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Abstract. The aim of this lecture is to present a methodolfagyenhancing the estimation of
parameters in the case on Non-Linear Parametem&stin problem (NLPE). After some
definitions and vocabulary precisions, useful totasinvestigate NLPE problems will be
introduced. Different techniques will be proposed tracking for instance the true degree of
freedom of a given estimation problem (CorrelatiBank of sensitivity matrix, SVD, ..) and
enhancing the estimation of particular parametgraidging either Reduced model or Model
with fixed parameters. The reduced model can bdaseld or biased. We will present a
technique allowing to check whether a model isdidagr not. We will show how it is possible
to use the residuals plot for evaluating the syatenerror on the parameters estimated through
a biased model. Different examples in thermal niegy will be presented for illustrating all
these points.

List of acronyms:

- NLPE: Non Linear Parameter Estimation
- PEP: Parameter Estimation Problem

- MBM : Model-Based Metrology

- SVD: Singular Value Decomposition

- OLS: Ordinary Least Squares

- SNR:  Signal-to-Noise Ratio
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1.Foreword

The Non Linear Parameter Estimation problem has blee subject of numerous lectures during the
past METTI schools (see [1] Thermal Measurementslamerse Techniques, edited by Helcio R.B.
Orlande, Olivier Fudym, Denis Maillet, Renato M.t@g Series: Heat Transfer, CRC Press, 770 p,
2011). This text aims first at gathering in a swytithhway the basic notions and tools that can leel us
practically to analyse NLPE problems in engineeand science.

At the same time, it provides new insights aboatttols available to:
(i) enhance our knowledge about parameter idehiiiia in a given problem (which parameters can
be really estimated in a given experiment and wpigtision can be achieved ?),

(i) track the origin of pitfalls in PEP,
(i) offer new perspectives for enhancing the gyalf MBM in a general way.
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2. Some definitions and vocabulary precisions

Performances of contemporary metrology, that iteria characterization, are not the result of
the enhancement of the technology of measuringuim&nts only. They are rather the consequence of
the significant progresses accomplished in thel faélinverse Problems solving, especially whes it i
based on a very large amount of data. These angdprb by new tools and by the facilities now
available for numerical acquisition of experimensagnals (CCD detectors allowing for 2D/3D
numerical data and high frequency time resolutiddpderstanding the conditions for which
parameters can be estimated from the model/measatenpair constitutes also a key point for
reaching a high quality estimation.

Measuring a physical quantit,gij requires a specific experiment allowing for thisaqtity to
"express itself as much as possible" (notion ok#ieity). This experiment requires_a systemito
which inputsu(t) are applied (stimuli) and whose outpwtét ) are collected (observationg).is the

explanatoryvariable: it corresponds to time for a purely dyiwal experiment. A modeM is
required to mathematically express the dependericéhed system's response with respect to

quantity$; and to other additional parametefis (k % j) : Yoo = 1(t,B,U). Many candidates may

exist for functiony - depending on the degree of complexity reachednfodelling the physical
process - which may exhibit different mathematstalicture — depending for example on the type of
method used to solve the model equations. Oncentbdel is established, the physical quantities in
vector f# acquire the status of model paramet@tss model (called knowledgeaodel if it is derived
from physical laws and/or conservation principles)initially established in a_diredormulation.
Knowing inputsu(t ) and the value taken by paramejr the output(s) can be predicted.

The linear or non linear character of the modslteebe determined:

= A Linear model with respect to its Inputs (LI sttuie) is such as:

Yimo(t,B,0qUy +ouy )= oy (1, 8,U; )+ oy (t,5,U,) 1)

= A Linear model with respect to its parameters (trtBcture) is such as:

Ymo(tioufy +0oB,,Uu) = oy (18U )+ oy 1,8 ,U) ()

In a metrological problem referred here as MBMsabations of the outputs will be provided
by measurements. The inverse probleosnsists in making the direct problem work bacldsawith

the objective of getting (extractingj from y.. (t,5,u) for given inputs and observations. This is
an identification procesd he difficulty stems here from two points:

0] Measurementsy are subjected to random perturbations (intrinsiseag ) which in turn

will generate perturbed estimated valufs of £, even if the model is perfect: this
constitutes an estimation problem.

(ii) the mathematical model may not correspond exactlyhé reality of the experiment.
Measuring the value off in such a condition leads to a biased estimation
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Bias= E(ﬁ)—ﬂ"“e: this corresponds to an identification problem ighhmodel 5 to
use ?) associated to an estimation problem (hastimate/ for a given model?).

The estimation/identification process basicallyderio make the model match the data (or the
contrary). This is made by using some mathematioachinery" aiming at reducing some gap
(distance or norm)

F(B)=Y ~ Yol LBU) 3)

One of the obvious goal of NLPE studies is thebdamble to assess the performed estimation

through the calculation of the variancé¢ ) of the estimators of the different parameterghéf
probabilistic distribution law of the noise is knewthis allows to give the order of magnitude of
confidence bound$or the estimates. NLPE problems require the usdlan Linear statistics for
studying such properties of the estimates.

Because of the two above-mentioned drawbacks dfiMiBe estimated or measured value of a

parameterﬁj will be considered as "good" if it is not biaseddaif its variance is minimum.

Quantifying the bias and variance is also helpdutétermine which one of two rival experiments is
the most appropriate for measuring the searchednper (Optimal design). In case of multiple
parameters (vectofy ) and NLPE problems, it is also helpful to deterenimhich components of

vector f are correctly estimated in a given experiment.

3. Useful tools to investigate NLPE problems
3.1. Sensitivities

The central role of the sensitivity matrix in PE&sIbeen shown in the preceding lecture (Lecture 2).
In the case of a single output signalwith m sampling points for the explanatory variablend for
a model involvingn parameters, the sensitivity matrix(imx n) defined as

S . = aymo (ti ;Bnom)

)
95

As the problem is NL, the sensitivity matrix hadyoa local meaning. It is calculated for a given
nominal parameter vect@r™ .

If the model has a LP structure, this means tras#nsitivity matrix is independent frof. It can be
expressed as (Lecture 2)

(4)

t,B for k#j

Vool L8)=D S, (1, (5)

e . . - th < th R
The sensitivity coeff|C|enSj (t) to the | paramete;‘;’j corresponds to thg¢" column of matrixS.

The primary way of getting information about theentifiability of the different parameters is to
analyse and compare the sensitivity coefficientsutph graphical observations. This is possible only

when considering reduced sensitivity coefficien&f (sometimes called "scaled" sensitivity
coefficients) because the parameters of a modebtibave in general the same units.
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0o (5 ™) _ Oy (™M)

Sj = ﬂJS :ﬂj aﬁ] 6(Inﬁj)

(6)
t,p pour k# j t,p pour K# j

or

*

S =SR (7)
with R the square diagonal matrix whose diagonal is caepof the componen]&j of B.

TOOL Nrl: A superimposed plot of reduced sensitiviy coefficients S’;( t) gives a first idea

about the most influential parameter for a given mdel (largest magnitude) and about possible
correlations (sensitivity coefficients following tle same evolution).

Example: Measurement of thermophysical propertigsamating layer through the Flash method
using thermal contrast principle (Number of pararen = 2).

e,
N N S
— |3 o N
b, PR T, % , ] @ [T,
.
— ) — %
, s
ExperimentA experiment B

Figure 1 : Basis of the “ thermal contrast” method

The thermal contrast method requires the repetiiotwo “flash” experimenté& andB (Figure 1).

The first one is operated on the substrate onlyefin2)) whose thermophysical properties are known.
The second experiment is performed on the two-&yexample (index (1)/(2)). In both cases, one
records the rear face temperature evolutions. Tleentograms so obtained are normalized with

respect to their maximum and the difference ofdbaled thermograms$, and T, is computed to

produce the thermal contrast thermogram. Thisrlédta function of the thermophysical properties of
the coating (1) and of the substrate (2) through parameters:

K, :i\/E andK, = /—jlplcl
&\Va 4P,

The observable (contrast curve) and the reducesitséty coefficients toK; and K, are plotted in

Figure 2. They show (i) that the sensitivities have the samder of magnitude as the signal (a good
thing) but unfortunately (ii) these sensitivitiggpaar to be totally correlated (a bad thing). is tase,

this simple plot shows that sensitivities kg and K, are likely proportional and therefore that the

identifiability of both parameters is impossiblehi§ example will be more thoroughly modelled and
studied in section 4 of this lecture.
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Figure 2 : Reduced sensitivity coefficients fdf =0.1 and K, =1.36

3.2. Variance/Correlation matrix

To go further and to investigate more deeply th@ REe statistics of the estimator must be analysed
This can be made when (i) an estimator has beeseohighat is, a method to derive estimated values
for the different parameters from the experimesighal), and (ii) the statistical properties ofses

are known (according to experimentally founded olzgens).

Considering the noise on the experimental signal,agsume it unbiased (perfect measurement with

ideal sensor), having additive character and aghitity law with 0 mean and constant variancé
which correspond to

Yi =Ymo (i B) + & E(e)=0 ; cov () = 0’1, (8)
wherel, is the identity matrix of sizen (number of measurement points).

According to Beck's taxonomy (see [2] p. 134 andptér VII), these assumptions correspond to the
set "1111—11" with the following additional preass: nonstochastic independent explanatory
variable (time), and no prior information for therameters.

The OLS estimatofiOLS minimizes the least square sum, which gives,Her ' equation

Jors (B) = 1T (@B U (t:8.u) = [r (t:B8.1)][* = (Vi = Yo (t: B} (9)

i=1
where
Frt;B.U)=y —Yn(t:B,u) (10)
are defined as the residuals.

The estimator is produced thanks to a minimizapimtess i.e. when th8¢quations

0os(tBos)0B =0 (j=1..n) (11)

are verified. The OLS estimator can be proved wsgadawhich means that the statistical mean of
repeated estimated valupsis equal to the exact parameter vedtor
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Lecture 2 describes the behaviour of such an esimfiar a LP model where the calculations can be
fully completed.

In the case of a NL structure, the minimum is fotimugh an iterative process using local linearity
(Gauss-Newton algorithm basically, see [3]) of fibren:

~ ket ~ -1 ~
S0 = BEA+(SMTSM) T ST v y(BSD) (12)
(See the corresponding relation in Lecture 2).

The iterative process (12) requires to computeiriierse of matrixS’ S. Therefore, this latter must
offer good enough conditioning through repeatedaitens, which is possible if the sensitivity
coefficients are non zero and linearly independéfithout any specialized and dedicated tools, this

iterative process can be stopped when the residoais r 't is of the same order of magnitude as the
measurement noise, that is when:

‘]OLS(B(k) )= mg? (13)

At convergence, the standard deviation of the emade for the estimated parameters can be
evaluated thanks to the (symmetricagtimated covariance matrix of the estimator. It characesiz
the precision that can be reached on the estinzdeaimeters (its inverse is sometimes named the
precision matrix) and depends on the statisticaliiaptions that can be made on the data. In view of
an OLS estimator, this matrix is

var(B,) cov(B,.B,) - cov(B,.p,)

cov(B,.B3,) var(B,) cov(f,.B,)

cov (B) = =2 ST B s@)t 14

cov(B.B,) cov(B,.B,) - var(f,)

It depends obviously on the level of the SignaNtmise Ratio (SNR) and brings into play the inverse

of the S' S matrix, already pointed as a decisive operatigraftroubleless estimation. Matrig' S,

which is also called the Fisher's information matsith assumptions (8) and under the additional
hypothesis of a Gaussian noise, depends on thebemumf measurement points and of their
distribution along the estimation interval, whidly, the way, may be optimised if necessary [2]. The

diagonal coefficients are the squares of the esticdhstandard deviation of each paramet%_r. They

quantify the error that one can expect throughriseestimation. This is true if the assumptionsenad
for the noise are consistent with the experimehe problem being NLP, retrieving these optimum
bounds through a statistical analysis may dependhenstarting guesses made to initialize the
estimation algorithm. This matrix can also be afidator for detecting possible correlations between
the parameters. An estimation of the correlatiotrimé calculated according to

1 p - S
" Pi _ _cov(4,Bj)
cor(B)=|p; 1 ---|allterms being the result g, =————=—=
DL 62 g2 (15)
B Bj
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The correlation coefficients (off-diagonal termg)rrespond to a quantification of the correlation
existing between the two estimations of paramef&rsand 3; and, more precisely, between their

errors. They vary between -1 and 1. They are glgbahtities (in some sense, “averaged” over the
considered identification interval, the whol@, [ here). Gallant [4] suggested that difficulty in
computation may be encountered when the commonitbgaof the ratio of the largest to smallest
eigenvalues ofor exceeds one-half the number of significant decitigits used by the computer.

A more practical hybrid matrix representatidoor can be constructed. It gathers the diagonal terms
of the covariance matrix (more precisely their square rootpmalized by the value of the estimated
parameter) and the off-diagonal terms of¢berelation matrix.

War(z)/ B 0

Vecor (B) = je Jvar (E’J )/ B, (16)

TOOL Nr2: Matrix  Vcor (B) gives a quantitative point of view about the iderfiability of the

parameters. The diagonal gives a kind of measuremefminimal bound!) of the error made on
the estimated parameters (due to the sole stochastiharacter of the noise, supposed unbiased).
The off-diagonal terms (correlation coefficients) ee generally of poor interest because of their
too global character. Values very close ta1 may explain very large variances (errors) on the
parameters through a correlation effect.

NB: Another matrix,rcov ([}) defined in equation (52b) further on, is also vesgful for assessing

the quality of a potential inversion. Its diagooakfficients are the squares of those\édor (fi) , but
its off-diagonal coefficients are different.

Example: Here are twd_, matrix taken from [1]. They were obtained for game NLPE problems

and for the same given set of nominal values ofrike3 parameters but considering two different
observable#\ andB (two different locations of the temperature meaments).

0.027 Q994 — 099 0.0002 -038 063
Veor,(B)=| O 0.0066 - 098 Veor,(B)=| O  0.0008 -0 93
0 0 0.029 0 0 0.0042

3. ObservabléA 4, Observable8

In the case of observabke, a high variance (nearly 3% for a one standardatiem error !) is
observed for parameterg, and f, and explained by a high degree of correlation betwthem

(p13 =0.999). Observablé can clearly not be used for estimating these paters. On the contrary,

observableB offers good identifiability for all parameters (glnvariances) and does not show any
risk of correlations.

3.3. lll-conditioned PEP and strategies for tracking érdegrees of freedom
Lecture 4: Non linear parameter estimation prolslenpage
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3.3.1.Pathological example of ill-conditioning resultifigm correlated parameters.

The good identifiability of parameters can be tedao the local convexity of the cost functional
JOLS(B) in the hyper-parameter space. In case of corceladeameters, one obvious consequence is

that many possible local minima will exist and madstimation algorithms fail. The discussion that
follows here is taken from an example of inverg@region in a case of coupled radiative-conductive
heat transfer [5]. The thermal characterizatiora gfemi-transparent material implies at least three

basic parameters: the thermal diffusion charadierisme t, = 2/a, the dimensionless optical
thicknessz, and the dimensionless Planck numidér(explanations to follow in section 4.1) and so

B =[td ,rO,N]T. The estimation of the three parameters in thi$ Nitoblem may be difficult for

some range of values of parametegsand N where matrichor(ﬁ') shows that a high degree of

correlation between these two parameters existgreds the value of parametéf remains
unconcerned.

A plot of the OLS criteriumJq, ¢ (B) in the 2D spacéz,,N) for a givent, value and a given noise
o (Figure 3) makes the consequence of such bad conditioniitg glear.

Optical thicknes 7,

Planck numbeiN

Figure 3 : Level sets fold,, s (B) in the(z,,N) parameter space

All level sets draw a very narrow valley orientddra a line which graphically corresponds to the
relation N [J2z,. A 3D plot would show that the central line ofstvialley does really correspond to a
descending slope and hence that no real minimabeaiound. The level set indicated in the figure
corresponds to exacthyd, ¢ =0.07= me?. Trying to make the iterative optimization algbrit

working below this limit for the stopping criteriaa useless. In other words, the larger the naoise,
higher the stopping level-set should be.

In the present case, this will not change the iflability criterion. Depending on the initial gusss
for the parameters, the deterministic algorithml iild different minima and different parameter
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estimatesTable 1 : Example of local minima foun&, case Nr 1,2,3). The big dotskigure 3 and
the local minimum Nr 4 given ifable 4 have been obtained with a stochastic algorithrm{®&ited
Annealing) proving that when the problem is ill-ditioned, stochastic algorithms are of little hédp
a correct estimation process (as it is usuallieletl).

Such behavior is more likely the result of a modhich is not suitable with respect to the physics
involved. In the present case, it is interestingate in Table 1 that all local minima that wererid

follows the relationN (z, +1)/z, = Constan!.

In fact, an approximate modeling for conductiveiaside transfer in optically thin media can be
shown to be more pertinent and more parsimonidusiakes naturally arise the notion of radiative

resistance R which can be expressed a8 = N(r0 +l)/1'0. This resistance is the appropriate
parameter in this limiting behavior and prove ttere is no way to identify independently and N
(Many different pair are able to produce the saaiaevfor R )

Local Minima
Parameter
cor\;e%(r)l(rents (found using either deterministic
P or stochastic algorithms)

N°1 N°2 N°3 IN°4

a (10' me/s) 5.2 49 | 585| 4.8
N 06 | 074| 0.16] 0.82
To 038 | 05| 0.0/ | 056

Rr=¥(To+1) 218 | 222 | 226 | 2.28
0

Table 1 :Example of local minima four‘iﬂ

TOOL Nr3: For an independent noise with known stan@rd deviation and for a given model, it
may be interesting to look at the level-set represéation of the optimisation criterion in
appropriate cut-planes (for given pair of parametes if n > 3), and compare it with the minimum

achievable criterium given by J = mp®, wherem is the number of measurements.
3.3.2.Rank of the sensitivity matrix.

We focus here on the scaled (or reduced) sengitivétrix (6 and 7). Thisn§, n) matrix is composed
of n column vectors, the reduced sensitivity coeffits".éh;

s=[s s . s with S| :ﬂj% (17)
i

t,S fork#j
and wherd is a column vector composed by all theimes of measurement:
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t=[tt —t] (18)

Thesen column vectorsS’; are in fact just the components of a sen (Viactorsé; in am-dimension

vector space. One can recall here that this seectbrz = {§I , §; ,...,§;} is linearly independent
only if:

n
D> a;8;=0 = a, =0 forany j with 1<j<n (19)
i=1

This means that a linear combination of all theseectors is equal to zero only if all its coeffiaie
(the a;'s here) are equal to zero. If it is not the cagstemz is linearly dependent. Let us note that

the presence of a null vector in tieet of vectors makes it linearly dependent: such a null vector
§J would correspond here to a parameter that hasfiwence on the variation of the model output,

(the very specific case of a parame,ﬂ?requal to zero is discarded here).

So, if the set is dependent, one has to removeveci®r §; from the original sek and try again to
test the independence condition (19) with the remaining vectors. This can be made with the
possible choices for the vectéﬁ that is removed from sét If one finds one such independent set of

n-1 vectors, the rank of the setnil. In the opposite case, one has to test the amnce witm-2
vectors and so on... The rankf Z is the larger number of vectors for an independabtet ot that
can be formed with the original vectors.

In order to illustrate this, we will assume timat= n =2 and we assume that the model is linear.
This corresponds to two observations of a modét wito parameter$; andg, . This leads to the set

of two sensitivity vectors: = {§;, §;} from which the situations shown in Figure 4 cae b
considered:

*

S (t)=S,, S;(t)=S,

Figure 4 : Reduced sensitivity vectors:
a - independent sensitivities £ n = 2) b - dependent sensitivities c- nearly dependent sensitivities
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Casea corresponds to linearly independent sensitivitgfficients: the rank ok is equal to 2. It is
also the rank of the reduced sensitivity ma@ix and hence the rank of the sensitivity matrix, sinc
S*=S R (where R is the square diagonal matrix with two diagonakfticients f, and
B, according to equation 7). One can say that thereagens of the model output provides two
degrees of freedom since two parameters can beatst.

Caseb demonstrates a pathological nature of the seitgittoefficients: they are proportional, with
§2 =2 §1 (one sees that the choicg= 2 anda, = -1 in (19) allows to show that the set of vesto

is not independent) and estimation of both coedfits is not possible anymore. In this case, thk ran
of S”and hence the rank &isr = 1 and the determinant of the information ma®ixS is equal to
zero. This means thahe explicit value ofiSOLS, in the linear case and with a noise of spherical
covariance matrix, which requires an inversionhi$ information matrix is not possible. The same is
true for the calculation of the variance-covariameatrix of BOLS the observations of the model

output provide only one degree of freedom and amg parameter can be estimated, if the value of
the other one is known.

Casec lies in between: the two reduced sensitivity vectre nearly proportionzﬁg =2 §1 . Even if

the mathematical rank is still equal to 2 (the pras equality is not an exact one) , one guess#s th
the number of degrees of freedom is somewhere ketwae and two and a more refined statistical
analysis, taking into account the noise level mitieasurements, has to be implemented.

Let us note that it is possible to test the presesfctwo nearly proportional vectors in sgtin the
very general case, with of course a number of perars less or equal to the number of observations

(n < m), by testing the assumpticé; = Cyj §] =or =0, wherec, ; is a proportionality constant: a

plot of S, (t;) as a function oiS} (t;), for them common valueg; of the independent variable where
observations are available (parametric representafi a curve) shows whether the plots gather en th
S (t) =c,; S, (t)line or not.

As an example of this type of representatiigure 5 illustrates the case taken from [1] of a 1D rear
face transient response of a low insulating sarg@aductivity A) sandwiched between two very thin
copper layers. The knowledge model (RDM1 in [1Ruases pure thermal resistance for the insulating
layer and pure known capacities for the copperrtayEhe front face is stimulated by a Dirac pulke o
energyQ (J.m?) and with a heat loss coefficigm(W.m? K™) equal on its two faces: the sensitivities
to the three paramete@ A andh seem to be qualitatively independent, but onljeims of two by

two linear dependencies: this does not mean tlatahk of the reduced sensitivity matrix (if only
these three parameters are looked for) is equtiree, because three by three linear dependencies
may be possible.

This aspect, a possible dependency between the semsitivity coefficients, is studied kigure 6,

for the same experimental design: a linear comiinabf the formS S CZS =or =0 is
looked for between the three sensitivity coeffitsetior 5, = Q, 5= h and; = 1) anda linear OLS
estimation is made using th®; (t,)'s and theS,(t,)'s as the new independent variables and the
S, (t)'s as new observations. The correspondBidt;) valuesare plotted as a function dhe

recalculated values (optimal linear combination) of the corresponding
Lecture 4: Non linear parameter estimation prolslenpagel 3
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modelg, S (1) + ¢ S (,9: since the corresponding curve is very close ®fttst bisecting
line, aqualitative3 by 3 possible linear dependency is detected.

However one can wonder how close it should be fmeihe the estimation of the three parameters: this
has to be confirmed by a calculation of the covamaor V_, matrix of the corresponding
estimations, as explained in 3.2.

So, we will focus here on non linear parametemngsion problems where local linearization concepts
as well as a Singular Value Decomposition of madeserve to be introduced.

@ Optimal Linear Combination

0.3k between all 3 sensitivities  [\-...._#F....]
Linear Regression r=0.99 |
025 ST S S ] o S U e poaer T

T S Ry ——

75 T N~ A NN WO W—

Sensitivity (A.U.)

........... i L 1) E |
0 0.1 0.2 0.3 0.4 0.5 0 005 01 015 02 0256 03 035

Sensitivity (A.U.)

Figure 6 : Evidence of Linear Combination

Figure 5 : Sensitivities plotted by pairs between all three parameters

3.3.3.Generalization : Use of SVD to track PEP degredsaddom

It has been shown previously (see Lecture 2) theguestion of identifiability of the parametersaof
model relies on the condition number of the infom'rJramatrix(St S). However a systematic tool for

tracking down hidden correlations is lacking. Sackool will be presented now to circumvent this
problem. Ultimately it will allow determining whiclparameters it is wise to exclude from the
estimation (metrological) process, in order tolgeter estimates of the remaining ones.

In the next section two sequential steps will bespnted.

First, in order to use all the tools available lioear estimation (see Lecture 2) on which theatiee
OLS estimation (12) is based, the differentsl,, of the model will be calculated around a reference

point 8™, that is a nominal value of the parameter veatomfhich a sensitivity analysis has been
carried out (see previous sections) and the ofigitaeameter vecto8 will be made dimensionless

nom

nom

using the components g8
constructed.

. a reduced parameter vectorwith a well-defined norm will be

Second, Singular Value Decomposition (SVD) willd@plied to the reduced sensitivity matrix of the
"tangent” local linearized model aroun@™", the ultimate goal being the determination the
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parameters that can be estimated in a problem mvibhiginal parameters (witm > r ), when the
levels of the measurement noise and measurememitondg are known (SNR).

The non linear modey,.(t,f )is still considered here witm available measurements.

3.3.3.1. Parameterizing a non-linear parameter estimatiomlgem around the
nominal values of its parameters

The following one-output non linear model is coleset here:
Ymo =177 (t; B) (20)

where B is the column vector of the parameters, of sizen(1), y,, its (scalar) output at timeand

n is a scalar function oh. If m observations ofy,,, are available for timef, one can use a column
vector notation:

Ymo =0 (t;8) (21)

wherey ., is the output vector of the model, of dimensioms 1) andt the column vector of thm
times of observationg (.) is a vector function whose values belondrfb

Since the model is non linear, it will be writtender a differential form, in the neighbourhood of a
reference pointB™" , which corresponds to mominal value, where a sensitivity study has been
already implemented . This allows to use a loceddrity :

dy =S (t:g°™)dB with s, = 270 (22)

ij= 6,31

t,B fork#j

Let us note that in the notatiody ., the column vectot of the measurement times has been
"frozen". Sis the sensitivity matrix.

s=[s; s, -+ s,] with sj:M

23
) (23)

t,B for k#j

In (22), the column vectody ., has a norm, because all its components have the same physical
unit. However, such is not the case for column aedi , which is only a column matrix composed
of n parameters whose physical dimensions are not satlysthe samedp, is a very small variation

nom

in the neighbourhood of5"" , which can be a thermal conductivify. dS, a very small variation

nom

aroundB;°" , which can be a volumetric heat capagityand so on ...

So dp is not really a vector belonging to any vectorcgpaf dimensiom, but a simple collection of
n parameters.
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In order to transform it into a real vector, a nafimation of all its elements is necessary. The
components of "™ will be used for that purpose. A new dimensionjesmsametex is introduced.

Its components are defined by:

X; =In (,H,- / :Bjnom) (24)
And its nominal value is equal to zero:

x*"=0=[0 0 - 0] (25)

nom

In the neighbourhood of8™", each component of is equal to the relative variation of the
corresponding component @ around its nominal value (first order series exgam):

x; =In (8,1 gm) =i £1+ 2 _n'fninomJ S (26)
B; B;
The new parameter vectotis written the following way :
x =1 (Rodw B) = Regn (8~ ) @7)
with :
rom o - 0
Rem=| & # ° (28)
0 0 .. pgor
With this definition, the differentiadx of x is the logarithmic differential o3 :
dx =[dx, dx, - dx,|T with dx, =%:% =din(g,) (29)
i i

nom

Let us note that the very last equality is onlyid/ah the neighbourhood of8™" . It can also be

written in a column vector notation :
dx =R.> dB=R™dB (30)

whereR is the square diagonal matrix whose diagonal mpmsed of the components @, in the

nom

same way as (28) for the definition Bf,,,, starting fromp

Equation (22) is rewritten in order to mallex appear :
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dy,, =S*dx with  S*=S R, (31 a-b)

S* is the reduced sensitivity matrix calculated gF" , see (17, 23).

So, dy,, is a column vector belonging tR™ (it can be made truly dimensionless by a division
by”n (t;B“"m)” but it is not necessary here) addk is a true column vector belonging ®"™
because its norm can be defined.

3.3.3.2. Reminder of the Singular Value Decomposition daangular matrix

Any rectangular matrix (called here) with real coefficients and of dimensions ) with m > n,
can be written under the form :

K =UW VT, thatis K = U VT (32)

This expression is sometimes called "lean" singdésmomposition or "economical" SVD and involves

- U, an orthogonal matrix of dimensions,(n), : its column vectors (thieft singular vectors oK)
have a unit norm and are orthogonal by paitd"U =1, where | is the identity matrix of
dimensiom. Its columns are composed of the finstigenvectord)y, ordered according to decreasing
values of the eigenvalues of matrik K" . Let us note that, in the general cddd)" # -

-V, a square orthogonal matrix of dimensionsr(), : V V' =V'V =1_. Its column vectors (the
right singular vectors oK), are then eigenvector®/,, ordered according to decreasing eigenvalues, of
matrix K™K :

- W, a square diagonal matrix of dimensions (), that contains tha so-calledsingular values of
matrix K , ordered according to decreasing valueg :=w, =--- =W, . The singular values of

matrix K are defined as the square roots of the eigenvalestrix K'K . If matrix K is square
and symmetric, the eigenvalues and the singularegabfK are the same.

3.3.3.3. Singular Value Decomposition of the scaled seiisititnatrix

This singular value decomposition can be implengkfie any matrixK .
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A double change of basis, in the measurements dowrmad in the parameter domain, using the
matrices of the lefy and rightV, in the SVD of S* written forK = S* yields:

S*=UW VT’ (33)

Matrix V is used as a (square) change of matrix basistarahsforms the differential of the reduced
parameter vectodx into a new differential vectodp , wherep can be called the diagonal parameter

vector, of dimensiona( 1).

Matrix U allows to change the differential observation wealy ., of dimensionsf, 1) into a

differential vectordz,,, of smallerlength wherez,,, can be called the diagonal observation vector, of
dimensionsit, 1).

dy ., =U dz_, and dx =V dp (34 a,b)

Let us note here that the reduction of the lendtithe observation vectom{ observations for
dy .., and onlyn components imz, stems from the fact that tife-n) singular eigenvectons, not

present in matriXJ corresponds to null singular valueg(for k > n).

Use of equations (32) and (33) to (34), togethéh wie propertyd’U =V 'V =1, allows to get the
equivalent of the differential model (31a) in trmublle transformed space:

dz,,, =W dp (35)

This equation corresponds to a diagonalizatiorhefrhodel inR", and one gets then, component by
component:

1

dp, = — dz, « for k=12,-,n (36)
W, ’
Combining (34a, b) and (35) yields:
dx =VW U dy,, =S dy,, (37)

whereS =V W U is the pseudo-inverse, or inverse of Moore-Penrmisthe scaled (rectangular)
sensitivity matrixS* .

Combination of the preceding equations leads &laionship betweedf anddy ,:

dB = Ry V W *UT dy o (38)

and an integration can be implemented to give ¢letionship between the diagonal and original sets
of parameters in a column vector form:
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p=V'x=V'in (R,;jm [3):VT R ([3 - ﬁ”"m) because p™™ =V'x™"=0 (39)

The transformed observation vector can be expressed
Zio = UT (Yo = Yo (B™™)) =W p because Zpe' =W p™" =0  (40)
Combining (39) and (40) yields:

P =V'in (Rr:c}m B):W_lUT ( mo ~ Ymo (Bnom)) = B = Rnom exp (V wuT ( mo ~ ¥Ymo (Bnom)))

(41)

nom

An approximation of this expression in the neighthood of 8™ is available:

B = Rnom [1 +V W_lUT (ymo “Ymo (ﬁnom))] = ﬁnom + Rnomv W_lUT ( mo ~ ¥ mo (ﬁnom)) (42)

wherel is the column vector of lengthwhose coefficients are equal to unity.
3.3.3.4. Non linear ordinary least square estimator and SVD

It is interesting to compare diagonal equation B8t shows the interest of an inversion in
the left and right singular spaces with the OLSnesstor (12) of parametef. So, if the first order

approximation in the neighbourhood Bf°" is considered, the difference between measurenaenits

model outputs can be expressed withrdsdualvector defined in (10), arg, the linearized form of
this difference vector:

FB)=Y =~ Yme(B)= 1y (B) =Y = Yo (B™) - S (B™") (B~ B™")  (43)

The least squares sudg,s can be written as a quadratic fordn’, using the fact thalg s = Jos"
(scalar) :

IB) =" BB =I B =y = Yo B™™) [y = Yo (B™™)

+(B - B°™)TST(BO™)S(B™™) (B - B™)-2(B - B™™)ST(B°™)y - ymo (B™™))
(a4)

When the minimum is reached, one gets:

W _
dB

which leads to an approximation of the OLS estimato

= ST(B™™)S(B™") (B - ™) =ST(B°™)y ~ Vno (B™™)) (45)

B - B =(ST(8°™)S(8°™) 7 ST(B™™)y -y (B™) (46)
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This is exactly the same equation as the iteratlgerithm (12), with = B&® and g™ = L), .

One shows, using (31b) and (33) :
(ST(Bnom)S(Bnom ))_lST(Bnom) — Rnom \YAYY, -1 UT (47)

The least square estimator (46), with the diagpashmetep and the experimental diagonal sigmal
in their new bases, can be written thanks to (47) :

p=W=z withz =U"(y -y, (B"™) (48a, b)

Equation (48a) is diagonal. Use of (46) and (40vjates a new expression for the OLS estimator of
B:

B=R™(L+V WU (y -y (B™") (49)
This expression is the same as relationship (4&)lthks B andy ., (B): these corresponding two
values are simply replaced by the linearized OliBnesor B and by measurementgespectively.

The linearized OLS estimator of the reduced paramegctorX stems directly from (49):

g =(sT g™y s (8™™) ST (B™) (y ~yme (B™™)) (50)

3.3.3.5. Mean quadratic estimation error and singular values

With the noise properties defined in (8), the vacecovariance of the linearized OLS
estimatorB given by equation (46), can be written thanks3tthj and (33) :

cov(B) = o2 (ST (B™™)S(B™™)) " = 0% (R, S*" S*R2E )™

(51)
= 02 Ry (S*7 S*) ™Ry = 02 Rygn VW VT R,

nom

nom

This expression is valid if the difference betweﬁnand B is small: it is always the case near

convergence of algorithm (12) whef°™ can be redefined ag™™ = B and with 8 = B

The expression of the variance-covariance matrix of R . 8 becomes:

cov(X) =R cov(B) (R,;jm )T =gV W32V’ (52a)

The first relationship in equation (52a) allows dalculate the reduced covariance matrixﬁ)f

rcov (i3) , whose diagonal coefficients are the reduced vaesuof the estimators of each parameter,
using the nominal values of the parameters asngrhdctors:
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U B2 cov (B BB B™) cov (B BB Br™)
rcov(B) = cov(X) = % /(’Bnom) N =o? (S*TS* )_1
Symmetric ' a N Bromy?
) (52b)
where o is the standard deviation g8,. The square roots of the diagonal terms of thigrima

B
g, / G°", can be considered as a measure of the relative reade for each parameter and caused

by presence of noise in the measuremegnts

It is very interesting to calculate the trace o$ tmatrix, which is equal to the sum of the varesof
the different components of :

cov(x) Ei a (aﬁ]/ j“"m)z

=1

HMB

n n n (53)
- g(aﬁ,-/ﬂ:om)z:azTr(vw—zw)=z v uv

j=1

=~
1l
ey

whered is the standard deviation of the estimate of redymametex; and g;; the corresponding

n
one for 4. Since the right singular vectors have a unit e | * = D" Vi =1), this last equation
i=1
becomes :

Tr(cov (%)) = Z(Jﬂj 1 g ) =02 > = (54)

2
k=1 W

[y

In order to get a good estimation (in percentsalbthe parameters of the model, the quadratic mean
of the relative standard deviations of their estemam, should be smaller than a given level

My max (NB: subscript corresponds here to the quadratic mean of thealred standard deviations)

ol

One of the objectives of the "inverter" (the persoicharge of the inversion) is to get a relativeme

m,, expressed in term of quadratic mean, lower tharugper thresholdm,,,, equal to a few
percents. This means that as soon as the numbéparameters that have to be estimated becomes
large, the singular valuesw, of the corresponding reduced sensitivity matrixcrdase, which
increases the error. This increase of the err@raportional to the standard deviation of the noise
This standard deviation has the same unit as tfgubwf the signal and the same is true for the
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singular values which do not depend on the strectdirthe model (functiom) only, but also on the
intensity of the stimulation (in a problem wheree tbutput is related to a field: temperature,
concentration, ...) and on the choice of the "tinefs3bservatiort.

Both a lower and an upper level can also be coctetiufor the criterion of global relative erran,
defined in (55), using the smaller singular value, :

=

1/2
T =M ‘[521(% )J “r 9

This clearly shows that a too large value for tagoro / w,,, between the standard deviation of the

measurement noise and the smaller singular valubeofeduced sensitivity matri®” (8"™), can
make the estimation of the whole set of parameteexplode ». In that case, one of the,
parameters (the parameter "supposed to be knogR'), has to be removed from the original set of

parameters to be estimated. This will lead to a pavameter vecto to be estimated, of smaller

dimensions 1f-1, 1), with a better (smaller) associataq, criterion (lower average dispersion) but
with the apparition of a bias on its1 estimates, because of the biased value of the vweino
parameterf,, that will be fixed to its nominal value that is féifent from its exact value (see Lecture

2).

TOOL Nr4: The SVD of the normalized sensitivity matix calculated for nominal values of
parameter vector § can bring valuable information to quantify the red identifiability of the

parameters, once the level of noise known.

3.3.4.Residuals analysis and signature of the presenca bias in the metrological
process

One way to analyse the results of the estimatiacgss is to calculate the residuals (equation L0) a
convergence. When conditions (8) are fulfilledc@én be easily shown that the expectancy of the

residuals curve (t ,ii) is equal to a null function:
E()=E[ v~y (1 B)|=E[5(B-B)]=E|-S(5 9" S|=- § 5F SE@) 7

Since E(¢) =0, E(r)=0 which means that if the model used for descritiimg experiment is

appropriate, the residuals curve is “unsigned” {asdd theoretical model). On the contrary, "signed”
residuals can be considered as the signature of btared estimation.

The bias can stem from different causes such as:
(1) the a priori decision that some parameters of tbdahare known and therefore fixed at

some given value (maybe measured by another expetimAs active parameters in the
PEP, they can alter the estimates of the remaumikgown parameters.
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(ii) Experimental imperfections which makes the modeslided with respect to the reality of
the phenomena.

The existence of a bias means that a systematigamnerally unknown inconsistency exists between
the model and the experimental data.

We give here an example taken from [1] and alrestdgied in section 3.3.2 above. It concerns the
simulation of a flash experiment applied to a tHeser medium: two highly capacitive and
conductive coatings and a central layer made ofateral with very poor conductivity (highly
insulating material) and heat capacity (aerogelen). This system can be modelled through some

function T™* =y__(t,B). An artificial bias is introduced under the fornf a linear drift

superimposed to the output simulated observatibregrresponds practically to a linear deviation of
the signal from the equilibrium situation before #xperiment starts. A noise respecting equatidns (
is also added to the simulation of the measurensantlat we have at each time

Vi = Yo (4, B) + & = Yoo (t; B) = by, (1) + & (58a)

Model y ., (t,B8) used for direct modelling is exact if no driftgsesent in the experiment. However,

in the opposite case, it becomes biased, sinamei dot accounts the presence of this drift. Thpuiu
bias b, above is defined by:

by (t,) = Yo t. B) - Yoo (8. B) (58b)

Let us note that in this definition, the drift mdde the reference oneyf@® =y and the

0

preceding thermal model is the biased opf%*! =y ).

This model used for parameter estimation is illdiboned: some correlation exists between the
parameters (Casé =3 corresponding to the correlation existing betwgemameters shown in
Figure 5 andFigure 6). Figure 7 below shows:

« the simulated rear face noisy output of the systeith the drift (dotted curve)
* the rear face recalculated output using the bias@dhateff (solid line curve)
* the drift of the model output (functionb; (t)) introduced. At the final time of the

experiment {; =1000s), the magnitude of the drift represents less td&h of the

maximum level of the signal.
* the residuals curve (with the noise, and aftesgabtion of the noise)
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Figure 7 : Signed character of "post-estimation” residual$hia presence of a bias and using a badly
conditioned PEP

The "signed" character of the residuals is obvigescillation around zero with a much smaller
frequency than the noise). The three parameteirsasd using these biased "measurements” has led
to expectancies of the parameter estimates withentively a—18%, —7.5%, +19% difference

with respect to the exact input values. Thesesifices are not of stochastic origin (caused bsenoi
only) but result from the introduction of the bi&ne possibility for the experimenter who wants to
check whether his estimations are biased or ndg abserve the output of the inversion process for
varying identification ranges of the independentalzde.

For example, we can vary the identification timeeiaal. If a bias affects the data when compared to
the modelling, then the estimations will vary, degieg on the selected identification interval. Tisis
what can be observed irable 2 where three identifications have been performedHmee different
time intervals [0-70s], [0-150s], [0-300s]. In tluase we have used a more refined model than #e on
used forFigure 7 and thus a more badly-conditioned PEP. In tthethoth thermal properties of the
insulating material (thermal conductivity and thairdiffusivity) were estimated from the biased data
Obviously with such a material, the small heat cépamakes a good estimation of this parameter
difficult, but sadly (because of a lack of sendiythis also affects the estimation of the second
parameter. The thermal diffusivity and conductivégtimated from the data éfigure 7 depend
strongly on the identification intervals. The vauman change within a factor of 60% or 170% in that
case.

Time Interval 70 s 150 s 300 s
a (m3/s) 3.76.10-6 3.22.10-6 2.21.10-6
A (W/m.°cC) 0.031 0.064 0.084

Table 2 : Influence of the existence of some bias on thematar estimates for a badly
conditioned problem
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TOOL Nr5: The "post-estimation” residuals have to be analysed carefully to check the potential
existence of a bias of systematic origin. Its magunide can be compared to the standard deviation
of the white noise of the sensor in order to checwhether this bias may introduce too large
confidence intervals for the estimates (with respécto the pure stochastic estimation of the
variances of parameter estimates in the absence afy bias). Invariant estimates for different
identification intervals suggest that the bias is @ceptable. In the opposite case, strategies must be
implemented, either to change the nature of the dstation problems (reduction of the initial
goals) or to use residuals to give a fair quantitaite evaluation of confidence bounds of the
estimates. Some hints on that topic will be givemithe next sections.

4. Enhancing the performances of estimation

Some tools have been given above: they can helpxjperimenter to gain insight into its metrological
problem. They can lead to a conclusion of failutge problem is ill-conditioned regarding the
estimation of the interesting parameters. This reg¢hat the parameters we initially wish to measure
will actually never be estimated accurately. Twatglgies are possible: recognizing that the initial
goal is in vain, or modifying the problem throughypical thinking to make it well-posed or
adequately conditioned even by changing the gdemselves (number of parameters to estimate).
Quoting J.V.Beck: "the problem of nonidentifiabjlican be avoided, through either the use of a
different experiment or a smaller set of parametieas are identifiable". This position emerges from
the well-known parsimony “principle” (see_http:/fesikipedia.org/wiki/Parsimonywhich in the field

of science could be summarized by this sententging to perfectly recover reality is indeed very
easy, when one adds parameters to each otheratsib tonnects-the-dots”. There is much more to
learn and to retrieve from the distance maintainetsveen a model and the observations it is supposed
to match. The resulting consequence is that anymmidation algorithm is a good one because the
problem is well defined. This section will now pead to give additional tools to work out badly
conditioned problems with special analysis regaydire role of known versus unknown parameters.

4.1 Dimensional analysis or natural parameters: ea$ coupled conduction/radiation flash
experiment

Through the preceding sections, the reader shoave bheen convinced of the importance of
notions like the pertinence of a model (good regmétion of reality, controlled origins of biashet
application of a parsimony principle, that is toaptlone's metrological objective by making the
"guality" of the available information match thegdee of complexity of the model.

A reduced model, seen as a model with a reducedeuof parameters, has to be considered first in
the light of Dimensional Analysis. The principleE@mensional Analysis in Engineering precisely
relies on the construction of "appropriate" natyratameters (the Pi-groups) emerging from the rank
determination of the dimensional matrix of all piegs quantities involved in the problem with respec
to a basis of "base" quantities [6].

If we consider the heat transfer problem in a seamisparent material like glass, coupled conduction
and radiation transfers must be considered. Matgaaameters involve classical thermophysical
properties of the opaque material (thermal condlitgtiA, specific heatpc) with the additional

parameters accounting for radiative transfer aborption (extinction coefficienty (m’l), the level

of temperature of the materid}, (in Kelvin) which rules the magnitude of radiatiemission, the
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Stefan-Boltzman constamtg, the refractive indexn, and the inner emissivities of the boundaries
(no units - opaque coatings of the glass slab@msidered here).

Let us assume that a flash experiment is plannéd,am absorbed heat densify. In order to study

the possibilities for a transient thermal charazégion technique of such materials (which paransete
can be measured with this experiment ?), the medlefjive the rear face temperature response of the
slab (thicknes®) as the following function:

Yo = T (t,€,QpC 4, 8,0 55Ty & ,N) (59)

rear

Practicing a "blind" Dimensional Analysis leadsthe construction of a new function depending on a
new set of parameters:

-I—flash T
Yo = Tt = 22— (t =at/€ 7y =peN=—"

0

T = Qpce ,s.j (60)

2T3’

which naturally produces 4 pi-groups governing heatsfer inside the sample, with a reduction ef th
number of initial parameters of the model from @Gt

Another classical example deals with conductive @mvective mechanisms of transfer which appear
jointly in problems of heat transfer within boungdayers. Solving the Inverse Heat Conduction
Problem in order to get a heat exchange coefficgstitmation will require the introduction of the
classical Reynolds, Nusselt and Prandtl numbers.

4.2 Reducing the PEP to make it well-conditioned: aafsthermal characterization of a deposit

» Model: Case of the contrast method

The method of the thermal contrast already preseit Section 3.1consists in making two
"flash" experiments in order to estimate the theérpraperties of the coating layer, denoted (1) in
Figure 8 below (the same dSgure 1). We will now on detail the modelling already peated briefly
in section 3.1, in order to be able to find out ethparameters of the model can be really estimaied,
this non linear parameter estimation problem.

Let us remind that the first flash experiment isrie@ out on the substrate denoted (2), which wadlo
characterization of the substrate in terms of diffity (the thermal capacity of the substrate is
measured by another facility). The second flashegrgent is performed on the two-layer material
denoted (1)/(2).

In both cases, the variation of the rear-face teatpeeT with time, called thermogram, is measured.

By taking the difference of theses thermograﬂﬁé and TB* normalized by their respective

maximum, we obtain a curve called a thermal conhtmgve, which is a function of the
thermophysical parameters of the film (1) and efshbstrate (2).
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Figure 8 : Principle of the Method

The thermal quadrupoles method [7] is very appegerio find the rear-face temperatures. Taking the
Laplace transform of the heat equation yields adirrelationship between the different quantities o
the "in" and "out" faces of each layer of the mialer

Let 6’(2, p) and qp(z, p) being the Laplace transforms of the temperaf[l(e,t) and heat density
(I)(z,t) respectively, with z the axis normal to both faces

00

6(z,p)=L|[T (z,t)]:J'T (z,t) exp(- pt)dt (61)
and

00

olz.p)=L [0 )=o) enl-pd  wih glet)=-A° (2

0

The thermal quadrupoles method allows to lineanly the temperatures and the heat flux densities of
a homogeneous layer (numbeiiedere) without any source term and with zero ahitemperature,

through a transfer matriM, , defined in the following way:

8.1_[A &4
n = out (63)
Win Cl Dl QDUI
with the coefficients of the matrix being calculhtes:

A =D :cos}{ p:'in, =ﬁ Simﬁ\/f] and C =AA, \/Ea sinE\/Efj

The subscrip(i) is related to the Iaye(i) : film (1) and substrate (2).

g : thickness of the material
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a : thermal diffusivity
A : thermal conductivity

PC,  :specific heat

It is convenient in this 1D transient problem, wice that time can be made dimensionless with the
thermal diffusivitya, of the substrate and with its thicknessto make a Fourier numberappear,
which will be associated to a reduced Laplacematarp” defined as:

2
t*=%:,p*=piand s:\/? (64)

2 a,

We can then define a reduced Laplace transfBrias:

_~

6(z,p*)=L [T (z,t*)]:TT (z,t*) exp(- p* t*)dt* =% 6(z.p) (65)

0
» Flash Experiment on the substrate:

The expression of the rear face response to agiBieac) stimulationg(t)=Q, d(t) , whereQ, is
the energy density (in J-fhabsorbed by the front face, is given by the foitay relationship:

l: e2in j| _|:A2 sz|{ e20ut :l

= (66)
(pzint = QZ CZ D2 (p20ut = 0
Hence: e, ==<2-= Q (67)

2out
C 2
SN /psinh[,/p‘%J
a, a,

Here subscript 'in' designates the front (stimulpface while subscript 'out' is associated tordze
face, where temperature can be measured. Thisa@ars supposed to be insulated hepgm( =0in

(66)).

O

Settings=+/p and normalizing the thermogram with respect terigsximum that corresponds to the

adiabatic temperaturd;, = Q reached for long times for this adiabatic moded,oftain:
) »C2€)
2
6 =L T | ei_; (68)
o T, ] a, ssinh(s)
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Using the reduced Laplace transform (65), we catewr
52* = E Ta = ; (69)
an T, ) ssinh(s)

» Flash Experiment on the two-layer material:

The expression of the rear face response of thdayer material can also be obtained easily through
the quadrupoles method:

ellﬁn — Aeq Beq |: Hl/20ut :| (70)
ﬂ/zin _Ql,2 Ceq Deq @/zout =0

Asq Beq}z {Al Bl} [Az Bz}:[AlAﬁBlCz A182+A281}

Ceq Deq C, D,J|C, D, AC, +ALC, AA, +B,C,

where: { (71)

and whereQ_is the energy density absorbed by the front faddisisecond flash experiment on the
two-layer sample.

In the case of good conductive materials with siiadknesses, the Biot number which represents the
ratio between the internal resistance and the mxteesistance is low, which justifies neglectihg t
heat losses in the model output (rear face tempreaaibove. The expression of the temperature takes
the following form:

Ql/z — Ql/z (72)

e, = =
Y2 ACHAC,

Note: If we switch the two layers of the materidlmeans inverting subscripts 1 and 2, and the
expression of the rear-face temperature can beedrtmvremain unchanged.

Q
Hl/ 2out = 1 (73)

2 2 2 2
Al\/?sinh 1/& cosh 1/& +A, P sinn 1/& cosh 1/&
a a a a a, a

If we now scale the thermogram with the adiabaiogerature of the two-layer material, that is with

Q

Ty, = — , the expression of the Laplace transform of thésluced temperature
P1Ci€; + 0,C,8,
temperaturél,,, / T,,,,, takes a simpler form:
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, 1+ P&
- & P>C28; (74)

0p,= =
out a
> 5 }%sinh &1 1824 |cosh(s)+ sinh(s)cosh &‘/is
A2P,C, € V& €2V

As in section 3.1 two reduced parameters are inted:

K, =& [ﬁ . ratio of the root of characteristic times
€V
or K, =4tc;/ tc, with tc; =e’/ a, for i=1,2 (75)

K, = /ﬂ ratio of the thermal effusivities
A205C,

or K, =,/b, /b, with b, = /A pc; fori=12 (76)

We can note thaK; is a function of the thicknesses of the substatecoating anK, is an intrinsic

parameter of the materials. The reduced Laplacsftvtem of the response of the two-layer system can
then be written, using (65):

*

6112

1 1+KK, } )

o :g |:K2 Sinh(K1S) cosh (S) + Sinh(s) cosh (Kls)

The heterogeneous nature of the two-layer matsyistem appears here through the expression of the
denominator that cannot be simplified: this makesdefinition of an equivalent material associdted
this two-layer sample impossible.

> Contrast Curve:

The contrast curve is obtained by taking the diffiee between the two thermograms, that is:

~

AG,

out™ 517 200t _égout = E ;/Zom - TZ*out ) :E (AT*) (78)

The expression of the reduced thermal contrastariLaiplace domain is:

*

! 1+KK, 1
*" 75| K, sinh(K,s) cosh(s)+sinh(s) cosh(K,s) sinh(s)

(79)
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Theoretically,K, andK, can be measured from an experimental thermal @stnturve through an
"inverse" technique. The numerical inversion of tnedel is implemented by De Hoafgorithm.

From K, andK, (or by a parameter substitution), it is also gaissio calculate the thermal capacity
and conductivity of the deposit by the followindatéons:

K; =K, K, =PCCL thermal capacities ratio

P>C2€;
orK; =C,/C,, with C;, = pc; e fori=12 (80)
and
K, LS E) thermal resistances ratio
Ky e A
orK, =R,/R, with R, =¢;/ A fori=12 (81)

Another parametrization of the same model consistgiting expression (79) as a function I§f and
K,.

The expression of the theoretical model with redysarameters clearly shows that the problem is in
this case only function of two parameters. This mseia particular that the thermophysical properties
of the deposit can theoretically be obtained oflyé properties of the substrate are known and the
thicknesses of each layer as well. Thus, the poecisf the measurement also depends on the
precision of these known parameters.

In the followings, our attention will be focused two particular cases. The first one corresponds to
conductive deposit on an insulating material. Téeosd one corresponds to an insulating film on a
conductive substrate.

In these two cases, the materials we consider lawéehicknesses and are good conductors. So, the
Biot number based on the properties of the sulesBat he,/A, is low and it is possible, as a first

approximation, to neglect its influence on the roeed reduced rear face contrast . It can be
shown that even in the presence of heat lossess thesome kind of compensation through the
construction of this contrast, which is a differenahich means that the present adiabatic model is
robust one: we will see in a later section that trarameter has a low influence in the estimatfahe
coating properties. The thicknesses and thermogphlygioperties are given ffable 3
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Thickness (um)| a (m2/s) A (W/m.°K) | PC, (I/m3.°K)
Case 1: Aluminium coating on a Cobalt/Nickel subsate
Film (1) 220 9.46 19 230 24310
Substrate (2) 1100 2.3610 84.5 3.57 10
Case 2: Insulating film on a Alumina substrate
Film (1) 247 6.84 10 2.23 3.26 10
Substrate (2) 640 7.4710 23 3.08 16

Table 3: Thermophysical properties and thicknesses of thenats

The reduced thermograms for the substrate anddyar-imaterial as well as the contrast curve are
plotted for the conductive/insulating and insulgtoonductive cases Figure 9 andFigure 10
respectively.

K1:D1—K2:135 K1:128—K2:EI32
1.2 T T T 1.2 T T T T T T
—— Substrate
—  Bilayer
1r —— ---- Contrast [—
/”_F_—
08+
nEr — Substrate
—  Bi-layer
o4k --- Contrast
02r
A T L e
Y Ut 02
o 01 02 0.3 0.4 058 0B o7 08 08 1 o o0& 1 15 2 25 3 358 4 45 i
t =a2tfe§ t =a2tfe§
Figure 9 : Case 1 — Conductive coating / Figure 10 : Case 2 — Insulating film /
Insulating substrate Conductive substrate

» Sensitivity Study

The contrast curves and reduced sensitivities tampetersK,; and K, for the two cases considered
(conductive and insulating deposits) are plotteBigure 11 andFigure 12
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K, =01-K,= 136 K =128-K,=032
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Figure 12 : Contrast curve and reduced

Figure 11 : Contrast curve and reduced e
sensitivities toK; and K, (Case 2)

sensitivities toK; and K, (Case 1)

These two examples are representative of mosteotéises that can be met. In the first case, both
sensibilities are of the same order of magnitudeseem to be strongly correlated: they exhibit a

nearly constant ratio, which means that they aopqntional. In the second case, one of the seitgitiv
is low.

> Covariance and correlation matrices

Table 4 gives the scaled covariance matroov (K ) = o2 (S*TS*)_ldefined in (52b), as well as the

correlation matrixcor(K)defined in (15), for the two cases considered @tamdard-deviation of

noise o is taken equal to unity here and 1000 pointsnretare used for the simulation of the thermal
contrast curve).

Variance-Covariance

28.0302 - 35. 9846
- 35. 9846 46.6417

Variance-Covariance

0.1067 3. 1409
3. 1409 99.1677

Correlation

1.0000 -0.9952
-0. 9952 1. 0000

Correlation

1. 0000 0. 9655
0. 9655 1. 0000

Case 1

Case 2

Table 4 : Reduced covariance and correlation matrisgsand K, (for o= 1)

The most interesting information is given by theueed variance-covariance matrritxov(li): it

takes into account at the same times the reducesitiséies through the inversion of the reduced

information matrixS™'S" as well as the noise through its standard deviation
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We calculate now the square root of the diagonahgeof matrix rcov(R), that is the relative
standard deviations of the estimates of each pdeade andK,, for a reduced standard deviation of
the noise on each of the twb, and T,,, scaled thermograms now equal & = 0.01. This
corresponds to a signal over noise ratio of 1&b measurement of the (experimental) reduced
thermal contrasAT " is affected by a (relative) standard deviatih  equal to \/E o* (for two

independent experiments, becausear (AT ) = var (T,®?) + var (T,5®) =2 0*®), one gets
(application of equation (52b) witd?a* replacingo) :

o, 1K, =420*/28.0302 =0.0749 = 7.5% for K, =0.1
-forcase 1:| (82a)
0y, 1 Ky =20 /46.6417 = 0.0966 = 9.5 % for K, =136

It is interesting to calculate the singular valoéthe reduced sensitivity matr®” . They are the
square roots of the eigenvalues (equal to the Eingalues) of the reduced information matrix
S'TS" and can also be calculated through the inverseeoéigenvalues C(S*TS* )_l:

w, () = (w,(s7s) )7 =1/ (w, ((57s) %)) = 2.4347

(82b)
w,(S) = (w,(57s) )" * =1/(w, (s7s") %)) * = 0.1150
This allows to get the condition number®f (see Lecture L3):
cond(S") = w, (S")w,(S")=21 (82¢)

We can also calculate the root mean square redsteedard deviationm, of the estimates of both
parametersK, and K, defined in (55):

m, =o' v2 [/ w? +1/w2)"'* = 0.0864 (82d)

It is easy to check that this value is simply thetrmean square of the relative standards devition
given in (82a).
Let us note that this value (82c) is close to dveelr bound ofm, defined in (56), here:

(a*\/i)/(\/iwz) =0 /w, =0.0862. The smallest singular value is mostly responsioie the
relative errors on both parameters.

The same calculations can be made for the secmad ca

o, 1K, =+/20*/0.1067 =0.0046 = 0.5% for K,=1.28
-forcase 2:| '

(839

0y 1K, =420%4/99.1677 =0.1408=14.1%  for K, =0.32
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and : w,(S") =11.7851 w,(S") = 0.1004 (83b)
So, the condition number & is:

cond(S™) = w, (S")Iw,(S")=117 (83c)
which means that matri$” is more ill-conditioned in the second case wittpees to the first one.

One also get here: m, =0.0996 and lower bound for mj: o Iw,=0.0996 (83d)

So, returning to case 1, it appears clearly thét bwe ratioX; of the characteristic times aifd of
the effusivities can be estimated with a relatin®renearly equivalent for both parameters (in e

10 % interval): this was already apparent Rigure 11 where the reduced sensitivity curves
corresponding to both parameters were very closth @ slightly higher absolute value for the
sensitivity toKj.

For case 2, it is clearly the ratiq of the characteristic times that can be reachéith, avvery good
precision (0.5 % here): this is quite natural sittereduced sensitivity 16, in Figure 12is close to
zero. So, because of the non linear characterioPEP problem, the accessible parameter depends on
the location of theK; K,) parameter vector in tHe’ plane.

The question that remains is to know if is possibleneasure, with higher precisions, two parameters
derived from K; K;) using the experiment corresponding to case Example. Let us introduce for
instance thedK,K,) pair instead ofK,,K,) in the analytical model.

Ky =0.136 - K, = 0073629
0.1a

Sty
o1 o. Sensitbity K, 1] Variance-Covariance
oos| 1 2.6921 -18.5189
o T -18.5189 145.8475
\\ """""" s Correlation
005t - 7
\\ e 1.0000 -0.9346
o1t — 1 -0. 9346 1. 0000
s Case 1

02 I 1 I 1 1 1 I I 1
u] 01 02 03 0.4 o0& 0B 0.7 08 09 1
A 2
t=at/es

Table 5 : Reduced covariance and correlatidn

Figure 13 : Contrast curve and reduced ]
matricesK, and K, (for o= 1)- case 1

sensitivities toK, and K, - case 1

The thermal contrast is naturally the same (theeri@s are identical)Table 5 gives the scaled
covariance matrixrcov(K)as well as the correlation matrixor(R) for the estimator of

K= [K3 K4]T . The relative standard deviation of both paransdbecomes (foo* = 0.01):
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o, 1Ky =20%2.6921 =0.0232 = 2.3% for K, =0.136
-for case 1:| '’ (84a)
0y, I Ky =y20% /1458475 =0.1708=17.1%  for K, =0.0735

So, when comparing (84a) and (82a), one clearly 8es instead of having(; K,) with quite
poor precisions, théKs,K4) allows to retrieve very precise values for theoraf volumetric heat
capacitiesK;. This was already apparent fiigure 13 the relative sensitivity té&, was quite low

when compared to the one I§f, but both minima of the corresponding curves o@xuat times far
apart, with a degree of colinearity much weakemtia figure 11 (see also section 3.3.2 of this
lecture).

This result obtained for the two cases can be exgtafrom the expression of the contrast
curve.

~ 1 1+KK 1
AG == 12 - 84b
s {Kz sinh(K,s) cosh(s) + sinh(s) cosh(K,s) sinh(s)} (84)

In the previous case (conductive coating on anlatislg substrate)K, is close to zero. A

inh(K;s)=K
rough approximation can be obtained by setti{-xsw:l (K,s)=Kss

cosh(K,s)=1
= _ 1 1+K 1
AG == 3 _
S [Kg S cosh(s) + Sinh(s) Sinh(s)} (84c)

We can see then that within this first order appration, the model is only a function of
K;= K,K,. We can check the other criteria already consttléoe case 1 with thé<; K»)
parameters :

w,(S") = 1.7270 w,(S") =0.0821 (84d)
So, the condition number & is:
cond(S") =w, (S )w,(S")=21 (84e)

Compared to the preceding parameterization, thecegtisensitivity matrixS™ as well as its singular
values have changed, but the condition numbelisdime, see (82c).

One also get here:

m, =0.1219 and lower bound for m,: o Iw,=0.1218 (84f)
When bothmq 's are compared, see (82d), one can say that ehalgbrecision of the estimation of
the (K5,K,) parameterization is lower than tffi€;,K,) one. However we will see later on that this
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superiority of the (K3,K4) parameterization is only an apparent one if bdtarrmophysical
characteristics of the film are looked for.

Ky =0.40596 - K, =4

T Sy Variance-Covariance
... Sensitivity - K,

103.5845 -97.1801
-97.1801 91.1985

Correlation

1. 0000 - 0. 9999
-0.9999 1. 0000

as s, Case 2

Table 6: Reduced covariance and

Figure 14 : Contrast curve and sensitivities 6, . ,
correlation matrices, and K, (for o= 1)

- case 2 anK , (Case 2)

In case 2 (insulating coating on a conductive sabst, parameter&, and K, are strongly
correlated and exhibit the same sensitivity curveseFigure 14. This confirms the result we
observed previously, that is a thermal contrasttipeensitive toK; .

K, K4:&&:_R1C1 :tc_l:Klz (85a)

This can be also explained by the fact tkais close to unity :

sinh(K,s) cosh(s) =K, sinh(s) cosh(K,s) (85b)
This yields:
-~ 1 1 1
A, =+ .
out g {sinh(s)cosh (Kls) Sinh(s)} (8c)

So, the thermal contrast is mainly a functiorkef Returning to the same calculation as in the
other case, usingable 6, one gets:

0y 1Ky =20% 1035845 =0.1439=14.4%  for K, =0.4096

- for case 2: (85d)
0y, 1Ky =y20% /91,1985 =0.1351=13.5% for K,=4

The singular values of the reduced sensitivity mare:
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w,(S") = 8.3624 w,(S")=0.0717 (85e)
So, the condition number & is:

cond(S") =w, (S )w, (S")=117 (85e)

We observe here the same thing as for case 2otidition number of the reduced sensitivity matsix i
independent of the parameterization, see (83c).

One also gets here:

m, =0.1396 and lower bound for m,: o /w,=0.1395 (85f)

When bothmq 's are compared, see (83d), one can say that dhalgbrecision of the estimation of

the (K;,K,) parameterization, which provided an excellentnestion for K. is lower than the
(K,,K,) one.

4.3 Note on the change of parameters

It has been suggested earlier that some changeraimgeterization would allow to overcome
parameter estimation difficulties such as in thgecaf high correlation coefficients inducing
high variances for the estimated parameters fompl&a We want here to come back to this
discussion to give, very briefly, some precisiond aur conclusions.

First, and taking experience of what has been sh@seviously, if a change of
parameterization is made that results in the priogluof a new parameter of sensitivity close
to zero (and thereof excluded from the model), @& parameterization will have a positive
effect and will allow to properly estimate the remiag ones. Note that it is the object of
Dimensional Analysis to help making such reparanmegon efficient.

Second, if all the parameters of the problem hawe negligible sensitivities but appear
correlated, the question is: is it possible to fanchew set of parameters defined from the
initial one, to enhance the quality of the estimagprocess?

The answer is no. It can be demonstrate, see Rehtiaddthe sensitivities to a new set of
parameters can be derived from the sensitivitiethefcurrent set (using the Jacobian of the
transformation). The same is true for the variarmeagance matrix and the explanation is

obvious from the quantified SVD analysis given abd@the same condition number 8f is
obtained whatever set of parameterization is u$ése relationships show that:

» if two parameters appear correlated in a giverobglarameters, two parameters of a
new set, recombined from the previous ones, wslb &le correlated.

» if the sensitivity of a parameter is changed witheav parameterization (for example,
it is enhanced), this will not change its variancéne.
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For instance, if we keep the paramekgrand choose another second parameter instead of
K,, we can show that the sensitivity curveKp can become higher or lower: we have to

remind that the partial derivative that appeartha definition (4) of a sensitivity coefficient
is associated to the variation of the output ofrtieel for a variation of a given parameter,
which requires that the other ones stay fixedagvalues. This means that if the definition
of these other parameters is changed, such iglascase for the sensitivity coefficients. So,
talking of a sensitivity coefficient to a given pareter does not mean anything if the other
parameters in the parameter vector are not specifie

This observation could lead us to consider asthieailst possible to improve the estimation
of K, by combining this parameter with a particular pagger that can increase its sensitivity.

In fact, this is not true because the standardadievi of the estimates of the parameters not
only depend on the sensitivities of parameters dab on the correlation between the
estimates of the different parameters.

To show this, we are going to see through an exammple the standard-deviations (square
roots of variances) of the new set of parameteasgh when one parameter is kept as for

instance parameterk,=K, =K,K,” with a=1;8=0 while K, is replaced by
Ky =Fy (Ky.Ky):

(86)
We have:

K K
Ymo = N(t; K) with K = {Kl} = dy,,, =S dK =S dK' with K' = {K} (87)

2 b

whereS is the sensitivity matrix to the olﬁ(l, Kz) set of parameters ar®] the sensitivity matrix to
the new(K,, K, ) one. This requires the calculation of the Jacoimtrix J of this transformation
since ;

dK'=JdK = S=81J and cov(K')=J cov(K)J" (88)

The last equation in (88) stems from the linealarataround the exact value of tie parameter
vector:

cov(K) = cov (dK) (89)
JF, OF,
: D(F,.F,) _| 9K, oK 1 0
with: J=—p2arbl= 1 2= 90
DK, K,) | 9Fs OF, {F Fo (50)
K, IK,
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So, the sensitivity matrix to the new parameteikses:

1

Slz[sa Sb]:SJ_lz[Sl 82]|:_Fb1/|:b2 1/ sz

} =[5 -(Foa/ Fon)Ss (U1 Fy0)S,]  (91)

Here the old sensitivity column vectogs and S, , as well as the new on& and S, , have been
explicitly written in the corresponding sensitivityatrices,S andS' respectively.

Application of (88) allows the calculation of thariances and covariance of the estimators of the ne
set of parameterf,, K, ) :

-] k) cov(}z(;}zb)Hl Al war &) COV(K(A,RZ)Ml e

covlK,.K,) varlK, For Foo l,RZ) var Kz) 0 R

that is:

var (Ka) = var (Rl)
var (Rb): Foi var(Rl)+ Fy,’ var (K2)+ 2F,,F,,COV (Rl, Rz) (93a)
cov (Ra,Kb) =F,, var(K1)+ Fy , COV (Kl,RZ)

We can see that even if the change of parametedifiesothe sensitivity to parametd€, , which
replaces parametd, in the new set of parameters, the variance ofgarameter remains unchanged
whatever the choice of the second parameter.

This means that the variance of a given paramatad ¢onsequently the error on this parameter) is
independent on the choice of the second paraméhkers, identifying the parametdf; from the

(K,,K,) pair is equivalent to estimatirtg, from the (K,,K;) or (K,,K,) pairs.

Similarly, we can show that aiming at estimatingragpaeters (K3,K4) either through the
parameterization{Kl,Kz) or directly is strictly the same.

The conclusion is that the interest of a change glarameters is justified only when an improved
estimation of a particular parameter of interest islooked for.

Whatever the parameterization, if the thicknesses foboth layers are known, as well as the
thermophysical properties of the substrate, we have
Ok | Pc =0y, I K; =2.3% for casel

(93b)
o, &y =0y, /K, =0.4% for case 2

So, this rear face thermal constrast techniquevallestimation of the capacity of the film for aeds
and of its diffusivity in case 2, for high enougbreal over noise ratios.

In case of very low sensitivity to a given paramete it is possible to fix the value of the
corresponding parameter to its nominal valuesSo, if the number of parameters that are looked for
is reduced, then the stochastic errors on the réntaparameters (reduced standard deviations) go
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down. However, their estimation becomes biasedlaads to a systematic error on each estimated
parameter such as:

b, = E(A,)—B, =-(s7s,)"sTs, (Brom - goe) (93c)

B: ¢

B

c

Here the initial parameter vector has been decoetha®o two partsﬁz[ } where B,

gathers the parameters that are looked for arbitgplementary parB, is supposed to be known, that
is its value is blocked to a nominal valug, = B°" which differs from its exact valugg®® .

C

Equation (94), which has already been derived énctise of a linear model in lecture L2 of thiseseri
(see also [1]), corresponds here to a linearizatidhe neighborhood of the exact valueff

This technique, which consists in reducing the neirdf parameters that are looked for, presents an
interest only if the bias caused by the reductibrthe number of parameters and its associated
standard deviations are much lower than the instiathastic error as illustratedfigure 15.

Probability density function
of the j" parameter of B

~1/27 __HeTe 2]
oy —ollrs ]/ oy, =o[ls7s)"]

- 1J
7& A

/|
= (5))=p< > Elf,)- s,

Figure 15: Comparison between the probability density distiitms of the | parameter of the
parameter vector for two different estimators 1)the parameters in8 are estimated

altogether (red) or 2) only the components of ohéopart B, (blue) are estimated
while its complementary parf, are blocked to its nominal valué&\B: here one
assumes that index j inB and in B, are the samef ; = £, ) and that the scale of the

vertical axis is different for both distributionsrfpractical plotting reasons (the area
below both distributions should be equal to unity)

ﬁrj

»
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5. Models with different numbers of parameters: thehot wire case

5.1 Different models for thermal characterizationthe hot wire method

The Hot-Wire technique [8] consists in a constagdtipower generation by Joule effect through a thin
cylindrical wire embedded in the material that ssimed to be a semi-infinite medium (no heat
losses), se&igure 16. The transient temperature rise of this wire isasueed by a thermocouple
(crossbar technique).

5.1.1 The standard hot wire model: model O

At longer times, the Hot-Wire temperature evolut{@symptotic expansion) is only a function of the
thermal conductivity of the material and is givey the following expression (this model will be
called model 0 now on):

\
. 6, ()= o Infr)+C* (04)

Thermocouple

r, andl : Hot-Wire radius and length
+ I, : medium radius
6, and @;: temperature and flux (Power dissipation in waltis) =,
x « A :thermal conductivity of the material/powder
. C*: arbitrary constant

Hot-Wire

v | S

Figure 16: Theoretical model in cylindrical coordinates system

In a semilog time plot, the temperature rise, equa4) inFigure 16, is then linear. Knowing the
heat power dissipation, the heat conductivity efittaterial can be determined from the slope.

5.1.2 The finite hot wire model: model 1

A quadrupole approach [7] can be efficiently usetuild this model in which hot-wire (modelled by
a resistanc® between average wire temperature and the lineiepdissipation at its output radigs
and by a thermal capaci) and medium (througz,, Z, and Z, impedances) thermal properties,

contact resistance between Hot-Wire and matdRgl&nd convective resistance (heat losses) with the
surrounding environmeniR(,,,) will be taken into account. This method allowstagepresent each
part of the system by a transfer matrix that lihelnks in Laplace domain the temperature/fluxom

out each material or interface, see [8].

- — — - = - - = =3 - = —
ol R e Rz 2 0 |
o lJ—C R L z | ! il
o T R 1 9= 0§78
L — _— | | _| L — — o L — — 4

. Contact Finite Heat

Hot-Wire Resistance  Medium Losses

Figure 17: Schematic representation of the Hot-Wire / Medaystem - Model 1
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Let gm and CTDm be the Laplace transforms of the Hot-Wire meanptnature variation and mean
power dissipation respectively.

Their expressions are given by:

g, -1 eﬁzmldr_i @rdr (95a)
A 5 rl
and by: @, =V, G,(p) with:V, =7r?l (95b)

where Gy(p) =L(g,(t)) is the Laplace transform of the volumetric HotréVheat dissipation

go (W.m?).

51 and 51 represent the Laplace transforms of temperatudeflaw in r =r, (the inverse Laplace
transform is implemented through a numerical atban)

g = P with : 7' =2, + 2322 * Reon) (96)
m +CH) (ZZ+ZS+Rconv)
R.+Z
The expressions &f,,Z, and Z, are given by:
A-1 D-1 1
Z = Z, = and Z, =— 97
1 C' 2 C' 3 C ( )

with:
A=kr2( L (k)0 (ke + Ko (k). (kr, )
2 A ( (k r)l (krz) (k r2)-'0 (k r1))

) (98)
C =-2mAlK?r,r, (K, (k) O, (k) - K, (kr,) o, (kr,))

D_krl( o(krz) 1( I'1)'*'K1(k"1) 0(k|’2))

wherek =,/p/a,.qum (P being the Laplace variable ard,,,,, the heat diffusivity of the material)
andK, () andl,() are the modified Bessel functions

The Hot-Wire resistand® and capacityC can be easily obtained from these general exgmessif by
assuming that the Hot-Wire response time and szsmall when compared to the medium ones (i.e.
p - 0 andr, <<r,).

We obtain for the "hot" wire ([7]:

Lecture 4: Non linear parameter estimation prolslenpaget3



Metti 5 Spring School Roscoff — June 13-18, 2011

1 i 2 .
R=—— : Resistance C =/l _ - Capacity (99
8”/1Wire [ 1 (mpl/\/lre p y ( )

The heat loss resistance is given Bybging here the radius of the sample):

R, =—— with: S, =27, (100)
Knowing the mean heat power dissipati®y , this model perfectly describes the real time etioh
of the hot-wire temperatur, that is measured by the thermocouple.
5.1.3 The semi-infinite hot wire model: model 2

In the case of a semi-infinite medium whédg >>1, we show thaZ, and Z, tend to zero and,
to a very simple expression, called model 2 nowseeFigure 18

7 .z =1 Ko (kn)

= 101
* 27 kr, K, (kr)) (101)

Figure 18 : Quadrupole formulation of a semi-infinite mediuMadel 2

5.2 Sensitivity study

In Figure 19, the reduced sensitivity curves are plotted indages of the semi-infinite (model 2) and
finite (model 1) samples, and the correspondingrretation matricescor(B), for the following
parameters:

* Hot-Wire Conductivity, A,

* Hot-Wire Diffusivity, a,,, written asA. / (pCp)W“e in the sensitivity calculations
* Medium Conductivity,A cgium

* Medium Diffusivity, a,,.qium

+ Contact resistance between Hot-Wire and medigm,

+ Convective Resistance (Heat Losses with the sudiagh R,
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Sensitivity Curves Sensitivity Curves
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medium ' ’ ’ ' ' R, [0.6319 0.6297 0.7713 0.1636 1.0000 0.1970
R, 0.9621 0.9614 0.8358 0.9996 1.0000 R, 101097 0.1095 03680 0.8489 0.1970 1.0000

e Ayire Aoeaium Pcdam R, Poire Ayre owetin e e Reons
Case of the semi-infinite medium (model 2) Case of the finite model (model 1)

Figure 19: Sensitivity curves and correlation matrices in dase of the semi-infinite (2) and finite (1)
models

In the case of the semi-infinite material (model\#¢ can observe that the sensitivity curves to Hot

Wire conductivity and diffusivity exhibit the sarsbape with opposite signs. Such is also the case fo
the sensitivities to the contact resistance arttiéganedium diffusivity within a proportionality fear.

The sensitivity curve to the medium conductivityrisreasing with time and exhibits the same type of
variation as the temperature response of the witéle the others rapidly tend to zero or to an

asymptotic value. This also clearly shows that {hg.,a,.) and (R,, a,.q,m) Pairs are correlated

and that the more sensitive and non-correlatednpetex is the thermal conductivityt of the
material, the parameter we are seeking for.

medium

The sensitivity coefficients obtained in the caba material of finite size (model 1) are also shaw
Figure 19. They are similar except for longer times. T(}ﬁwre,awire) pair remains correlated but
because of the introduction of a new paramétgy,, , the contact resistande, and the medium
diffusivity a,.q,m Pecome non correlated while,,, appears to be correlated wit), .4, and
Amedium - All the previous remarks can be quantitativelynfemed by evaluating the correlation
parameters shown in the matricesigure 19.

This validates the thermal conductivity measuremiaptthe inverse method presented here. To
perform a good measurement, we have then to carsiacquisition time large enough to reduce the
Hot-Wire convolution effect (thermal properties)dasmall enough to avoid the boundary effect (heat
losses). Plotting sensitivity curves allows to deiiee the best estimation interval over which the
asymptotic model O can be applied (lower bound eho® prevent the effects of the Hot-Wire
properties and of the contact resistance and uppard to prevent the convective resistance effect).
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5.3Model Reductiomising fewer parameters

We can observe that in the two cases we considtkreél/,lwire,awire) pair is always correlated, see
Figure 19
A close examination of the analytic form of the parature response shows that, after simplification,
that only the ratiod,;. / @, = PCpuire aPPEAred: this explains the fact that their scaled senitiy

to these two coefficients are equal, with opposigas.

Sensitivity Curves

Sensitivity Curves

25 LB L B B B B 25 LB L L B B
20f ; 20 3
15f ; 151 3
g 10F { g 10p f
e F ] g
% 5: —: ‘3 5 g
1 z 2 -
& of e e T T T ] g of = —_— -
C \\\\ />/\\ A ] C \\\\\ T~ A ]
= e T e : f T gL W E
R z R
-10 ] -10 ~ 4
150 T T T T T T AT T I T A A | " 1501 S T T T I T T A AT I S T I B
5 -4 3 2 1 0 1 2 3 4 5 6 7 8 9 10 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10
In(t) In(t)
(oC,). [ 1.0000 04527 0.1884 0.4853 0.0379
(pC,),,.[ 10000 0.4754 08277 0.8477 Ao | 0.4527 1.0000 0.7152 0.6287 0.3826
Aneaun | 0-4754 1.0000 0.7688 0.7145 Gy | 01884 07152 1.0000 0.0612 0.8664
Ipedin | 0-82770.7688 1.0000  0.9965 R 0.4853 0.6287 0.0612 1.0000 0.3448
R 0'84;7 0.71450.9965 1.0000 R,, 0.0379 0.3826 0.8664 0.3448 1.0000
o' 2, a R .
(/ 2 wire edun rredun - (/x P )wxre ;“medxum Dpnedium Rc Rconv

Figure 20: Sensitivity curves in the case of the semi-infiartd finite models (Reduced Models (1)
right and (2') left)

So, the previous finite (1) and semi-infinite (2paels are replaced now by the corresponding models,
noted (1) and (2", with a conductivity for thersvithat is supposed to be known and that is

consequently fixed to its nominal valyeC,,;. =0Cpuire - The scaled sensitivity curves of reduced

pwire

models (1') and (2", as well as the correspondingelation matricesor(ii), are shown irFigure
20.

This reduction (one parameter is removed) is ofagreterest because it allows to reduce the
computation time and to increase the precisionhenestimated parameters (the sensitivity matrix is
better conditioned).

The fact that in this case the estimation of therttal conductivity of the medium is less affectgd b
the others parameters can be shown through diieailegions. Figure 21 shows the different
thermograms obtained for different values of thetact resistance (left) and of "hot" wire volumetri

heat (right) respectively for model (2.
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We can show that the slope of the curve which ieatlly proportional to the inverse of the thermal
conductivity of the medium and is not affected by values of these two parameters.

0 e e I B e o e e e e e e B e LA e O e e e I B s e e e e e e e e B e LA o e
18~ R=1KW.m * 18~ r,= 400 um et g=10 w/m / 1
16> ] 16: R =1K/W.m // J
4 //,/ 1 - C,=0 /(/7/ 7

o ~ ] g Ll S ]

2 xf 1 € wf N/ ]

5 ~ 5 e — /

g 10 7 PP g 10 / / B

R e i R L 1

£ - . - - £ gb S i

o o #"* Mageor
°r / ;’/@ ] °r s ]
a4k / gt _ a4 K / ,
T 1t :
0 M L | L L L L L L L 1 1 0 aodzik L I R I L L L L 1
5 4 3 2 41 0 1 2 3 4 5 6 7 8 9 10 5 4 3 -2 -1 0 1 2 3 4 5 6 7 8 9 10

In(t) In(t)
Thermograms for differenk, values Thermograms for differe@C,,,, values

Figure 21: Thermograms for a given thermal conductivity verRisand poC,,.

As explained in section 3.3 of this lecture, redgcihe number of degrees of parametric freedom of
the model allows to improve the estimation. We wittsent the case of a three layer system next.

6. Design optimization: flash experiment for therm&characterization of a liquid

6.1 Modelling

The problem is described Kigure 22 It consists of a liquid layer in between two odiical walls. If
the liquid layer thickness is small with respectit® inner radius modelling in a plane geometry
becomes justified. A pulse heat flux is absorbedhigyfront face (inner surface).

Walls
h h
y <
j 14
—>
X
Impulsed
Flux T(t)
N
—>
—>
Liquid

Figure 22: Model of flash experiment for thermal charactenaatof a liquid
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The implementation of the analytical model is siifigdl by the use of thermal quadrupoles [7]. After
a Laplace transform on the problem, our modelvemiby a chain of quadrupoles. A diagram of the
system is given ifrigure 23

¢(p)

a2 s ] Da]w

Figure 23: Quadrupole representation
with:

- 1/hS being the resistance of the convective heat logsthsthe surrounding inside

and outside environments;
- A, B, C andD being the coefficients of the inverse transferrioas for the walls and
the liquid. Their expressions are given by:

2 2 2
A =D, =cosh{ P, J B, = 1 sinh[ &J andC, =AS /£ sinh{ &J (102)
a as [P a q a

a

(lower subscript indifferently refers to the fluid or to the wallars)

and:
€ : thickness of the material
a, : thermal diffusivity
A : thermal conductivity

6.2 Solution

The rear-face temperatu&( p) is then given by:

_ ¢(p)
6(p)= C +2AhS +B(hs)? (103)

A , B andC represent the coefficients of the transfer mathtained by taking the product of the
transfers matrices for the three materials:
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A B]_[A BJA BJA B, (10
c o] lc, Alc Alc, A

with:

(A,A +B,C)A, +(A,B +B,A K,
(A,A +B,C B, +(A,B, +B,A)A,
(c.A +AC)A, +(C,B +AAK,

A
B
C

By assuming that the heat pulgk(t) absorbed by the system (W2nis infinitely short (Dirac of
flux), then its transforrrw(p) =Q/ S is equal to the pulse ener@yper unit area of the front fa&

For h =0, the temperature at long times is obtained by:

T, =limT(t)= lim pé(p) (105)

t o0
Thus,

T. = lim % (106)

)

and:

T_ Q

Y = (T, is called the adiabatic temperature (207)
S (Zlocwew + mlel)

In the general case (for arty, the inverse Laplace transform of relation (1@9)implemented
numerically. We use several algorithms which givie® same results, either the Stehfest
algorithm [10] the De Hoog algorithm or a numerikalerse Fast Fourier Transform (I.F.F.T).

Figure 24 gives an example of the results obtained for tiqoids (water and oil) and two different
thicknesses of both walls (0,5 and 2 mm). The tlophgsical properties used for the simulations are:

- ¢ =45mm,h=5Wm?K™.

- Water: A, =0.597W.m*K™, a =1.43.10" m*s™

- Oil: 4 =0.132W.m*K™, a =7.33.10° m*s™

- Walls (copper):A, =395W.m*K™, a, =1.15.10" m?s™
- ¢e,=050r2mm

- Q/S=4.10* Jm™
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4 T T T T T
— Water — 0.5 mm
- - Water -2 mm
5.5 Qil -0.5mm
-- Qil -2mm
3r i
2.5+ B
4
= 2r B
<

0 100 200 300 400 500 600
Time t,s

Figure 24: Simulation examples (Pulsed responses)
6.3 Sensitivity study
The model depends on several parameters. Somemf dne supposed to be exactly known and the
others will be identified. The initial goal is tbdrmally characterize the fluid, i.e. to estimat® t
quantities, its thermal diffusivity and conductivifor any other set of parameters as the effusiwity

the specific heat). Assuming the thermal propertiegshe walls and the geometry of the system
known, the model is a function of four unknown paegers:

* ﬁ1:el/\/a_| *B=elA (108)
*,83=Q/S *B,=h

One can wonder here whether simultaneous estimatidhese four parameters is possible. So, a
sensitivity study has to be implemented.

Let B being the unknown parameter vector, the temperaasponse of the rear face is:
T =645, 5. 8) =1 (t:B) (109)
The experimental temperature being disturbed, aneassume an additive noise

Yi =T(ti B) t & (110)

& being the random noise, associated with the meamnty, at the timet; .

The sensitivity coefficient of the resporBeto parametersﬁ’j at timet is defined by:
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oT
S t,B)=——1t, 111a
(08)=55 ) (111a)
Thereafter, we will use the reduced sensitivityfioents which are easier to compare:
* oT
S (t,8)= 06 —1t, 111b
)= 85 h) (111b)

The estimation problem is non-linear. Thus, thesigmiity curves and consequently the estimation wil
depend on the nominal values of the unknown parmidiut also on the known parameters and the
geometry of the system. This is the reason whyirfetance, an optimum on the walls thicknesses
exists.

Reduced Sensitivies : Water — 0.5 mm Reduced Sensitivies : Water — 2 mm
2 T T T T 1.5 T T T T T
J— eI/\/a| —_— e‘/w/a‘

e e/\ e/

- - _ ' 1k [

QIs

--h
0.5+ S 4

—4 . . . . . 2 . . . . .
0 100 200 300 400 500 600 0 100 200 300 400 500 600
Time t,s Time t,s
(a) (b)

Reduced Sensitivies : Oil - 0.5 mm Reduced Sensitivies : Oil - 2 mm

3 T T T T T 15 T T T T T
— eI/\/aI e e|Na|
ol - e | - e\
Qs 1r Q/s
e e ~--h --h
1 - - A““““<—»,
0.5F

_5 | . . . . = . . . . .
0 100 200 300 400 500 600 1 50 100 200 300 400 500 600
Time t,s Time t,;s
(©) (d)

Figure 25: Sensitivity curves for Water and Oil (0.5 mm andif)
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As an example,
Figure 25 gives the sensitivity functions for water and with 0.5 mm and 2 mm walls thicknesses
respectively. The whole set of curves shows thahesgarameters are more or less correlated

(proportional sensitivities), particularlys, (el/\/a_l) and S, (Q/S) or B, and S, (e /A ), which

would not allow the simultaneous estimation of th@arameters and consequently of the thermal
diffusivity.

In addition, one can notice that for times lardeart twice the time of the maximum response, the
parameters are strongly correlated. In fact, thetesy cooling seems to occur at a quasi-uniform
temperature. The thermogram is a pure exponentigdhvonly depends on one parameter, the time-
constant of the syster(QcheW +,0c,e|)/ h. This remark suggests a limitation of the estiorati

interval to short times. We have chosen to workveent =0 andt =1.5t__ here.

The high number of parameters (4) and their carogla make the reading and the interpretation of
the sensitivity curves difficult. A stochasticalidy will allow a better comprehension of this pexbl

Useful measurements imply small variances assatiateorrelation coefficients far from unity. The
reduced covariance matriscov(B), for a unit standard deviation of the noise £ 1°C) and the
correlation matrix corresponding to the four prenggarameters are givenTrable 7andTable 8

From the reduced covariance matricesv (8), one can notice that the relative variance®fis the
smallest one, which shows that the thermal diffit)giwill be better identified than the thermal
conductivity. In the same way, the estimation W#l better for oil than for water. Later on, onel wil
consider the water as a fluid test knowing thatléms conducting fluids, the results will be better
Finally, one can observe that the variances styowngty with the thickness of the walls which have
thus to be optimised.

From the correlation matrices, one can note tBatis correlated with3, and £, in most cases,

particularly for water, which confirms the precegliresults. In case 4 (oil, 2 mm), one can notieg th
the parameters are less correlated. It will thupdssible to estimateand A at the same time, if the
thickness of the walls is chosen in an optimal way.

One can also notice that the estimation problemtrisngly non-linear since the four studied cases
exhibit very different covariance and correlatioatrices.

Table 7: Reducedariance-covariance Matrices (1°C standard devidtio the noise)

Water — 0,5 mm Water — 2 mm
0.3394 -2.3464 2.4913 1. 4724 ! 0,3218 -0,8419 0,7528 -0,5216
-2.3464 16.5302 -17.4179 -9.4267 1 -0,8419 2,4531 -2,0146 2, 5528
2.4913 -17.4179  18.4144  10. 4120 ' 0,7528 -2,0146 1,7770  -1,3092
1.4724  -9.4267 10.4120 9.7216 ' -0,5216 2,5528 -1,3092 8, 7357
Oil = 0,5 mm Oil =2 mm
0,0649 -0, 2870 0, 2533 0, 1216 ! 00,1920 -0, 4540 0,1500 -0, 2349
-0, 2870 1,3529 -1,1408 -0, 4388 -0, 4540 1,3544 -0, 2825 1, 0794
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0,2533 -1,1408 0, 9958 0, 4599 ¢+ 0,1500 -0,2825 0,1413 -0,0219
0,1216 -0,4388 0, 4599 0, 3979 ¢ -0,2349 1,0794  -0,0219 1,4113

Table 8: Correlation Matrices

Water — 0,5 mm Water — 2 mm
1,0000 -0, 9907 0, 9966 0, 8106 1,0000 -0, 9476 0,9954 -0, 3111
-0, 9907 1,0000 -0,9983 -0, 7436 -0,9476 1,0000 -0, 9649 0, 5514
0,9966 -0, 9983 1, 0000 0, 7782 0,9954 -0, 9649 1,0000 -0, 3323
0,8106 -0, 7436 0, 7782 1, 0000 -0, 3111 0,5514 -0, 3323 1, 0000
Oil - 0,5 mm Oil —2 mm
1,0000 -0, 9685 0, 9965 0, 7569 1,0000 -0, 8903 0,9104 -0, 4512
-0, 9685 1,0000 -0,9829 -0,5981 -0, 8903 1,0000 -0, 6457 0, 7807
0,9965 -0,9829 1, 0000 0, 7305 0,9104 -0, 6457 1,0000 -0, 0491
0,7569 -0,5981 0, 7305 1, 0000 -0, 4512 0,7807 -0, 0491 1, 0000

In all cases, it seems difficult to estimate the parametersB, and [, simultaneously, because of

the large relative standard deviatirzu}y2 I B, =051 A =([rcov (fi)]zz)uzof B, in each of the four
cases.

6.4 Simplified study with a two-parameter model

To simplify, let us consider the case with no Heas (h = 0). Since the heat losses are completely

uncorrelated with the other parameters at shorédifuntil the maximum of the thermogram). So,
introduction of the heat loss coefficients will leamo consequences in the estimation of the two
parameters which are looked for the liquid.

To get rid of the influence of the parame@(S , which acts as a proportionality constant in model
(204), we will work with the reduced thermogramided by:

e(t,ﬂl,/fz)=—TT("/33'[52’;3) (112)

The four examples previously presented are giveétigare 26 and
Table 9.
In some cases, the correlation between the paresngieand S, is large (greater than 0.99). The first

idea is to seek a new couple of parameters whialidudoe less correlated and thus could be estimated
under better conditions but it is unfortunately ompible as shown in the previous section.

Lecture 4: Non linear parameter estimation prolslenpageé 3



Metti 5 Spring School

Reduced Sensitivies : Water — 0.5 mm

Roscoff — June 13-18, 2011

Reduced Sensitivies : Water — 2 mm
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Figure 26: Reduced Thermograms and Sensitivity curvesof thigparameter model
for Water and Oil (0,5 mm and 2 mm)

Table 9: Covariance and Correlation Matrices - two-parametedel

Water Oil
0,5mm | 2 mm 0,5 mm | 2 mm
Covari ance Covari ance
0.5007 -3.0373 | 0.2369 -0.4378 0.1911 -0.5548 | 0.1977 -0.1851
-3.0373  18.6223 | -0.4378 0. 8622 -0.5548 1.6662 | -0.1851 0.1979
Correlation Correlation
1.0000 -0.9947 ! 1.0000 -0.9688 1.0000 -0.9832 ! 1.0000 -0.9358
-0. 9947 1.0000 : -0.9688 1. 0000 -0. 9832 1.0000 : -0.9358 1. 0000

Lecture 4: Non linear parameter estimation prolslenpageé4



Metti 5 Spring School Roscoff — June 13-18, 2011

6.5 Change in the definition of the parameters

However, there is a physical limitation with thisebretical approach. The parame@r=¢,/4, is

unknown since it is the quantity that one seekmeasure. Then, its seems to be more relevant, if
necessary, to introduce a parameter that one wikitile to measure in an additional experiment, for

instanceoc, g here.

Reduced Sensitivies : Water — 1 mm

1.5 . T T —
e|Na|
T PCE
A o i
QIS
-~ h
0.5F 1
O T i
-0.5r \\\ 1
_17 T T
-1.5r 1
-2 : . :
5 50 100 150 200

Time t,s
Fluid (Water) pf =4.5 mm, A = 0.597 W.m™*.K", a=1.43.10" m>.s™, pc, = 4.17.10° IJ.m> K" ]
Walls (Copper) ¢, =1 mm, A,=395 W.m*.K*, a,=1.15.10* m®s™, poc, = 3.43.10° I.m>.K* ]
H=5W.m?2K"*-Q/S=4.10* I.m?
Figure 27: Sensitivity curves - dimensional sigmath the g parameter vector

As it is impossible in all cases to eliminate agpaeter and knowing that the parameters substitution
does not have any influence on the quality of teértion (if one keeps the same number of
parameters), one chooses now:

.
B=|g=p=cla B=me B=p=QIS B;=p.=h]
In difficult cases, one will fix3, to its nominal value (as the standard deviationfris too large).?

Figure 27 gives an example of sensitivity curves obtainednfthe four parametere,(/\/a_, oce,

Q/S andh) B dimensional model and the three parametgs lfeing fixed in this case) models.
Table 10 gives the corresponding covariance and correlatiatrices. One can observe that the
variances and the correlations are strongly impt@ss, is fixed.

Lecture 4: Non linear parameter estimation prolslenpageé5



Metti 5 Spring School Roscoff — June 13-18, 2011

Table 10: Reduced covariance and correlation matrices

Water — 1 mm

4 parameters: e/\a . me, 3 parameters  ( pce, fixed):
Q/sand h e/\a, Q/sand h
Covari ance Covari ance
0. 2567 1. 5697 1.0776 0.0993 0. 0057 0. 0094 0. 1353
1. 5697 9.8171 6. 6809 -0. 2249
0. 0094 0. 0208 0. 3121
1.0776 6. 6809 4.5673 0. 1590 0. 1353 0. 3121 4 8955
0.0993  -0.2249 0. 1590 4. 9007 : : :
Correlation Correlation
1. 0000 0.9888 0. 9952 0. 0886 1. 0000 0. 8596 0. 8074
0.9888 1. 0000 0.9977 -0.0324 0. 8596 1 0000 0. 9777
0. 9952 0. 9977 1. 0000 0. 0336 0' 8074 0' 9777 1' 0000
0. 0886 -0.0324 0. 0336 1. 0000 ’ ’ ’

As shown in this section, by fixing parameters, van improve the estimation of a particular
parameter. By reducing the number of parameterdjave improved the estimation of the remaining
parameters but we have also introduced a systemaitic. We will show in the next and last section
how it is possible to estimate this bias by takirigto account, to reduce the corresponding syatem
errors on the estimated parameters.

7. Taking the bias into account to reduce the varigces on estimated parameters: case of
the flash method [1]

In this section, we will show through a simple myde how it is possible to reduce the
variances on estimated parameters by taking intowat the bias caused by the use of a reduced
model. We have already shown in Section 3.3.4ithtte case of a biased model, where the structure
(58) of the model is wrong (a drifb, (t) in the recording system base line there), thenastéd

parameters are biased and the residuals curvergdi We also have shown that the bias on the
estimated parameters depends on the length ofntieeiniterval. The idea is then to estimate the bias
on the estimated parameters from the residualseausing a time variable estimation interval: itlwil
concern either the case of an error in the straadfithe model, or the case of an error on the nakmi
value of a subset of parameters of the parametdodn this last case only a part of the paramete
vector is estimated while its complementary paragsumed to be known and taken equal to its
nominal value that differs from its exact value.

7.1 Modelling

The Flash experiment consists in a uniform in sgeeat pulse stimulation of a sample with a very
short duration (Dirac). The rear face temperatwelution is then considered and allows the
estimation of the thermal diffusivity. Different nadeal aspects as heat losses with the surrounding
are then considered. The sample is assumed cyaldnith a thickness and a radiusR. This
sample is submitted to an impulsed f|L¢((t) =Q 6(t), whereQ is the energy absorbed by unit area

of the front face absorbed energy (W)m
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Figure 28: Principle of the Flash Method

Heat transfer in 1D is given by :

0T _ 10T (113)
x* a ot
with the following boundary conditions:
att=0, T=0
. oT
inx =0, /la—:hT -p(t) (114)
X
inx =e, -Aa—T =hT
0x

The solution can be easily obtained using a Laptesnesform and is a function of two independent
parameters:

p)= Q a_. he R\ = Q
T(t,ﬁ)——f(—t —j or L[T(X't'ﬁ)]_c+2hA+th (115a)

with A = cosh(e,/p/a) B = \/1_ sinh(e4/p/a) C = Ayp/a sinh(ey/p/a)

A{pla
The “unknown” parameters are:

- , e a
* the characteristic frequency(inverse of the characteristic tintg): v = —, t.=1/v

e

 theBiot number (heat losses) Bi =h)|—e

vV
The “unknown “ parameters” vector is defined bg = [BJ
|
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Q

A third parameter is present in the response (1thé)adiabatic asymptotic temperaturg,, = ——,
pce

which is the maximum temperature that can be rehdheo losses occur in the experiment, that is if
Bi =0.

In order to get a simpler model, a normalizatiomede here, using the maximum temperalysg
of the thermogram, which can be evaluated on arraxgntal basis:

Tonax = Tadgia T (Vtmax» Bi) with vt F (8i) (115b)

max

where t,,, is the time this maximum occurs artl a function defining the corresponding Fourier
numbervt, .. . This allows to get a scaled temperature madelwith only two parameters:

SR N P (vt,Bi) _ f (vt,Bi)
Bi) f (F (Bi),Bi

f _ .
Tmax Tadia f (Vt ) B g (Vt, BI) (116)

max ?

We will assume now on that the exact values ofalpegameters are :

et =0.1s
Bi®** =0.05

7.2 Estimation with no bias

The results of an inversion with a pseudo-expertalemeasurement are shown kigure 29
TemperaturelT has been calculated by application of model (Li&aa simulated acquisition time
step At = 0.01s, that is form = 1000 measurement; =i At with i [1 m] , with the exact values

of B. This temperature theoretical signal is then sthledivision by its maximum to get the scaled
temperatureT, at any timet,, which has been corrupted by an additive indepeindeise &, of
standard deviatiom=0.01 to get a simulated experimental thermogram= T, + &, .

Let us note that this scaled standard deviatiomesponds in fact to the inverse of the signal over
noise ratio of the original temperature signal.e Tacalculated scaled temperatiite = g (Dti, éi)

as well as the corresponding residuals y; — T, are shown in Figure 29.

The following estimates have been obtained throvgimalized least squares:

D 0.099998 s
- | = (117)
Bi 0.049987
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Figure 29: Estimation from a thermogram corrupted by noise
Figure 29 Comparison of the recalculated thermogram (catedl from the estimated values of the
«unknown » parameters given by a Levenberg-Matjuaalgorithme: O.L.S
minimization) with the (synthetic noised thermogramdicated as "experimental" in the

plot) and residual plot in green (difference betwe@ect exact model corrupted by noise
of standard deviation and recalculated thermogram).

The errors (absolute and relative) on both pararsetn be calculated. They are quite low:
e =l'/‘ _Vexacy 2 10—6 S—l e / Vexact 0002 %
g ka " t = -5 = g " t = (118)
eg = Bi — Bi®* 1.310 eg | Bi®* 0.026 %
These errors can be still reduced by repetitiomxgferiments and calculation of the corresponding

statistical deviations of the corresponding estiomest, since there is no bias in the model:

E(B) = o (119)

It is also possible to compare them to their cqoesling stochastical levels using the variance-
covariance matrix of the OLS estimator:

Lecture 4: Non linear parameter estimation prolslenpageé9



Metti 5 Spring School Roscoff — June 13-18, 2011

[var (O)} - o?diag (578)%)= {0.0243 10-93‘2} . {Uo} _ {4.9 10°® s"l}

var (Bi) 0.900310°° T 310°°
exact 0
- o, ! V. _ 0.005 % (120)
ey | Bi® 0.060 %

7.3 Estimation with a bias: whole domain approach

Even if the previous estimation is excellent, inrtg of estimation errors, we will try now to reduce
the number of “unknown” parameters involved in theoretical model by setting the second

parameterBi to a nominal valueBi™" that differs from its exact value. So the samenégue
already presented in section 3, with a decompesdfdhe parameter vector into two parts:

B

[g } with B. =[v] B. =[Bi] (121)

Only the first partB, , which is composed afparameters, will be estimated while its complemsnta
part, composed af - nr parameters, is supposed to be known. This segaridvill be blocked to a
wrong nominal valug8;°" = Bi"™" = 0.04 here. So a deterministic errep = B" - B will add

C

its effect to the noise, in thB, estimation process.

This means that estimation of 8, will be made with a biased model

ypased (t- B ) =T (t; B, ,B°")instead of the right oney ., (t; B, ) =T'(t; B, ,B5"), which
means that an output bias appears:

by ()= Y2 (15 B, )Y o (6 BT™) = Seep witht =t t, - t,]7  (122a)

The last approximation derives from a first ordppr@ximation around the nominal values of both
B, and B, . So, at a given time, the experimental signallmamritten the following way:

Yi=Ymo (i B )+ & = Yr?:gsw (t;B) —b, (t)+ & (122b)

The corresponding deterministic erreyg for this parameter will produce a bib% for the estimation
of B,, see equation (93c), which is recalled here:

b, =-(sTs,) ST, (t) with b, =E(g )-go= and b, ()=S.e, (122c.d, e)

Up to now it has been assumed that the structutbeoinodel is known (sensitivity to both set of
parametersB, and B, are available) and that the estimation bias Bprstems from an error of the

nom

parametersB, that are supposed to be known and that are fiaesl wrong valueB.”" . Equation
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(122c to e) corresponds to a generalization of dpgroach: one considers now that the error lies in
the structure of the model, without any specifierence to the fixed parameters.

In order to analyse the effect of estimating witbiased model, synthetic measurements, using the
exact model (116)T =g (v®*'t; Bi®*") =y, (t;B,,B8.) have been generated on the [0 10 s]
time interval, in the absence of noisg £ 0) and an OLS estimation g8, =v, using the same

model (116), but with the nominal value @gf = Bi™" has been implemented: this means that the
biased model has been used for inversion. OLS attm over this time interval vyields
[}r =0.101096 s, that is a bias b =0.001096 s hence, through application of its definition

(122d).

Direct application of (122c and e) fore, =-0.01 Yyields bis =0.01095 s™, that is
E(ﬁr )=0.101095 s, which is a value quite close ﬁ, .

The corresponding simulated 'experimental’ biassttualsy,, (t;; iz,,pg°m) (red line) as well as

the residuals of the unbiased estimation (grees),liare plotted irFigure 30. The corresponding
theoretical biash, (t), calculated using equation (122e) is also ploft#de line): this constitutes a

validation of this equation.

Tem pe rature Residuals Experimentalresiduals curve

| r (10°K)

Theoreticalresiduals curve

Difference

_10 1 1 1 1 1 1 1 1 1

Figure 30: Residuals curve in the case of the biased (re@) wnbiased (green) model
and theoretical biased residuals (blue, equati®@d)
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In case of noisy measurements (independent andiddiy distributed noise, with a standard
deviation ), it is very useful to look for the expressiontbé estimation error. It is a column vector
defined as:

eii, :ﬁr - rexact = Br _E(Br) + E(ﬁr) - ﬁrexaCt = ﬁf _E(ﬁr) * bi;r (123)

So the estimation error foiir is composed of a stochastic pﬁt—E(Br)caused by noise& in the
measurement output temperature signal, and oferdetistic part, the previous bieb% , caused by

the errore, on the fixed nominal valug®" in the non estimated part of the parameter vector.

The magnitude of this error can be quantified & #xpectancy of the square of its "length" (ortsf i
norm, if all the parameters present in the origpaiameter vectors have the same unit):

E(e;s e, ) =E (ﬁr ~E(B, ))2 +blb, =cov(B)+b}b, (124)

Using equations (122a) and the expression (14hefvariance-covariance matrix of an unbiased
estimator:

el e, J=0? (s's, ) el sTs, (7S, ) 2STs, e, (125)

In the present case, bof) and B, are scalars and this equation corresponds to dified’ variance
of the estimation error:

0.2

mvar (0) = E((O— vexam)z) =var () + b} = sts © by (126)

t
r

r

In case of a noise of standard deviatmr 0.01 K and an estimation over the [0 10 s] time interval,
the value of this modified variance imvar (?) =1.2031107° s?, with a stochastic component

var () =1.4 10™'s®* and a deterministic componenb’ =1.2031107° s*: the bias is then the
dominant component of the estimation error, with arelative error

Jmvar (0) / v®e = b, [ v¥* = 1.1%.

It is possible to link the residual vector to theqeding systematic err@, and to the noise, using
now the more general notatioh =y, (t; B,, B.)., instead of (116) for the model output :

rzy_ymo(t;Br' Qom):ymo(t;ﬁrexact’ gxam)'i'g_ymo(t;ﬁr' (r:mm)
r=£-S, (B -B") - S, (B -B*)

WithSr:Sr(t;Br, Q"m)and SC:SC(t;fir, QOm)andS:[SrSC]
r=e-S, (B-E[B)+b,)-5. e

(127)
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Use of equation (122) and the fact that the stdihpart of the error irfi, is:

B -E(B)=(sTs,)'sT € (128)

yields:
. =(| -s, (sjs,)‘lsjj [-s. ¢4 ) (129)
Taking the expectancy of this expression of tha&ted vector yields:

E(r)=A(-S,e,) with A=1-5s (sTs )"sT (130)

This equations shows that the modelled residualoves a linear function of the deterministic error

S.ep =y (t; BT, BIM) -y (t; BT, B for the temperature output induced by the error
in the nominal value of the fixed pa@.°" of the parameter vect@r. However, it is not possible to

use this model to estimatS; e, because matrixA =1 -S; (SrTSr)_lsrT is idempotent (the
corresponding linear operator is also called asgutoy):

A=AZ=A%= |

Since matrixA is idempotent, it is also singular and its invedses not exist. This forbids the use of
model (130) to estimate the er®re; and hence to corre@; .

However, interesting conclusions can be drawn feguations (122a) and (130):

- if eg =0 then the residuals are not signéd(r ) = 0 and the bia&bis is equal to zero.

- if eg # 0 then the residuals are signégi(r) # O

- if STS, =0, the sensitivities to the parameter preseniBfi™ are completely uncorrelated
nom

with those present if8.°" (the corresponding two subspacesRdf andR" ™™ are orthogonal)

and there is no bias fofS’,, whatever the error foB°" . In this case, the residuals are still
signed, with an expectandy (r) =-S; e .

The residual curves for OLS estimations with, =t,, =10 s using either the unbiased model
(green, already shown in figure 29) or the biases (®ed) are shown ifrigure 30.
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7.4 Estimation with a bias: use of a variable estimatione interval

In the discussion of the different cases preseateve, one can see that if either the sensitivites

nom

the parameters present iB/'°" are linearly independent of those presentBf’™ (case where

nom

S!S, =0 which impliesE (r) =-S, eg and bii, =0), or if there is no error foB™ ( ez = 0
which impliesE (r) = 0and bi; =0) the residuals do not depend on the estimatioe fimerval

considered.

So, in the general case where these two assumgmmn®t hold, the estimate ¢8, depends on this
interval: one can thus vary the length of the timerval (initial value[t1 tm]) which can become

[tl t, = tend] with p < m. So this estimate, that can be noﬁc{tend) depends on the final tintg, 4
of the estimation interval considered.

Consequently model (122a) is recast for the bias:
A -1
bigr (tend )= E (Br (tend )) - B;sxact :_(S;r (tend )Sr (tend )) S;r (tend) Sc (tend )eﬁc (131)
and it can written for two final times,, =t, andt,,=t,, with t, >t,. Substracting the

corresponding two equations allows to get a modedse output, the expectancy of the difference of
the two estimates, can be evaluated:

Abﬁrab =E (ﬁfb _Bfa): _[(S;rb Srb)_lsl) Scb - (S;ra Sra)_ls:—a Sca:| epc

where Srk:Sr (tendk) ; Sck:Sc(tendk) and Brk =Br (tendk) for k=aorb

(132)

Writing the two sensitivity matrices over the tvvﬂxa'rvals[t1 ta] and [tl th yields:

S S
Srb = e and Scb = ° = S:—b Scb = S:—a Sca + S:—ab Scab (133)
Sr ab Sc ab

whereS, , andS_,, are the sensitivity to both parameter sets owettghl th interval. Substitution
of this equation into (133) yields:

Abﬁr ab = _|:[(S;rb Srb)_l_ (S;ra Sra)_l)s;ra Sca +(S:—b Sr b)_ls:—ab Scab i| eﬁc (134)

If t,and t, are very close, it is possible to neglect thet folfference in the bracket, since
(SrTb Srb)_lz (SrTa Sra)_l, which yields:
T 1ot
Ab = _(Srasra) Srab Scab eﬁc (135)

Biab ™
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If we takeb =a + 1 and introduce the sensitiviti€s, of the output to then, parameters present in

B. at a single timet,, (S, is a line vector), as well as its counterp&gtfor the n, parameters
present inB, at the same time, the above equation becomes:

-1 - - 1 = = . =
Ab[;r ab = _(S;ra Sr a) S;r (tab) Sc (tab) epc = (S;ra Sr a) S;r (tab) by (tab) Wlth tab = ta + At / 2
(136)

Here the bias, (fab) in the model output defined in (122c) appearsieiiy. So, the above equation
can be recast under the following form:

S;r (t_ab) by (fab) == S;ra Sra Abﬁr ab (137)

It is possible to get a realization &b, . which is simply the difference of the two estinthtalues

B ab
Brb and Bra. Equation (137) corresponds to a systemnpfequations with a single unknown

b, (t_ab) . Its solution can be found in the ordinary leagteses sense:

(tab)_ _; Sr (t_ab) S;ra Sra (Brb _Bra) (138)

z S (t_ab)

j=1

If we go back to the preceding example (biased maofdihe flash experiment with a single parameter
V), one ham, =1 and equation (138) becomes:

— Ya l/b
Sy (t 139
y(ab)s(t 21() (139)
where D, is the characteristic frequency estimated over[ttﬂeta] interval and, over the[t1 ta+1J
using biased modey 224 (t; B.)=g(vt; Bi"™") =y, (t; B., B™).
It is thus possible to plot thlfiy (fab) using (139) witha varying from2 tom -1.

An alternate expression of the output bias estma{iLl39) can be implemented with a difference

k = b-a larger than 1, in order to smooth the noise in (he-,) difference (a kind of "moving
average filtering"). In this case, the estimatexblbiecomes:

By(t'ab)—( Va ZS t) with fy=la‘h (140)

b- a)s () & 2
Once the output bial?zy (t) estimated for each of the possible pair of intred the form:
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[tl ta] and [tl ta+kJ for a=2tom-Kk (141)
one can build an output bias vector the comporgiighich are them —(k +1) possible time?‘_ab

~ - A - P T
b, = [, (6 2.4) By (s 50) By (e ) (1422)

and application of equation (122c), with sensikgtto the components @, calculated on the
corresponding values ci;b yields a corrected value of the preceding estimato

~ ~

~ ~ ~ -1
Bcorrected - Br (tm) _ bi;r - Br (tm) + (S:-Sr) S;rby (142b)

r

The first components of the estimation of the otitpias vectorBy are characterized by a high
stochastic error, because their estimations algetbby a low number of measurement points. So, it
is more interesting to use the last componentsef@ample b, (fm_k m), for the estimation of the

estimation bias thanks to the expectancy of thiaséarm (122b) written forB, = [ir :

E (1) =E (y))— E(Y22 (t;; B,)) = Vo (i3 BT) — E(yR2™ (1;; BT +(B, —BT°"))(1434)

A first order expansion of the last expressiondsel

E(r)=-S E(B ~B™)~S; €5 ==S, b, —by(t) (143b)
Once an estimation of the output bias availabletfet,, =t__. ., an observation of the residual at
the same time on th[at1 tm] interval yields a relationship between the estewaif b (t;) and of

bﬁ ;

r=—-3S

i ri

BA—@@) (143c)

If one single parameter is estimated, that is,if= 1, the preceding sensitivity line vect8 ; at time
t; becomes a scalar, which allows an estimaﬁgn of the estimation bias and hence the definition of
a corrected estimator fgf, :

6 - _ by (ti) tr — fcorrected  _ /Z; + by (ti) t
r

B S ' S

ri

(143d)

ri

Let us remind that all the previous expressionstiier output biash, are based on the assumption
associated with equation (135):
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(t, —t )/t <<1 (143e)

7.5 Correction of the bias using a variable estimatione interval: application to the flash method

To illustrate these results, we consider the cdsthe Flash method. As previously shown, this
problem involves two parameters: the characteriggiguency and the Biot number (heat losses).

For the simulation of an experimental curve, tHiofeing exact values are considered:

veet =0.1s
Bi®*® = 0.05

To simulate a bias on this detailed model, we a®rsihe heat losses as a “known” parameter. The
value of the Biot number is fixed to a nominal vaBi ™™ =0.03 . To simplify, we will consider the
signal without noise (only the determinist compdrarthe error is considered).

Time t,s
Figure 31: Thermogram with heat loss and scaled sensitivities

Theoretical thermogram (detailed model) and scattitivities to “unknown” §, ) and assumed to
be “known” (S, ) parameters are plotted fiigure 31

The sensitivity curves show that the thermogransessitive to 8, =v . This parameter has been

estimated by an O.L.S method with the biased mode solution is presented Figure 32 It is
clear that the estimated value is different ofrtbeninal value.
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Figure 33: Original (experimental) thermogram and recalculatedrmogram
with B == 0.1021s and S, = Bi"™™ =0.03 and residuals

If we then try to perform this estimation for difést time interval lengths,, we can observe as
illustrated inFigure 33 a variation of the estimated characteristic fremye’ (t,) with the estimation
durationtp . This means, as explained before, that a b}gs b, exists for the estimated parameter.

This information can be used for the determinatérb, (t;) =S;; e, . Only one point in time is

required to determinate the value of tje parameter and consequently the bias on the estimat
parameter.
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Figure 33: Evolution of estimated diffusivity (t,) over the[t, t,] time interval versus duratioty,
for p =1 to m=1000

In Figure 34, after an estimation of the output bi:ﬁ@ (too 1000) = By (tgso = 9.5 's) using equation

(140), the estimation bidsﬁ =b, =0.0022186 s™ has been calculated thanks to equation (143d).

This yields a corrected estimatigff*™**® equal to:

A =

peorrected = - — 6Zg = 0.10214 - 0.00222 = 0.09992 s™

that is a 0.08 % difference with the exact value.
At this same time the output bias is plotted (Igpoent) in figure 34. This operation has been repeat
for each timet; using a moving average (140) wikh=a-b=100 (blue solid line).

This  estimation output bias has been compared toe ththeoretical one
b, (t;) =S; ez = —0.03 Sg (t;) (red solid line) which is known here. Both curves guite similar

with a time lag that probably stems from the fihett the upper bound in the summation (1403 is
and not(a+b)/ 2.
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Figure 34: Comparison between theoretical and estimated autiais curves

So this method allowing the estimation of the masestimated parameters obtained by an inverse
technique using a biased model seems to be valitigtéhis example.

8. Conclusion

Useful tools have been introduced for the analgbisstimations (variance-covariance matrix) and the
detection of the ill-conditioned character of thardneter Estimation Problem (PEP). Different
techniques have been presented for tracking tleedegrees of freedom of a given PEP (matrix rank,
correlations between parameters, SVD, ..). If watwa enhance the estimation of a given parameter,
one solution is to use a reduced model. This ratlnoaedel can be either unbiased or biased. It is of
particular interest to know if a reduced modeligsbd or not.

We have proposed, in the last section of the lectorwork with a variable estimation time interiral
order to evaluate the systematic error causeddresitimated parameters. We hope that the different
"realistic" examples of thermal metrology presentethis lecture will help the reader to master the
corresponding tools to get good estimates in a PEP
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