in at most n iterations where n = dimψ.

5.4. The conjugate gradient method for arbitrary (non quadratic) functions (1st order)
Before giving the conjugate gradient method to be applied on arbitrary functions, let us give
some more properties inherent to quadratic functions. Differentiating (17) and taking into
account of the reactualization relationship gives directly:

∇j(ψp)−∇j(ψp−1) = A
(
ψp − ψp−1

)
= A

(
ψp−1 + αp−1dp−1 − ψp−1

)
= αp−1A dp−1,

(23)

which also gives the following relationship:

1
αp−1

(
∇j(ψp),∇j(ψp)−∇j(ψp−1

)
=
(
∇j(ψp),A dp−1

)
. (24)

On the other hand, substituting (24) into (22) gives

βp =

(
∇j(ψp),A dp−1

)
(dp−1,A dp−1)

=

(
∇j(ψp),∇j(ψp)−∇j(ψp−1)

)
(dp−1,∇j(ψp)−∇j(ψp − 1))

. (25)
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ψ2

ψ0

d0

ψ1

d1

Figure 9. When the conjugate gradient method is used, the two consecutive directions are
conjugate instead of orthogonal. Applied on a quadratic function, the method converges in at
most n iterations (in this figure two iterations are needed since dimψ = 2).

Next, expanding the descent direction dp−1, (25) becomes:

βp =

(
∇j(ψp),∇j(ψp)−∇j(ψp−1)

)
(−∇j(ψp−1) + βp−1dp−2,∇j(ψp)−∇j(ψp−1))

; (26)

βp =

(
∇j(ψp),∇j(ψp)−∇j(ψp−1)

)
(−∇j(ψp−1)− βp−1∇j(ψp−2) + Λ,∇j(ψp)−∇j(ψp−1))

, (27)

where Λ is the series given from the reactualizations. All the gradients being orthogonal one
from the next, (27) becomes:

βp =

(
∇j(ψp),∇j(ψp)−∇j(ψp−1)

)
(∇j(ψp−1),∇j(ψp−1))

, (28)

and also:
βp =

(∇j(ψp),∇j(ψp))
(∇j(ψp−1),∇j(ψp−1))

. (29)

It is pointed out that in the neighborhood of the optimum, non-quadratic functions may
be always approximated by quadratic functions. The Fletcher and Reeves’ method consists in
applying (29) to access βp while the Polak and Ribiere’s method consists in applying (28) to
access βp. Taking into account of above remarks, the conjugate gradient algorithm applied on
arbitrary functions is given in Algorithm 2.

It is important to note that the global convergence of the presented methods is only ensured
if a periodic restart is carried out . The restart dn = −∇j(un) is usually carried out at least
every n iterations.

5.5. The Newton’s method (2nd order)
Let us assume that the cost function j(ψ) is now twice continuously differentiable and that
second derivatives exist. The idea is to approach the cost function gradient by its quadratic
approximation through a Taylor development:
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Algorithm 2: The conjugate gradient algorithm applied on arbitrary functions
(i) Let p = 0, ψ0 be the starting point, d0 = −∇j(ψ0);
(ii) At step p, we are at the point ψp; we define ψp+1 = ψp + αpdp with:

• the step size αp = arg min
α∈R+

g(α) = j (ψp + αdp) with:

• the direction dp = −∇j(ψp) + βpdp−1 where
• the conjugate condition βp satisfies either (28) or (29) depending on the chosen

method;
(iii) Stopping rule (see subsection 2.5). If satisfies: End, otherwise, set p← p+ 1 and return to

step (ii).

∇j(ψp+1) = ∇j(ψp) +
[
∇2j(ψp)

]
δψp +O (δψp)2 , (30)

and equaling the obtained approximated gradient to zero to get the new parameter ψp+1 =
δψp + ψp:

ψp+1 = ψp −
[
∇2j (ψp)

]−1∇j(ψp). (31)

Note that while using second-order optimization algorithms, the direction of descent as well
as the step size are obtained from (31) in one go. Another interesting point is the fact that the
algorithm converges to ψ̄ in a single step when applied to strictly quadratic functions. However,
for arbitrary functions, the approximation (30) may not be exact yielding to some errors in the
displacement δψp and thus in the new point ψp+1. As a consequence, if the starting point ψ0

is too far away from the solution ψ̄, then the Newton method may not converge. On the other
hand, since the approximation of j(ψ) by a quadratic function is almost always valid in the
neighborhood of ψ̄, then the algorithm should converge to ψ̄ if the starting point ψ0 is chosen
closely enough to the solution. Moreover, it is very common to control the step size this way.
One first calculates the direction dp = −

[
∇2j(ψp)

]−1∇j(ψp) and control the step size through
an iterative one-dimensional minimization problem of the kind min g(α) = j (ψp + αdp) before
actualization ψp+1 = ψp + αdp. One limitation of the Newton’s method is when the Hessian
∇2j(up) is not positive definite. In these cases, the direction given by dp = −

[
∇2j(ψp)

]−1∇j(up)
may not be a descent direction, and the global convergence of the algorithm may not be
guaranteed any more. Moreover, and above all, the Hessian is usually very difficult to compute
and highly time consuming. To overcome these difficulties, one should, in practice, prefer using
one of the numerous quasi-Newton methods detailed afterwards.

5.6. The quasi-Newton methods
The quasi-Newton methods consist in generalizing the Newton’s recurrence formulation (31).

Since the limitation of the Newton’s method is the restriction of the Hessian ∇2j(up) to
be positive definite, the natural extension consists in replacing the inverse Hessian by an
approximation to a positive definite matrix denoted Hp. Obviously, this matrix is modified
at each step p. There is much flexibility in the choice for computing the matrix Hp. In general,
the condition given by (32) is imposed:

H
[
∇j(ψp)−∇j(ψp−1)

]
= ψp − ψp−1, (32)

so that the approximation given by (31) is valid at previous step p − 1. Various corrections of
the type

Hp+1 = Hp + Λp (33)
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may be found in literature [3].

5.7. Rank 1 correction [3]
The point is to choose a symetric matrix H0 and perform the corrections so that they preserve
the symetry of the matrices Hp.

The rank 1 correction matrix consists in choosing ∆p = αpvpvpt where the vector vp and the
scalar αp are chosen such that (32) is satisfied. Then, from a symetric matrix H0, this correction
preserves the symetry of matrices Hp. Denoting

δp = ψp+1 − ψp (34)

γp = ∇j(ψp+1)−∇j(ψp) (35)

one chooses αp and vp such that Hp+1γp = δp, thus:[
Hp + αp(vpvpt)

]
γp = δp, (36)

and
γptHpγp + αp

(
γptvp

) (
vptγp

)
= γptδp, (37)

thus
αp
(
vptγp

)2 = γpt (δp −Hpγp) . (38)

Using the identity

αp
(
vpvpt

)
=

(
αpvpvptγp

) (
αpvpvptγp

)t
αp (vptγp)2 , (39)

and using (36) and (37) to get

αpvpvptγp = δp −Hpγp, (40)

αp
(
vptγp

)2 = γpt (δp −Hpγp) , (41)

one obtains the correction (of rank 1) of the Hessian inverse:

Hp+1 −Hp = αp
(
vpvpt

)
=

(δp −Hpγp) (δp −Hpγp)t

γpt (δp −Hpγp)
. (42)

5.8. The Davidon-Fletcher-Powell algorithm
The Davidon-Fletcher-Powell algorithm (in short DFP) consists in modifying the inverse hessian
with the correction formulation of rank 2:

Hp+1 = Hp +
δp(δp)t

(δp)tγp
− Hpγp(γp)tHp

(γp)tHγp
(43)

where we have defined above δp = ψp+1 − ψp and γp = ∇j(ψp+1)−∇j(ψp), and where the new
point ψp+1 is obtained from ψp through the displacement

dp = −Hp∇j(ψp). (44)

The global DFP method is presented in Algorithm 3.
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Algorithm 3: The Davidon – Fletcher – Powell (DFP) algorithm
(i) Let p = 0, ψ0 be the starting point. Choose any positive definite matrix H0 (often the

identity matrix);
(ii) at step p, compute the displacement direction dp = −Hp∇j(ψp), and find ψp+1 at the

minimum of j(ψp + αdp) with α ≥ 0;
(iii) set δp = ψp+1 − ψp and compute γp = ∇j(ψp+1)−∇j(ψp) to actualize:

Hp+1 = Hp +
δp(δp)t

(δp)tγp
− Hpγp(γp)tHp

(γp)tHγp
; (45)

(iv) Stopping rule (see section 3.4). If satisfies: End, otherwise, set p← p+ 1 and return to
step (ii)

5.9. The Broyden – Fletcher – Goldfarb – Shanno algorithm
The Broyden – Fletcher – Goldfarb – Shanno algorithm (in short BFGS) developped in 1969-
1970 uses a rank 2 correction matrix for the inverse Hessian that is derived from (43). It can be
shown [3] that the vectors δp and γp can permute in (43) and in the relationship Hp+1γp = δp.
The correction (43) can thus also approximate the Hessian itself, and the correction for inverse
Hessian Hp+1 is thus given from Hp through the correction formulation:

Hp+1 = Hp +
[
1 +

γptHpγp

δptγp

]
δp(δp)t

(δp)tγp
− δpγptHp + Hpγpδpt

δptγp
. (46)

When applied on a non purely quadratic function, one has, as for the conjugate gradient
method and the DFP method, to carry out a periodic restart in order to ensure convergence
[6, 14]. It is known that the BFGS algorithm is superior than the DFP algorithm is the sense
that the first one is less sensitive on the line-search inaccuracy than the latter [3].

Algorithm 4: The BFGS algorithm
(i) Let p = 0, ψ0 be the starting point. Choose any positive definite matrix H0 (often the

identity matrix);
(ii) at step p, compte the displacement direction dp = −Hp∇j(ψp), and find ψp+1 at the

minimum of j(ψp + αdp) with α ≥ 0;
(iii) set δp = ψp+1 − ψp and compute γp = ∇j(ψp+1)−∇j(ψp) to actualize:

Hp+1 = Hp +
[
1 +

γptHpγp

δptγp

]
δp(δp)t

(δp)tγp
− δpγptHp + Hpγpδpt

δptγp
(47)

(iv) Stopping rule (see section 3.4). If satisfies: End, otherwise, set p← p+ 1 and return to
step (ii)

5.10. Gauss–Newton
When the cost function is explicitly given in term of the state and squared, that is of the form

j(ψ) := J (u) =
∫
S

(u− ud)2 ds (48)
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where S may be a time interval or a geometrical interval for instance including pointwise
measurements, then the Gauss–Newton method or some derivatives or it (e.g. Levenberg–
Marquardt) may be interesting to deal with, especially if the number of parameters is not very
high (see Lecture 3 [9]).

Before going deeper into the cost function gradient computation (see section 6), defining
u′(ψ; δψ) the derivative of the state at the point ψ in the direction δψ as:

u′(ψ; δψ) := lim
ε→0

u(ψ + εδψ)− u(ψ)
ε

, (49)

then the directional derivative of the cost function writes:

j′(ψ; δψ) =
(
J ′(u), u′(ψ; δψ)

)
, (50)

where j′(ψ; δψ) = (∇j(ψ), δψ). In the analogue way, the second derivative of j(ψ) at the point
ψ in the directions δψ and δφ is given by:

j′′(ψ; δψ, δφ) =
(
J ′(u), u′′(ψ; δψ, δφ)

)
+
((
J ′′(u), u′(ψ; δψ)

)
, u′(ψ; δφ)

)
. (51)

Neglecting the second-order term (this is actually the Gauss–Newton approach), we have:

j′′(ψ; δψ, δφ) ≈
((
J ′′(u), u′(ψ; δψ)

)
, u′(ψ; δφ)

)
. (52)

In order to form the cost function gradient vector and the approximated Hessian matrix, one
has to choose the directions for the whole canonical base of ψ. Doing so, one can use the so-called
sensititivity matrix S which gathers the derivatives of u in all directions δψi, i = 1, . . . ,dimψ,
and the product (u′(ψ; δψi), u′(ψ; δψj)) involved in (52) is the product of the so-called sensitivity
matrix with its transposed. The Newton relationship is thus approximated to:

StSδψk = −∇j(ψk). (53)

The matrix system StS is obviously symmetric and positive definite with a dominant diagonal
yielding thus to interesting features (Cholesky factorization, etc. see Lecture 3 [9]).

5.11. Levenberg–Marquardt
Though the Gauss–Newton system (53) presents inherent interesting feature (it almost gives in
one step the descent direction and the step size), the matrix StS is often ill-conditionned (see
Lecture 3). One way to decrease significantly the ill-condition feature is to “damp” the system
(i.e. using the Tikhonov regularization) using:[

StS + `I
]
δψk = −∇j(ψk), (54)

or better: [
StS + `diag(StS)

]
δψk = −∇j(ψk). (55)

Note that `→ 0 yields the Gauss–Newton algorithm while ` bigger gives an approximation of
the steepest descent gradient algorithm. In practice, the parameter ` may be adjusted at each
iteration.
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5.12. Elements of comparison between some presented methods
Some of the presented methods are tested using free software. As usual, the well-known
Rosenbrock function is dealts with. In 2–D, this function writes:

f(x, y) = (x− α)2 + β(x2 − y)2. (56)

For the considered case, the chosen parameters are α = 10 and β = 100, so that the optimum
is at (1, 1). The figure 10 page 20 presents the function. This function presents a long valley
where the function gradient is very low.

Next figures present all the evaluations of the function (56). The GSL free library [15] is used
for the optimization computation for the simplex, the steepest descent, the conjugate gradient
and the BFGS methods. The C program used to generate the minimizing sequence of points
for the Rosenbrock function using the BFGS method is given in Appendix 10.2. The other
algorithms (CG, Steepest and simplex) are also taken from [15] and slightly change from the
source given in subsection 10.2 by only a few lines. Next, the PSO algorithm is the one from
[13].

The deterministic simplex method from the GSL library starting from the point x0 = −1,
y0 = 1 needs 64 evaluations of the cost function. The stopping criterion is based on the simplex
characteristic size equal to 10−2.

The PSO algorithm taken from [13] with 20 particles with 3 informed particles, φ = 4.14,
χ = 2

φ−2+
√
φ2−4φ

, λ1 = λ2 = 0.5χφ. The stopping criterion is based on the cost function equal

to 10−5. With these parameters, around 6,000 evaluations of the cost function is needed for the
minimization.

For the Steepest descent, the conjugate gradient and the BFGS algorithms, the stopping
criterion is based either on the gradient norm equal to 10−3, or on a maximum number of
iterations equal to 10,000. For the steepest descent method, the maximum of iteration criterion
is achieved. For the conjugate gradient, and the BFGS method, respectively 49 and 11 iterations
are needed.

6. Functional gradient computation through direct differentiation
6.1. Cost functions, models and derivatives
We recall here that the function to be minimized is the cost function J (u) expressed in terms
of the state u but minimized with respect to the parameters ψ. We thus have the equality (by
definition) between the cost function and its reduced version:

j(ψ) := J (u). (57)

The state u is related to the parameters ψ through an operator (linear or not) that combines
the partial differential equations along with the boundary conditions, initial conditions, etc.
This operator is denoted as S for the state problem. To be concise, one writes down

S(u, ψ) = 0, (58)

where we have the mapping ψ 7→ u(ψ).
Often, the space (and time) is discretized so that the state operator S is approximated in

some matrix formulation. In this case, we have

R(u, ψ) = 0, (59)

where dimR = dimu. Note that u involved in (58) is continuous while u involved in (59) may
be discretized (using finite difference, finite elements, etc.).

We now need the definition of the directional derivative of j(ψ) in the direction δψ (see
Definition 6). Other kinds of derivatives can also be used, such as the Gâteaux or Fréchet
derivatives, see [2] for the technical definitions.
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Figure 10. 2–D Rosenbrock function.

-1

-0.5

 0

 0.5

 1

 1.5

 2

-1 -0.5  0  0.5  1  1.5  2

Figure 11. 2–D Rosenbrock function – Simplex
algorithm.

-1

-0.5

 0

 0.5

 1

 1.5

 2

-1 -0.5  0  0.5  1  1.5  2

Figure 12. 2–D Rosenbrock function – PSO
algorithm.
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Figure 13. 2–D Rosenbrock function –
Steepest descent algorithm.
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Figure 14. 2–D Rosenbrock function –
Conjugate gradients descent algorithm.
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Figure 15. 2–D Rosenbrock function – BFGS
descent algorithm.
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Definition 6 (Directional derivative) Let a point ψ and a direction φ. One defines `(t) :=
ψ + tφ and the function J (t) := j(`(t)). The directional derivative of j at the point ψ in the
direction φ is:

j′(ψ;φ) := J ′(0) = lim
t→0
t>0

j(ψ + tφ)− j(ψ)
t

. (60)

It has been seen before (see (50)) that we have the equality

j′(ψ; δψ) =
(
J ′(u), u′(ψ; δψ)

)
, (61)

and, because of linearities of u′(ψ; δψ) in δψ and j′(ψ; δψ) in δψ:

j′(ψ; δψ) = (∇j(ψ), δψ) . (62)

6.2. Finite difference
The finite difference approach consists in approaching the cost function gradient through a
substraction of the cost function with a perturbed cost function for the whole canonical base of
ψ, that is δψ = δψ1, δψ2, . . . , δψdimψ. For the ith component, we have:

(∇j(ψ))i = (∇j(ψ), δψi) ≈
j(ψ + εδψi)− j(ψ)

ε
. (63)

Usually, in order to perform the same relative perturbation on all components ψi, one rather
uses εi ← εψi, where the scalar ε is fixed. The very simple algorithm is described in Algorithm
5.

Algorithm 5: The finite difference algorithm to compute the gradient of the cost function
Set the length ε;
At iteration p, compute the state u(ψp), compute j(ψp);
foreach i = 1, . . . ,dimψ do

Compute the cost j(ψp + εψiδψi);

Set the gradient (∇j(ψ))i ←
j(ψp + εψiδψi)− j(ψp)

εψi
end
Integrate the gradient within the optimization methods that do not rely on the
sensitivities (conjugate gradient or BFGS for instance among the presented methods)

In practice the tuning parameter ε has to be chosen within a region where variables depend
roughly linearly on ε. Indeed for too small values, the round-off errors dominate while for too
high values one gets a nonlinear behavior.

Even though the Finite Difference Method is easy to implement, it has the disadvantage of
being highly CPU time consuming. Indeed, the method needs as many integrations of the model
given by (59), as the number of parameters dimψ.

The gradient computed this way can be integrated to the previously presented optimization
methods that do not rely on u′, such as the conjugate gradient methods, the BFGS, etc.

When performing the finite differenciation with respect to ψi, one also accesses the
approximated perturbed state u′(ψ; δψi). This way, one can use again the conjugate gradient
methods or the BFGS method for instance, but also the more powerfull quasi-Newton Gauss–
Newton or Levenberg–Marquardt methods which both rely on the sensitivities u′(ψ; δψi),
i = 1, . . . ,dimψ. See Algorithm 6.
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Algorithm 6: The finite difference algorithm to compute the gradient of the cost function
and the sensitivities

Set the step ε;
At iteration p, compute the state u(ψp), compute j(ψp);
foreach i = 1, . . . ,dimψ do

Compute the perturbed state u(ψp + εψiδψi) and the cost j(ψp + εψiδψi);

Set the state sensitivity u′(ψ; δψi)←
u(ψp + εψiδψi)− u(ψp)

εψi
;

Set the gradient (∇j, δψi) with either (J ′(u), u′(ψ; δψi)) or as in previous algorithm

with
j(ψp + εψiδψi)− j(ψp)

εψi
.

end
Integrate the gradient within the optimization methods that do not rely on the sensitivities
(conjugate gradient or BFGS among the presented methods) or within optimization
methods that do rely on the sensitivities (Gauss–Newton or Levenberg–Marquardt).

6.3. Forward differentiation
The forward differentiation approach consists in computing u′(ψ; δψi) differentiating the state
equations (continuous or discretized). The state equation being given by (58) for the continuous
version, and by (59) for the discrete version, one gets:

S ′u(u, ψ)u′ + S ′ψ(u, ψ)δψ = 0. (64)

The discrete version of this relationship can be obtained discretizing (64) or equivalently
differentiating (59), giving:

R′u(u, ψ)u′ +R′ψ(u, ψ)δψ = 0. (65)

As for the previous subsection, the gradient computation needs one computation of (65) per
parameter ψi, so one needs dimψ integrations of (65) to access the full gradient ∇j(ψ).

As for the finite difference approach, one may use the sensitivities u′ and integrate them into
the quasi-Newton methods such as the Gauss–newton or Levenberg–Marquardt methods, or only
use the cost function gradient and then use the methods that do not rely on the sensitivities.

When compared to the finite difference approach, the forward difference method leads to
exact cost function gradient components. Moreover, though S and R are likely to be nonlinear
operators, the systems (64) and (65) are linear, thus yielding to much less CPU time. Another
singularity is that R′u(u, ψ) is the tangent matrix that is to be used anyway for solving the
“direct” problem R(u, ψ) = 0. The computation of this linear tangent matrix is most often the
task that takes the longer time in solving R(u, ψ) = 0. The optimized procedure is thus the one
given in Algorithm 7.

Note that the linear tangent matrix which is to be assembled for the solution of the “direct”
forward model is to be re-used for all canonical components δψi.

7. Functional gradient computation through the adjoint problem
In this section we present the use of an additional problem –the so-called adjoint-state problem–
that gives the exact cost function gradient but in a computational cheap way. We present one
method based on the identification procedure (subsection 7.1) and another one that uses the
Lagrange function (subsection 7.2). For the latter method, the model equation is treated as
an equality constraint for the optimization. Both methods can deal with either the continuous
equations or the discrete ones. One has to keep in mind that when the continuous method is
used, (in general) all the equations have later on to be discretized. Both strategies are equivalent
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Algorithm 7: The forward differentiation algorithm to compute the cost gradient and the
sensitivities

At iteration p, solve iteratively R(u, ψp) = 0, compute j(ψp) and save the linear tangent
matrix R′u(u, ψp);
foreach i = 1, . . . ,dimψ do

Solve R′u(u, ψ)u′ +R′ψ(u, ψp)δψi = 0;
Set (∇j, δψi) = (J ′(u), u′(ψ; δψi) ;

end
Integrate the gradient within the optimization methods that do not rely on the sensitivities
(conjugate gradient or BFGS among the presented methods) or within optimization
methods that do rely on the sensitivities (Gauss–Newton or Levenberg–Marquardt).

in usual, but if the cost is computed through the integration of some discretized equations, then
we consider that the discretized equations have to be differented (it is the so-called “discretize-
then-differentiate” method). The other way is to deal with the continuous equations, then
discretize the state model, etc. (it is the so-called “differentiate-then-discretize” method).

Some examples of adjoint derivation will be given in the last sections of this lecture (section
9).

7.1. Identification method
In this subsection, we derive the method that gives the cost function gradient through the use of
an additional adjoint-state problem when the state equation is the continuous version, i.e. (58).
This method can be easily transposed for the discrete state version, just substituting S by R.

From the definition of the functional gradient, one writes the gradient:

(∇j, δψ) = j′(ψ; δψ) =
(
J ′(u), u′(ψ; δψ)

)
. (66)

One then introduces a new variable (the adjoint-state variable u∗) such that the gradient
equation (66) also satisfies the more–easy–to–compute:

j′(ψ; δψ) =
(
S ′ψ(u, ψ)δψ, u∗

)
. (67)

On the other hand, since we have the relationship S(u, ψ) = 0, then

S ′u(u, ψ)u′ + S ′ψ(u, ψ)δψ = 0 (68)

and thus
j′(ψ; δψ) = −

(
S′u(u, ψ)u′, u∗

)
. (69)

Identifying (66) and (69), we obtain the adjoint-state problem that must satisfy the equality:

−
(
S ′u(u, ψ)u′, u∗

)
=
(
J ′(u), u′(ψ; δψ)

)
. (70)

Next, if the adjoint problem (70) is satisfied (it means that we accessed the adjoint state u∗),
then the cost function gradient is very simply given by (67).

We then use the inner product property (A u, v) = (u,A ∗v) where A ∗ is the transposed
conjugate operator of A (adjoint) to modify the adjoint equation (70) to:

S∗(u, ψ)u∗ + J ′(u) = 0 (71)

where S∗ is the conjugate transposed of the linear tangent operator S ′u, i.e. we use:(
S ′u(u, ψ)u′, u∗

)
=
(
S∗(u, ψ)u∗, u′

)
+ b (72)

where the term b may contain terms (among others boundary terms) usefull for some further
simplifications (see Appendix for an example of such simplifications).

Lecture 7: Optimization – page 23



Metti 5 Spring School Roscoff – June 13-18, 2011

Algorithm 8: The adjoint state problem to compute the cost function gradient with
integration within an optimization algorithm

At iteration p, solve iteratively S(u, ψ) = 0;
Compute j(ψp);
Save the solution u;
Compute the adjoint state problem S∗(u, ψ)u∗ + J ′(u) = 0;
Compute the gradient (∇j(ψ); δψ) =

(
S ′ψ(u, ψ)δψ, u∗

)
;

Integrate the gradient within the optimization methods that do not rely on the
sensitivities (conjugate gradient or BFGS among the presented methods)

7.2. Lagrange formulation
The use of a Lagrange formulation means that the state equations are taken as constraints in
the optimization problem. In the discrete version of the state, we have R(u, ψ) = 0, so that all
the equations Ri(u, ψ) = 0 ∀i = 1, . . . ,dimu are taken as constraints.

Let us introduce the Lagrange function [16, 17]:

L (u, u∗, ψ) = J (u) + (R(u, ψ), u∗) (73)

where the inner product in (73) is (a, b) =
∑dimu

i=1 aibi. If the state problem is time dependent
(say t ∈ [0, tf ]), then the inner product also takes into account time integration: (a, b) =∫ tf

0

∑dimu
i=1 ai(t)bi(t)dt as will be seen in the examples dedicated section 9. However, we do not

precise here, as in subsection 7.1 the inner product nature.
Note that if a continuous optimization problem is dealt with, the Lagrange function (73) is

substituted to L (u, u∗, ψ) = J (u) + (S(u, ψ), u∗), and the inner product can be for instance
(a, b) =

∫ T
0

∫
Ω abdx dt.

Note also that the lagrangian introduced in this section is a function of three variables,
namely the state u , the parameter to be to be identified ψ and the adjoint state variable u∗.
This means that both variables u and ψ are somehow considered to be independent even though
there exists (at least implicitly) the relationship (59) that maps ψ to u. Moreover, since u is
the solution of the modeling problem R(u, ψ) = 0, then the lagrangian L is always equal to the
cost function J (u) and the constraints which represent the partial differential equations of the
modelling problem are always satisfied.

We now show that a necessary condition for the set ψ to be solution of the optimization
problem (4) is that there exists a set (u, ψ) such that (u, ψ, u∗) is a saddle point (stationary
point) of L . Indeed, let us show that the necessary condition j′(ψ; δψ) = 0 ∀δψ is equivalent to

∃ (u, u∗, ψ) | L ′
u (·) δw = 0; L ′

u∗ (·) δw = 0; L ′
ψ (·) δw = 0, (74)

for all directions δw taken in appropriate spaces (u′, δu∗ and δψ). First, since the state is
satisfied, then L ′

u∗ = R(u, ψ) = 0. Moreover, since we have also R′u(u, ψ)u′ +R′ψ(u, ψ)δψ = 0,
we get:

L ′
ψ (·) δψ =

(
R′ψ(u, ψ)δψ, u∗

)
= −

(
R′u(u, ψ)u′, u∗

)
(75)

So far, the choice for the adjoint variables u∗ has not been fixed yet. However, choosing the
adjoint variable such that L ′

u (·)u′ = 0 ∀u′ considerably simplifies the relationship between the
differentiated lagrangian with respect to ψ and the cost function gradient. One actually chooses
u∗ such that it satisfies the adjoint state equation(

R′u(u, ψ)u′, u∗
)

+
(
J ′(u), u′(ψ; δψ)

)
= 0. (76)
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This way we obtain the cost function gradient:

L ′
ψ (·) δψ =

(
J ′(u), u′(ψ; δψ)

)
= j′(ψ; δψ) = (∇j, δψ) (77)

The adjoint equation is thus:

R∗(u, ψ)u∗ + J ′(u) = 0, (78)

and the gradient is given by:
∇j =

(
R′ψ(u, ψ), u∗

)
. (79)

Summarizing, the minimum of the cost function is to be found at the stationary point of
the lagrangian (73). When the adjoint system (78) is satisfied, then the components of the cost
function gradient are simply given through the scalar product involved in (79).

7.3. Examples
In the examples presented below, we do not specify what the parameters are. We just give the
form of the adjoint-state problem related to the “forward” state problem form.

7.3.1. Case of ODE
Let us start with the case where the state model is simplified to a set of continuous ordinary
differential equations integrated in time I =]0, tf ]. The direct problem thus writes:

R (u, ψ) = C u̇−B = 0 for t ∈ I
u = u0 for t = 0, (80)

where C may be an inertial scalar or a capacity matrix depending on the related case (with
coefficients in C) and B contains the loadings. Injecting the differentiated time-dependent
relationship (80) into the adjoint-state relationship (76) gives:([

C
d

dt
+ C ′uu̇−B′u

]
u′, u∗

)
+
(
J ′(u), u′(ψ; δψ)

)
= 0 (81)

where the inner must be understood as (a, b) =
∫
I 〈a, b〉 dt =

∫
I
∑dimu

i=0 aibi dt.
Transposing the involved matrices (81) becomes:(

d

dt
u′,C ∗u∗

)
+
(
u′,
(
C ′uu̇−B′u

)∗
u∗
)

+
(
J ′(u), u′(ψ; δψ)

)
= 0 (82)

where A ∗ is the adjoint of A , i.e. the transposed conjugate. One then integrates by part the
first term of (82) to get:

−
(
u′,C ∗

d

dt
u∗
)

+
[〈
u′,C ∗u∗

〉]tf
0

+
(
u′,
(
C ′uu̇−B′u

)∗
u∗
)

+
(
J ′(u), u′(ψ; δψ)

)
= 0 (83)

with the product 〈a, b〉 =
∑dimu

i=1 aibi.
Since there is no reason that the initial state depend on the parameters ψ (except if the

initial state is searched), then the directional derivatives u′ of u at initial time is set to zero.
The adjoint-state problem is eventually:

−C ∗u̇∗ + (C ′uu̇−B′u)∗ u∗ + J ′(u) = 0 for t ∈ I
u∗ = 0 for t = tf .

(84)

Some remarks must be given concerning the formulation of the adjoint problem (84):
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(i) At first, there is a minus sign just before the operator C ∗ involved in the first equation.
At the same time, the boundary-time condition is given at final time tf . Therefore, when
considering these two points, there is no way to solve the adjoint problem forwardly, i.e.
from t = 0 to tf . The trick consists in introducing a new time variable τ = tf − t (the
dual time). Doing so, the initial condition is u∗ = 0 at time τ = 0, and the time-dependent
equation (84) is solved in the forward way in the dual time variable τ which corresponds to
the backward way in the primal time variable t.

(ii) The loading component J ′(u) involved in (84) is non-zero only at the selected discrete times
where the cost function j is to be integrated.

(iii) If the state problem (80) is linear (say C and B do not depend on the solution), then we
have the linear tangent operator R′u(u, ψ) reduced to C d

dt only, and the adjoint problem
simplifies to:

−C ∗u̇∗ + J ′(u) = 0 for t ∈ I
u∗ = 0 for t = tf .

(85)

(iv) The last remark concerns the inherent linear character of the adjoint problem. It is pointed
out that even though the direct problem is likely to be nonlinear (C and/or B depend(s)
on the state u for instance in (80)), the adjoint problem is still linear since the operators
do not depend on the adjoint variables. The equivalent remark was given for the forward
differentiation method which uses the linear tangent operator.

7.3.2. Case of elliptic PDE

This second example concerns the case where the state model is simplified to a diffusive-type
continuous partial differential equation independent of time. We deal here with a linear problem
(for a nonlinear problem, one must add to the following derivation some elements of the previous
derivation –the terms related to the nonlinear behavior–). The state problem thus writes:

R (u, ψ) = K u−B = 0 (86)

where K is the diffusivity matrix obtained after discretization of the continuous equation which
takes into account of the boundary conditions. Injecting the differentiated space-dependent
relation (86) into the adjoint (76) gives:〈

K u′, u∗
〉

+
(
J ′(u), u′(ψ; δψ)

)
= 0 (87)

Transposing the diffusive matrix in the first scalar product of (87) gives:(
u′,K ∗u∗

)
+
(
J ′(u), u′(ψ; δψ)

)
= 0 (88)

Note that here again, when the matrix K is symmetric with real coefficients, we have
(K u, v) = (K ∗v, u) = (K v, u). This appears for instance when discretizing the space through
the finite difference method or the finite element method while dealing with purely diffusive
systems. Next, since the adjoint problem (88) must be verified for all directional derivatives u′,
the general adjoint problem becomes:

K ∗u∗ + J ′(u) = 0. (89)

Some remarks must be given concerning the formulation of the adjoint problem (89):
(i) The loading component involved in the space-dependent equation is non-zero only at the

selected discrete locations where the cost function j is to be integrated, i.e. at x = xm,
with m = 1 . . .M .

(ii) Next, the loading component J ′(u) must be in perfect coherence with the type of
discretization (see [18] for detailed explanations when using for instance a finite element
discretization scheme).
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7.3.3. Case of parabolic PDE

The discretization of the space and time dependent (linear) diffusive model yields to the
so-called parabolic problem. It is somehow the union between both just above presented cases.
After discretization, the direct problem is:

R (u, ψ) = C u̇+ K u−B = 0 for t ∈ I
u = u0 for t = 0. (90)

Injecting the differentiated operators involved in (90) into the adjoint (76) gives:(
C
d

dt
u′, ψ

)
+
(
K u′, ψ

)
+
(
J ′(u), u′(ψ; δψ)

)
= 0 (91)

Transposing all operators through integration by parts gives:

−
(
u′,C ∗

d

dt
u∗
)

+
[〈
u′,C ∗u∗

〉]T
0

+
(
u′,K ∗u∗

)
+
(
J ′(u), u′(ψ; δψ)

)
= 0 (92)

Eventually, the adjoint problem writes:

−C ∗u̇∗ + K ∗u∗ + J ′(u) = 0 for t ∈ I
u∗ = 0 for t = tf .

(93)

7.4. The global optimization algorithm
The general algorithm is given in Algoritm 9. The global procedure described in this algorithm
is run until (at least) one of the stopping criteria presented in subection 2.5 is reached.

Algorithm 9: The global optimization algorithm
(i) Integrate the cost function value through integration of the forward (maybe nonlinear)

direct problem;
Store all state variables to reconstruct the tangent matrix (or store the tangent matrix);

(ii) Integrate the backward linear adjoint problem, all matrices being possibly stored or
recomputed from stored state variables

(iii) Compute the cost function gradient;
Compute the direction of descent

(iv) Solve the line research algorithm through several integrations of the nonlinear direct
model.

8. Elements of comparison
We give in this section some elements of comparison between the previously presented
optimization algorithms and between the different gradient computation strategies.

8.1. Convergence speed
The optimization algorithms presented in section 5 yield to a series {ψk}k≥1 that converges to
ψ̄. We give some rate convergence definitions [5, 3, 4].
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Definition 7 The convergence rate of the series {ψk}k≥1 is said to be linear if

‖ψk+1 − ψk‖
‖ψk − ψ̄‖

≤ τ, τ ∈ (0, 1). (94)

This means that the distance to the solution ψ̄ decreases at each iteration by at least the constant
factor τ .

Definition 8 The convergence rate of the series {ψk}k≥1 is said to be superlinear in n steps if

lim
k→∞

‖ψk+n − ψk‖
‖ψk − ψ̄‖

= 0. (95)

Definition 9 The convergence rate of the series {ψk}k≥1 is said to be quadratic if

‖ψk+1 − ψk‖
‖ψk − ψ̄‖2

≤ τ, τ > 0. (96)

Quasi–Newton methods usually converge superlinearly and the Newton method converges
quadratically. The steepest descent method converge linearly. Moreover, for ill-posed problems,
this method may converge linearly with a constant τ close to 1. Next, the conjugate-gradient
method converges superlinearly in n steps to the optimum [3].

Thus the quasi-Newton methods convergence-rate is much higher than the conjugate gradient
methods convergence rate which need approximatively n times more steps (n times more line-
search) at the same convergence behavior [3]. However, for the quasi-Newton method, the
memory place is proportionnal to n2.

8.2. Gradient computation cost
Let R(u, ψ) = 0 the problem that maps ψ 7→ u, R being nonlinear (for highlighting differences
between the distinct strategies), and dimψ the number of parameters to be evaluated. We
compare the number of times the model R, the differentiated model and/or the adjoint state
model are computed to access the full gradient of the cost function.

(i) Forward finite difference method:
(dimψ + 1) nonlinear resolution of R(u, ψ) = 0.

(ii) Forward differentiation method:
1 nonlinear resolution of R(u, ψ) = 0,
dimψ linear resolution of R′u(u, ψ)u′ +R′ψ(u, ψ)δψ = 0.

(iii) Adjoint state method:
1 nonlinear resolution of R(u, ψ) = 0,
1 linear resolution of R∗(u, ψ)u∗ + J ′(u) = 0.

Thus, the finite difference method is very time consuming, though it is easy to use. Next,
comparing the two latter methods, the operator involved in the adjoint-state method is almost
the same as the one involved in the forward differentiation method, though the adjoint-state
method yields to higher algorithmic complexity (backward time integration, memory, etc.).
When dimψ is high (even if dimψ is bigger than say 100), the use of the direct differentiation
method becomes cumbersome and computationnaly expensive.
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8.3. Gradient computation needs
We recall in the following table the way (the required needed steps) one computes the cost
function gradient.

Steepest, conjugate-gradients, Newton Gauss–Newton,
BFGS, DFP, . . . Levenberg–Marquardt, . . .
u← R(u, ψ) = 0 u← R(u, ψ) = 0 u← R(u, ψ) = 0
j ← u j ← u j ← u

∇j ←

 Forward diff.
or
Adjoint state

∇j ←

 Forward diff.
or
Adjoint state

∇j ← StS ← S ← u′ (Forward diff.)

∇2j (complicated)

9. Example : estimation of convection heat transfer during quenching
In this section, we consider an application of the Iterative Regularization Method to a nonlinear
transient heat transfer inverse problem arising in thermal treatment of metals, in particular
in Jominy end quench tests. Quenching is one of the most critical operations in the heat
treatment of many metallic parts, affecting in general both mechanical and structural properties.
The analyzed inverse problem consists in estimating a space and time dependent heat transfer
coefficient at the quenching surface. Details of these investigations can be found in [19, 20, 21].

9.1. Introduction
The Jominy end quench test is a standard test (NF A 04-303) used to characterize the
hardenability of steels [7,8]. A steel cylinder of diameter d =25 mm is heated within the austenite
domain during a preset time and then cooled down by a water jet sprayed on its lower end. The
numerical simulation of rapid metallurgical transformations occurred during quenching requires
a good knowledge of the heat transfer conditions at the boundaries of the considered domain.
The direct measurement of these conditions is impossible and it is necessary to solve an inverse
heat transfer problem to estimate them. The experimental setup built according to the standard
gives the following characteristics (Figure 1):

• Induction heating in an enclosure filled by an inert gas (argon);
• Computer-aided control of various actions (heating, cylinder handling, quenching) which

leads to a good enough reproducibility of the tests.

In this work, two materials are analyzed. The first one is nickel. There is no metallurgical
phase changes in this material in the analyzed temperature domain. The second is the 16MND5
steel sample (considered as an equivalent of ASTM A508 Cl. 3 in USA) for which the coupled
thermo-metallurgical phenomenon has to be considered.

9.2. Inverse problem
The main difficulty of the problem is the simulation of the coupled thermo-metallurgical
phenomena when cooling down a fully austenitized steel specimen with a high nonlinearity of the
thermal conductivity during the phase transformations (austenite- martensite). The quenching
tests are axi-symetric. The modeling equation in Ω = [O, rmax]× [0, zmax] is

C
∂T

∂t
−∇ · (λ∇T ) = Spc (97)

where C(T ) is the equivalent volumetric heat capacity, λ(T ) is the equivalent thermal
conductivity, and Spc (T ) is the source term determining the metallurgical phase change thermal
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Figure 16. Sketch of experimental setup

effects in the specimen during cooling. Note the the diffusion operator in a cylindrical basis is
written as ∇ · (λ∇T ) = 1

r
∂
∂r

(
rλ∂T∂r

)
+ ∂

∂z

(
λ∂T∂z

)
. We consider the following initial condition

T = T0 (98)

and the following boundary condition

−λ∇T · n = h (T − T∞) for z = 0
∇T · n = 0 for z = zmax

∇T · n = 0 for r = 0
−λ∇T · n = εσ

(
T 4 − T 4

∞
)

for r = rmax

(99)

In (97) and (99), the thermophysical characteristics C(T ) and λ(T ) as well as the source term
Spc (T ) are computed by using the metallurgical kinetic model of the type Koistinen–Marburger
[22] and Leblond–Devaux [23] of the form

dP

dt
=
Peq − P

τ
F

(
dT

dt

)
(100)

and
P = Pmax (1− exp (−b(Ms − T ))) (101)

where P is the proportion of a metallurgical phase, Peq is the concentration of this phase in the
equilibrium state, τ is the delay time, F (dTdt ) is the coefficient characterizing the transformation
speed of the phase, Pmax is the maximum proportion before the transformation, b is the coefficient
determining the final temperature of the phase transformation, Ms is the beginning temperature
of the transformation.

Figure 17 shows a Continuous Cooling Temperature (C.C.T.) diagram which is used for
the simulation of the metallurgical transformations. This diagram is constructed with a lot of
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Figure 17. CCT diagram

dilatometric experiments. Each experiment is realised with a steel specimen initially heated at
T0 = 880 oC during a preset time (30 mn in this case). During the cooling, the parameter which
influences the transformation is the cooling speed. In function of this speed, the transformation
begins and stops at different temperatures (austenite-ferrite: 800 oC> T >600 oC, austenite-
bainite: 550 oC> T >380 oC, and austenite-martensite: 400 oC> T >200 oC.)

For the simulation of the transformations austenite-ferrite and austenite-bainite, we use
the equation (100) and for the transformation austenite-martensite the equation (101). All
parameters of these equations are defined with the CCT diagram [24].

During the metallurgical transformation, a phase change heat is computed with the use of
the phase enthalpy: Lγα = ργHγ − ραHα and by considering only two metallurgical phases:
γ (austenite) and α (ferrite, bainite or martensite). The enthalpies of the phase γ and α are
approximated with a good accuracy by polynomials between 100 oC and 1450 oC [24].

A finite-difference method is used to simulate numerically the Jominy tests. For each node of
the finite-difference grid, the temperature and the cooling speed are computed. With these two
parameters and the equation (100) or (101), we can calculate the proportions of the metallurgical
phases

Then, the thermophysical characteristics C(T ) and λ(T ) are computed at all nodes by using
the mixture law as functions of temperature as follows

C(T ) = Pγργcγ(T )− Pαραcα(T ) (102)

λ(T ) = Pγλγ(T )− Pαλα(T ) (103)

The source term is computed as

Spc (T ) = ∆PγαLγα (104)

where ∆Pγα is the proportion of the transformed phase.
To obtain the information on the temperature distribution needed to solve the inverse

problem, a set of thermocouples is installed in the specimen near the quenching surface at
N discrete points with coordinates xn = (rn, zn), n = 1, . . . , N (measurement scheme) and the
distance between 0.5 mm and 12 mm from the quenching surface. The measured temperature
evolutions can be presented as

T (rn, zn, t) = fn(t), n = 1, . . . , N. (105)
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The nonlinear inverse problem under analysis consists in estimating a convection heat transfer
coefficient h(r, t) from the conditions (97) to (105).

9.3. Numerical algorithm
The estimation of the heat transfer coefficient in view of the direct problem (equations (97)
to (100)) can be formulated under the variational form which implies the residual functional
minimization.

j(h) := J (T ) =
∫ tf

0

n∑
j=1

(T (rj , zj , t)− Y (rj , zj , t))2dt (106)

where T (rj , zj , t) and Y (rj , zj , t) represent respectively the estimated and measured
temperatures at N various points of the material. The inverse problem consists in minimizing
this residual functional under constraints given by the equations of the direct system (equations
(97) to (100)). The minimization is carried out by using the conjugate gradient method. The
function h(r, t) is considered here as an element of the Hilbert space L2(Γ), Γ being the boundary
at z = 0, and the new functions are obtained after each iteration as follows:

hp+1 = hp + αpdp (107)

where p is the iteration index, αp is the descent parameter, hp+1 the unknown vector to be
estimated and dp the vector of descent direction given by:

dp = −∇jp + βpdp−1 (108)

where we used the Polak and Ribière’s method recalled here:

βp =

(
∇j(ψp),∇j(ψp)−∇j(ψp−1)

)
(∇j(ψp−1),∇j(ψp−1))

, (109)

with the inner product being held in L2(Γ). In the absence of noise, the iteration procedure is
carried on until the following stopping criterion is verified:∣∣∣∣hp+1 − hp

hp

∣∣∣∣ ≤ ε1 (110)

The cost function gradient is obtained for all values of r and t by the following analytical
relationship (see Appendix 10.1):

∇j(h(r, t)) = T ∗(r, 0, t) [T (r, 0, t)− T∞] (111)

where T ∗(r, 0, t) is the solution of the adjoint problem achieved during the integration of the
Lagrange functional and of the variation problem θ (r, z, t):

∂(Cθ)
∂t

−∇ · (∇(λθ)) = ∆Pγα
∂

∂T
(ργHγ − ραHα)θ (112)

in the domain Ω, with the initial condition

θ(r, z, 0) = 0 (113)

and the following boundary conditions:

∇(λθ) · n = hθ + δh(T − T∞) for z = 0
∇θ · n = 0 for z = zmax

∇θ · n = 0 for r = 0
∇(λθ) · n = 4εσT 3θ for r = rmax

(114)

Lecture 7: Optimization – page 32



Metti 5 Spring School Roscoff – June 13-18, 2011

For the adjoint problem (see Appendix 10.1 page 38 for the technical “sketch of the proof”),
we obtain in Ω:

−C∂T
∗

∂t
−∇·(λ∇T ∗) = ∆Pγα

∂

∂T
(ργHγ−ραHα)T ∗+

n∑
j=1

(T (rj , zj , t)−Y (rj , zj , t))δ(r−rj)δ(z−zj)

(115)
with the condition at final time tf :

T ∗(r, z, tf ) = 0 (116)

and the conditions on the boundaries:

−λ∇T ∗ · n = hT ∗ for z = 0
∇T ∗ · n = 0 for z = zmax

∇T ∗ · n = 0 for r = 0
−λ∇T ∗ · n = 4εσT 3T ∗ for r = rmax

(117)

Next, rather than performing a line-search, assuming that the cost function is close to be
quadratic, we use for the step αp the relationship:

αn = −
∑N

j=1

∫ tf
0 [T (rj , zj , t)− Y (rj , zj , t)] θ (rj , zj , t) dt∑N

j=1

∫ tf
0 θ (rj , zj , t)

2 dt
(118)

where θ (rj , zj , t) is the solution of the variation problem computed on the direction δh equal to
the direction of descent, and N is the number of measurement points.

The three systems are solved numerically using a finite difference method and an implicit
scheme. The estimation procedure consists in following Algorithm 10.

Algorithm 10: Estimation procedure for the estimation of the heat transfer coefficient
(i) Defining the initial values of de h0(r, t)
(ii) Solving the direct system

(iii) Calcultating the cost function j(h)
(iv) Verifying the convergence criterion
(v) Solving the adjoint system

(vi) Calculating the gradient vector
(vii) Calculating the vector of descent direction
(viii) Solving the variation problem
(ix) Calculating the descent parameter
(x) Incrementing the vector hp+1(r, t)

(xi) And go back to step (ii)

The inverse problems are ill-posed and numerical solutions depend on the fluctuations
occurring in the measurements. Small fluctuations in the measurements can generate big errors
in the solution. We use the iterative regularization method in which the regularizing condition
is the residual criterion:

j
(
hp

∗
)
≈ δ2 (119)
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where p∗ is the index of the last iteration at which the condition j (h) ≤ δ2 is verified for the
first time, δ2 is the total (integrated) measurement error defined as:

δ2 =
∫ tf

0

N∑
j=1

σ2(rj , zj , t) dt (120)

σ2(rj , zj , t) being the root-mean-square error of the temperature measurements obtained by
smoothing the measured temperature histories. The number n∗ is the regularization parameter
of the method.

9.4. Numerical experiments
In order to verify the method, two materials were analyzed. One was nickel, without
metallurgical transformation and another one was 16MND5 steel. We can find the results of
the analyze in the paper [21]. Here we want to show the theoretical analyzis of the Iterative
Regularization Method based on the conjugate gradient method. For the analyzis, we work with
a heat transfer coefficient which varies along a dome (Figure 18). We want to underline few
problems of the IRM method.

9.4.1. Analyze without noise
At first, in the adjoint problem at the final time, the adjoint variable is equal to zero. So the
residual functional and the descent direction are equal to zero and the estimation cannot be
obtained at this final time. The initial “guess” value is h(r, t) = 1000 W/m2 (see Figure 18).
The obtained coefficient is presented in Figure 19.

Figure 18. Heat transfer coefficient. Figure 19. Estimated heat transfer coefficient.

The first analysis of the different estimates confirms that the errors are all the more big since
we are moving away from the surface (z = 0) and especially when approaching t = tf . Increasing
the estimation domain by 25 to 30 % beyond the effective time is advisable. Figures 20 and 21
show respectively the results in the case of the dome for tf = tf + 30 %, and then truncated to
tf .

9.4.2. Analyzis with noise
In a second phase, we verify that, even in the presence of noise, the convergence of the code
toward an estimation is acceptable. The case of the dome only, for which a noise has been
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Figure 20. Estimated heat transfer coefficient
with time increase.

Figure 21. Estimated heat transfer coefficien-
twith time increase and trunction.

added to the theoretical thermal cycles, is presented here. The disturbance is defined by
the relationship: B = ω × Tmax × ∆max where ω is a random number generator in [-1, +1],
Tmax is the maximum value of the surface temperature and ∆max is the magnitude of the
disturbance. For these numerical tests, we consider Tmax = 880 oC and ∆max = 5 %, and
Yj (rj , zj , t)← Yj (rj , zj , t) + ω × Tmax ×∆max.

Figure 22. Values estimated in the case of the dome with noisy data.

Figure 22 shows the results achieved in the case of the dome in z = 0 mm and for tf = 1s.
When the criterion j(h) is equal to δ2 (iteration 8) the best result is obtained. If the estimation
procedure goes on, the criterion continues to decrease. On the other hand, noise is added on
the estimated values, see Figure 23.

The last analyzed point concerns the number of thermocouples. In fact, if we want to estimate
ten values in the radius direction, we must to have ten thermocouples. So if we don’t have these
ten thermocouples, we must construct an estimation with a parametrization. For example, we
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Figure 23.

use a parametric representation of the heat transfer coefficient:

h(r, t) =
M1∑
i=1

M2∑
j=1

pijηij (r, t) (121)

where pij , i = 1, . . . ,M1, j = 1, . . . ,M2 are approximation parameters and ηij (r, t) are given
basis cubic B-splines. The goal in this case is to estimate the pij parameters with Algorithm 11.
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Algorithm 11: Estimation procedure for the estimation of the parametrized heat transfer
coefficient

(i) Defining the initial values of de p0(r, t)
(ii) Calculating the values of h0(r, t)

(iii) Solving the direct system
(iv) Calcultating the cost function j(h)
(v) Verifying the convergence criterion

(vi) Solving the adjoint system
(vii) Calculating the gradient vector
(viii) Calculating the vector of descent direction
(ix) Solving the variation problem
(x) Calculating the descent parameter γn

(xi) Incrementing the vector pp+1(r, t)
(xii) And go back to step (iii)
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10. Appendix
10.1. Sketch of the demonstration of the adjoint problem for the quenching problem
We recall here the equations of the “direct” modeling that solves S(T, h) = 0:

C ∂T
∂t −∇ · (λ∇T ) = Spc x ∈ Ω, t ∈ I

T = T0 x ∈ Ω, t = 0
λ∇T · n = −h (T − T∞) x ∈ ∂Ω1, t ∈ I
∇T · n = 0 x ∈ ∂Ω2 ∪ Ω3, t ∈ I
λ∇T · n = −εσ

(
T 4 − T 4

∞
)

x ∈ ∂Ω4, t ∈ I

(122)

where Ω = [O, rmax] × [0, zmax], I = [0, tf ], ∂Ω1 = [O, rmax] × (z = 0), ∂Ω2 = [O, rmax] × (z =
zmax), ∂Ω3 = (r = 0)× [0, zmax], and ∂Ω4 = (r = rmax)× [0, zmax].

The “sensitivity” problem (i.e. the direction derivative of the state T in the direction δh here
denoted θ(h; δh) rather than T ′(h; δh)) is defined by:

∂(Cθ)
∂t −∇ · (∇(λθ))−∆Pγα ∂

∂T (ργHγ − ραHα)θ = 0 x ∈ Ω, t ∈ I
θ = 0 x ∈ Ω, t = 0
∇(λθ) · n + hθ + δh(T − T∞) = 0 x ∈ ∂Ω1, t ∈ I
∇θ · n = 0 x ∈ ∂Ω2 ∪ Ω3, t ∈ I
∇(λθ) · n + 4εσT 3θ = 0 x ∈ ∂Ω4, t ∈ I

(123)

The Lagrange function is formely defined as:

L (T, {T ∗, η, γ, ξ,$}, h) = J (T ) +
(
C ∂T

∂t −∇ · (λ∇T )− Spc, T ∗
)
L2(0,T ;L2(Ω))

+ (T − T0, η)L2(Ω) (t = 0)
+ (λ∇T · n + h (T − T∞) , γ)L2(0,T ;L2(∂Ω1))

+ (∇T · n, ξ)L2(0,T ;L2(∂Ω2∪∂Ω3))

+
(
λ∇T · n + εσ

(
T 4 − T 4

∞
)
, $
)
L2(0,T ;L2(∂Ω4))

(124)

The differentiated Lagrange function with respect to h is the direction δh is:

(L ′
h(·), δh) = (J ′(T ), θ)L2(0,T ;L2(Ω))

+
(
∂(Cθ)
∂t −∇ · (∇(λθ))−∆Pγα ∂

∂T (ργHγ − ραHα)θ, T ∗
)
L2(0,T ;L2(Ω))

+ (θ, η)L2(Ω) (t = 0)
+ (∇(λθ) · n + hθ + δh(T − T∞), γ)L2(0,T ;L2(∂Ω1))

+ (∇θ · n, ξ)L2(0,T ;L2(∂Ω2∪∂Ω3))

+
(
∇(λθ) · n + 4εσT 3θ,$

)
L2(0,T ;L2(∂Ω4))

(125)
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We then use the following integrations by parts to express some particular terms:(
∂(Cθ)
∂t , T ∗

)
L2(0,T ;L2(Ω))

=
(
θ,−C ∂T ∗

∂t

)
L2(0,T ;L2(Ω))

+ (Cθ, T ∗)L2(Ω) (t = tf )

(∆(λθ), T ∗)L2(0,T ;L2(Ω)) = (λ∆T ∗, θ)L2(0,T ;L2(Ω))

+ (λT ∗,∇θ · n)L2(0,T ;L2(∂Ω))

+ (∇λ · nT ∗, θ)L2(0,T ;L2(∂Ω))

− (λ∇T ∗ · n, θ)L2(0,T ;L2(∂Ω))

(126)

We bring together similar terms to get:(
L ′
h(T, {T ∗, η, γ, ξ,$}, h), δh

)
= (I) + (II) + (III) + (IV) + (V) (127)

where

(I) :=
(
J ′(T ), θ

)
L2(0,T ;L2(Ω))

(128)

(II) :=
(
−C∂T

∗

∂t
− λ∆T ∗ −∆Pγα

∂

∂T
(ργHγ − ραHα)T ∗, θ

)
L2(0,T ;L2(Ω))

(129)

(III) := (∇λ · nT ∗ − λ∇T ∗ · n, θ)L2(0,T ;L2(∂Ω)) + (∇λ · nγ + hγ, θ)L2(0,T ;L2(∂Ω1))

+ (∇λ · n$, θ)L2(0,T ;L2(∂Ω4)) +
(
4εσT 3$, θ

)
L2(0,T ;L2(∂Ω4))

(130)

(IV) := (λT ∗,∇θ · n)L2(0,T ;L2(∂Ω)) + (λγ,∇θ · n)L2(0,T ;L2(∂Ω1))

+ (ξ,∇θ · n)L2(0,T ;L2(∂Ω2∪∂Ω3)) + (λ$,∇θ · n)L2(0,T ;L2(∂Ω4)) (131)

(V) := (CT ∗, θ)L2(Ω) (t = tf ) (132)

We choose:
(CT ∗, θ)L2(Ω) (t = tf ) =⇒ T ∗(tf ) = 0 (133)

(λ$ + λT ∗,∇θ · n)L2(0,T ;L2(∂Ω4)) = 0 =⇒ $ + T ∗|∂Ω4
= 0 (134)(

∇λ · n$ + 4εσT 3$ +∇λ · nT ∗ − λ∇T ∗ · n, θ
)
L2(0,T ;L2(∂Ω4)

= 0

=⇒ −λ∇T ∗ · n− 4εσT 3T ∗
∣∣
∂Ω4

= 0 (135)

(∇λ · nT ∗ + λ∇T ∗ · n, θ)L2(0,T ;L2(∂Ω2∪∂Ω3)) = 0 =⇒ ∇T ∗ · n|∂Ω2∪∂Ω3
= 0 (136)

(ξ + λT ∗,∇θ · n)L2(0,T ;L2(∂Ω2∪∂Ω3)) = 0 =⇒ ξ + λT ∗|∂Ω2∪∂Ω3
= 0 (137)

(λγ + λT ∗,∇θ · n)L2(0,T ;L2(∂Ω1)) =⇒ γ + T ∗|∂Ω1
= 0 (138)

(γ∇λ · n + hγ +∇λ · nT ∗ − λ∇T ∗ · n, θ)L2(0,T ;L2(∂Ω1)) = 0 =⇒ −λ∇T ∗ · n− hT ∗|∂Ω1
= 0
(139)

Note that we used ∇λ ·n = λ′(T )∇T ·n = 0 in order to perform the simplification in (136).
Note also that the relationship (137) does not bring any “usable” relationship. Next, note that
the relationship (138) has been injected into (139) for the simplification.

The adjoint problem eventually is:
−C ∂T ∗

∂t − λ∆T ∗ −∆Pγα ∂
∂T (ργHγ − ραHα)T ∗ + J ′(T ) = 0 x ∈ Ω, t ∈ I

T ∗ = 0 x ∈ Ω, t = tf
−λ∇T ∗ · n = hT ∗ x ∈ ∂Ω1, t ∈ I
∇T ∗ · n = 0 x ∈ ∂Ω2 ∪ Ω3, t ∈ I
−λ∇T ∗ · n = 4εσT 3T ∗ x ∈ ∂Ω4, t ∈ I

(140)

and the cost gradient is written as:

∇j = − (T − T∞, T ∗)L2(0,T ;L2(∂Ω1)) . (141)
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10.2. Rosenbrock function – GSL BFGS C file from [15]

1 #include <s t d i o . h>
2 #include <g s l / gs l mu l t imin . h>
3
4 /∗Rosenbrock f u n c t i o n f ( x , y)=(x−p [0])ˆ2+ p [ 1 ] ( xˆ2−y ˆ2)ˆ2 ∗/
5 double my f ( const g s l v e c t o r ∗v , void ∗params ){
6 double x , y ;
7 double ∗p = (double ∗) params ;
8 x = g s l v e c t o r g e t (v , 0 ) ;
9 y = g s l v e c t o r g e t (v , 1 ) ;

10 return (x−p [ 0 ] ) ∗ ( x−p [ 0 ] ) + p [ 1 ] ∗ ( x∗x−y )∗ ( x∗x−y ) ;
11 }
12
13 /∗ The g r a d i e n t o f f , d f = ( d f /dx , d f /dy ) . ∗/
14 void my df ( const g s l v e c t o r ∗v , void ∗params , g s l v e c t o r ∗df ){
15 double x , y ;
16 double ∗p = (double ∗) params ;
17 x = g s l v e c t o r g e t (v , 0 ) ;
18 y = g s l v e c t o r g e t (v , 1 ) ;
19 g s l v e c t o r s e t ( df , 0 , 2∗(x−p [0 ] )+4∗p [ 1 ] ∗ x∗( x∗x−y ) ) ;
20 g s l v e c t o r s e t ( df , 1 ,−2∗p [ 1 ] ∗ ( x∗x−y ) ) ;
21 }
22
23 /∗ Compute both f and d f t o g e t h e r . ∗/
24 void my fdf ( const g s l v e c t o r ∗x , void ∗params , double ∗ f , g s l v e c t o r ∗df ){
25 ∗ f = my f (x , params ) ;
26 my df (x , params , df ) ;
27 }
28
29 int main ( void ){
30 s i z e t i t e r = 0 ;
31 int s t a t u s ;
32 const g s l m u l t i m i n f d f m i n i m i z e r t y p e ∗T;
33 g s l m u l t im i n f d f m in im i z e r ∗ s ;
34 double par [ 2 ] = { 1 . 0 , 10 .0 } ;
35 g s l v e c t o r ∗x ;
36 g s l m u l t i m i n f u n c t i o n f d f my func ;
37 my func . n = 2 ;
38 my func . f = &my f ;
39 my func . df = &my df ;
40 my func . f d f = &my fdf ;
41 my func . params = &par ;
42 /∗ S t a r t i n g p o i n t ∗/
43 x = g s l v e c t o r a l l o c ( 2 ) ;
44 g s l v e c t o r s e t (x , 0 , −1.0) ;
45 g s l v e c t o r s e t (x , 1 , 1 . 0 ) ;
46 T = g s l m u l t i m i n f d f m i n i m i z e r v e c t o r b f g s 2 ;
47 s = g s l m u l t i m i n f d f m i n i m i z e r a l l o c (T, 2 ) ;
48 g s l m u l t i m i n f d f m i n i m i z e r s e t ( s , &my func , x , 1 . e−6, 1e−4);
49
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50 do {
51 i t e r ++;
52 s t a t u s = g s l m u l t i m i n f d f m i n i m i z e r i t e r a t e ( s ) ;
53 i f ( s t a t u s ) break ;
54 s t a t u s = g s l m u l t i m i n t e s t g r a d i e n t ( s−>gradient , 1e−3);
55 i f ( s t a t u s == GSL SUCCESS) p r i n t f ( ”Minimum found at :\n” ) ;
56 p r i n t f ( ”%5d %.5 f %.5 f %10.5 f \n” , i t e r ,
57 g s l v e c t o r g e t ( s−>x , 0 ) ,
58 g s l v e c t o r g e t ( s−>x , 1 ) ,
59 s−>f ) ;
60 }
61 while ( s t a t u s == GSL CONTINUE && i t e r < 1 0 0 ) ;
62 g s l m u l t i m i n f d f m i n i m i z e r f r e e ( s ) ;
63 g s l v e c t o r f r e e ( x ) ;
64 return 0 ;
65 }
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