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Abstract. The aim of this lecture is to present a methodology for enhancing the estimation of 
parameters in the case on Non-Linear Parameter Estimation problem (NLPE). After some 
definitions and vocabulary precisions, useful tools to investigate NLPE problems will be 
introduced. Different techniques will be proposed for tracking for instance the true degree of 
freedom of a given estimation problem (Correlation, Rank of sensitivity matrix, SVD, ..) and 
enhancing the estimation of particular parameters by using either Reduced model or Model 
with fixed parameters. The reduced model can be unbiased or biased. We will present a 
technique allowing to check whether a model is biased or not. We will show how it is possible 
to use the residuals plot for evaluating the systematic error on the parameters estimated through 
a biased model. Different examples in thermal metrology will be presented for illustrating all 
these points. 

List of acronyms: 
 
- NLPE: Non Linear Parameter Estimation 
- PEP: Parameter Estimation Problem 
- MBM : Model-Based Metrology 
- SVD: Singular Value Decomposition 
- OLS: Ordinary Least Squares 
- SNR: Signal-to-Noise Ratio 
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1. Foreword 
 
The Non Linear Parameter Estimation problem has been the subject of numerous lectures during the 
past METTI schools (see [1] Thermal Measurements and Inverse Techniques, edited by Helcio R.B. 
Orlande, Olivier Fudym, Denis Maillet, Renato M. Cotta, Series: Heat Transfer, CRC Press, 770 p, 
2011). This text aims first at gathering in a synthetic way the basic notions and tools that can be used 
practically to analyse NLPE problems in engineering and science.  
 
At the same time, it provides new insights about the tools available to: 
 
(i) enhance our knowledge about parameter identifiability in a given problem (which parameters can 
be really estimated in a given experiment and which precision can be achieved ?), 
(ii) track the origin of pitfalls in PEP, 
(iii) offer new perspectives for enhancing the quality of MBM in a general way. 
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2. Some definitions and vocabulary precisions 
 

 Performances of contemporary metrology, that is material characterization, are not the result of 
the enhancement of the technology of measuring instruments only. They are rather the consequence of 
the significant progresses accomplished in the field of Inverse Problems solving, especially when it is 
based on a very large amount of data. These are provided by new tools and by the facilities now 
available for numerical acquisition of experimental signals (CCD detectors allowing for 2D/3D 
numerical data and high frequency time resolution). Understanding the conditions for which 
parameters can be estimated from the model/measurements pair constitutes also a key point for 
reaching a high quality estimation. 
 
 Measuring a physical quantity jβ  requires a specific experiment allowing for this quantity to 

"express itself as much as possible" (notion of sensitivity). This experiment requires a system onto 
which inputs u( t )  are applied (stimuli) and whose outputs y( t ) are collected (observations). t  is the 

explanatory variable: it corresponds to time for a purely dynamical experiment. A model M  is 
required to mathematically express the dependence of the system's response with respect to 

quantity jβ  and to other additional parameters ( )kβ k j≠  : mo η( , , )=y t β u . Many candidates may 

exist for function η  - depending on the degree of complexity reached for modelling the physical 
process - which may exhibit different mathematical structure – depending for example on the type of 
method used to solve the model equations. Once this model is established, the physical quantities in 
vector β  acquire the status of model parameters. This model (called knowledge model if it is derived 
from physical laws and/or conservation principles) is initially established in a direct formulation. 
Knowing inputs u( t )and the value taken by parameter β , the output(s) can be predicted. 
 
 The linear or non linear character of the model has to be determined: 
 

� A Linear model with respect to its Inputs (LI structure) is such as: 
 

 1 1 2 2 1 1 2 2mo mo moy ( t ,β ,α u α u ) α y ( t,β ,u ) α y ( t ,β ,u )+ = +  (1) 

 
� A Linear model with respect to its parameters (LP structure) is such as: 

 
 1 1 2 2 1 1 2 2mo mo moy ( t ,α β α β ,u ) α y ( t ,β ,u ) α y ( t ,β ,u )+ = +  (2) 

 
 In a metrological problem referred here as MBM, observations of the outputs will be provided 
by measurements. The inverse problem consists in making the direct problem work backwards with 
the objective of getting (extracting) β  from moy ( t ,β ,u ) for given inputs and observations y . This is 

an identification process. The difficulty stems here from two points:  
 

(i) Measurements y  are subjected to random perturbations (intrinsic noise ε ) which in turn 

will generate perturbed estimated values β̂  of β , even if the model is perfect: this 
constitutes an estimation problem. 

(ii)  the mathematical model may not correspond exactly to the reality of the experiment. 
Measuring the value of β  in such a condition leads to a biased estimation 
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trueˆBias E(β ) β= − : this corresponds to an identification problem (which model η  to 

use ?) associated to an estimation problem (how to estimate β  for a given model?). 
 
The estimation/identification process basically tends to make the model match the data (or the 
contrary). This is made by using some mathematical "machinery" aiming at reducing some gap 
(distance or norm)  
 

 mo( ) ( , , )= −r β y y t β u  (3) 

 
 One of the obvious goal of NLPE studies is then to be able to assess the performed estimation 

through the calculation of the variances ˆV( )β  of  the estimators of the different parameters. If the 
probabilistic distribution law of the noise is known, this allows to give the order of magnitude of 
confidence bounds for the estimates. NLPE problems require the use of Non Linear statistics for 
studying such properties of the estimates. 
 Because of the two above-mentioned drawbacks of MBM, the estimated or measured value of a 
parameter jβ  will be considered as "good" if it is not biased and if its variance is minimum. 

Quantifying the bias and variance is also helpful to determine which one of two rival experiments is 
the most appropriate for measuring the searched parameter (Optimal design). In case of multiple 
parameters (vector β ) and NLPE problems, it is also helpful to determine which components of 

vector β  are correctly estimated in a given experiment. 
 

3. Useful tools to investigate NLPE problems 
 

3.1. Sensitivities 

The central role of the sensitivity matrix in PEP has been shown in the preceding lecture (Lecture 2). 
In the case of a single output signal y  with m  sampling points for the explanatory variable t  and for 

a model involving n  parameters, the sensitivity matrix is ( )m n×  defined as 
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As the problem is NL, the sensitivity matrix has only a local meaning. It is calculated for a given 

nominal parameter vectornomβ . 

If the model has a LP structure, this means that the sensitivity matrix is independent from β . It can be 
expressed as (Lecture 2) 

 
1

n

mo j j
j

y ( t , ) S ( t )β
=

=∑β  (5) 

The sensitivity coefficient jS ( t ) to the thj  parameter jβ  corresponds to the thj  column of matrix S .  

The primary way of getting information about the identifiability of the different parameters is to 
analyse and compare the sensitivity coefficients through graphical observations. This is possible only 

when considering reduced sensitivity coefficients *jS  (sometimes called "scaled" sensitivity 

coefficients) because the parameters of a model do not have in general the same units. 
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or 

 *S = S R (7) 
 
with R  the square diagonal matrix whose diagonal is composed of the components jβ  of β . 

 

TOOL Nr1: A superimposed plot of reduced sensitivity coefficients *
j ( )S t  gives a first idea 

about the most influential parameter for a given model (largest magnitude) and about possible 
correlations (sensitivity coefficients following the same evolution). 
 
Example: Measurement of thermophysical properties of a coating layer through the Flash method 
using thermal contrast principle (Number of parameters 2n = ). 

 
 

Figure 1 : Basis of the “ thermal contrast” method 

The thermal contrast method requires the repetition of two "flash" experiments A and B (Figure 1). 
The first one is operated on the substrate only (index (2)) whose thermophysical properties are known. 
The second experiment is performed on the two-layered sample (index (1)/(2)). In both cases, one 
records the rear face temperature evolutions. The thermograms so obtained are normalized with 
respect to their maximum and the difference of the scaled thermograms AT  and BT  is computed to 

produce the thermal contrast thermogram. This latter is a function of the thermophysical properties of 
the coating (1) and of the substrate (2) through two parameters: 

1 2
1

2 1

e a
K

e a
=  and 1 1 1

2
2 2 2

λ ρ c
K

λ ρ c
=  

The observable (contrast curve) and the reduced sensitivity coefficients to 1K  and 2K  are plotted in 

Figure 2. They show (i) that the sensitivities have the same order of magnitude as the signal (a good 
thing) but unfortunately (ii) these sensitivities appear to be totally correlated (a bad thing). In this case, 
this simple plot shows that sensitivities to 1K  and 2K  are likely proportional and therefore that the 

identifiability of both parameters is impossible. This example will be more thoroughly modelled and 
studied in section 4 of this lecture.  

 

Experiment       A  

ϕ  0 
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3.2. Variance/Correlation matrix 

To go further and to investigate more deeply the PEP, the statistics of the estimator must be analysed. 
This can be made when (i) an estimator has been chosen (that is, a method to derive estimated values 
for the different parameters from the experimental signal), and (ii) the statistical properties of noise ε  
are known (according to experimentally founded observations). 

Considering the noise on the experimental signal, we assume it unbiased (perfect measurement with 

ideal sensor), having additive character and a probability law with 0 mean and constant variance 2σ  
which correspond to 

miimoi tyy Iεεβ 2)( cov;)(E;);( σε ==+= 0    (8) 

where mI  is the identity matrix of size m (number of measurement points). 

According to Beck's taxonomy (see [2] p. 134 and chapter VII), these assumptions correspond to the 
set "1111—11" with the following additional precisions: nonstochastic independent explanatory 
variable (time), and no prior information for the parameters. 

The OLS estimator OLSβ̂  minimizes the least square sum, which gives, for the  jth equation 

  ( )∑
=

−===
m

i
imoi

T
OLS ,tyy,,,J

1

22
);();();();()( uβuβtruβtruβtrβ  (9) 

where  
  );();( uβtyyuβtr ,, mo−=  (10) 
are defined as the residuals. 
 
The estimator is produced thanks to a minimization process i.e. when the jth equations 

  0 1OLS OLS j
ˆJ ( t , ) β ( j n )∂ ∂ = =β K  (11) 

are verified. The OLS estimator can be proved unbiased which means that the statistical mean of 

repeated estimated values β̂  is equal to the exact parameter vector β . 
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Lecture 2 describes the behaviour of such an estimator for a LP model where the calculations can be 
fully completed. 
In the case of a NL structure, the minimum is found through an iterative process using local linearity 
(Gauss-Newton algorithm basically, see [3]) of the form: 

  ( ) ( )11( k ) ( k ) ( k ) T ( k ) ( k ) T ( k )
OLS OLS mo OLS

ˆ ˆ ˆ( )
−+ = + −β β S S S y y β  (12) 

(See the corresponding relation in Lecture 2). 
 

The iterative process (12) requires to compute the inverse of matrix TS S. Therefore, this latter must 
offer good enough conditioning through repeated iterations, which is possible if the sensitivity 
coefficients are non zero and linearly independent. Without any specialized and dedicated tools, this 

iterative process can be stopped when the residuals norm Tr r  is of the same order of magnitude as the 
measurement noise, that is when: 
 

2( k )
OLS

ˆJ ( ) mσ≈β  (13) 

 
At convergence, the standard deviation of the error made for the estimated parameters can be 
evaluated thanks to the (symmetrical) estimated covariance matrix of the estimator. It characterizes 
the precision that can be reached on the estimated parameters (its inverse is sometimes named the 
precision matrix) and depends on the statistical assumptions that can be made on the data. In view of 
an OLS estimator, this matrix is  
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(14) 

 
It depends obviously on the level of the Signal-to-Noise Ratio (SNR) and brings into play the inverse 

of the TS S matrix, already pointed as a decisive operation for a troubleless estimation. Matrix TS S, 
which is also called the Fisher's information matrix with assumptions (8) and under the additional 
hypothesis of a Gaussian noise,  depends on the number of measurement points and of their 
distribution along the estimation interval, which, by the way, may be optimised if necessary [2]. The 

diagonal coefficients are the squares of the estimated standard deviation of each parameter 2

iβ
σ ˆ . They 

quantify the error that one can expect through inverse estimation. This is true if the assumptions made 
for the noise are consistent with the experiment. The problem being NLP, retrieving these optimum 
bounds through a statistical analysis may depend on the starting guesses made to initialize the 
estimation algorithm. This matrix can also be an indicator for detecting possible correlations between 
the parameters. An estimation of the correlation matrix is calculated according to 
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The correlation coefficients (off-diagonal terms) correspond to a quantification of the correlation 
existing between the two estimations of parameters iβ  and jβ  and, more precisely, between their 

errors. They vary between -1 and 1. They are global quantities (in some sense, “averaged” over the 
considered identification interval, the whole [0, t] here). Gallant [4] suggested that difficulty in 
computation may be encountered when the common logarithm of the ratio of the largest to smallest 
eigenvalues of cor exceeds one-half the number of significant decimal digits used by the computer. 
 
A more practical hybrid matrix representation Vcor can be constructed. It gathers the diagonal terms 
of the covariance matrix (more precisely their square root, normalized by the value of the estimated 
parameter) and the off-diagonal terms of the correlation matrix.  
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(16) 

 

TOOL Nr2: Matrix  )(β̂Vcor  gives a quantitative point of view about the identifiability of the 
parameters. The diagonal gives a kind of measurement (minimal bound!) of the error made on 
the estimated parameters (due to the sole stochastic character of the noise, supposed unbiased). 
The off-diagonal terms (correlation coefficients) are generally of poor interest because of their 
too global character. Values very close to 1±  may explain very large variances (errors) on the 
parameters through a correlation effect. 
 
NB: Another matrix, )(rcov β̂  defined in equation (52b) further on, is also very useful for assessing 

the quality of a potential inversion. Its diagonal coefficients are the squares of those of  )(Vcor β̂ , but 
its off-diagonal coefficients are different. 
 
Example: Here are two corV  matrix taken from [1]. They were obtained for the same NLPE problems 

and for the same given set of nominal values of the 3n =  parameters but considering two different 
observables A and B (two different locations of the temperature measurements). 
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3. Observable A 4. Observable B 
 
In the case of observable A, a high variance (nearly 3% for a one standard deviation error !) is 
observed for parameters 1β  and 3β  and explained by a high degree of correlation between them 

( 13 0 999ρ .= ). Observable A can clearly not be used for estimating these parameters. On the contrary, 

observable B offers good identifiability for all parameters (small variances) and does not show any 
risk of correlations. 
 

3.3. Ill-conditioned PEP and strategies for tracking true degrees of freedom 
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3.3.1. Pathological example of ill-conditioning resulting from correlated parameters. 

 The good identifiability of parameters can be related to the local convexity of the cost functional 

( )OLSJ β  in the hyper-parameter space. In case of correlated parameters, one obvious consequence is 

that many possible local minima will exist and make estimation algorithms fail. The discussion that 
follows here is taken from an example of inverse estimation in a case of coupled radiative-conductive 
heat transfer [5].  The thermal characterization of a semi-transparent material implies at least three 

basic parameters: the thermal diffusion characteristic time 2
dt e a= , the dimensionless optical 

thickness 0τ  and the dimensionless Planck number N  (explanations to follow in section 4.1) and so 

[ ]0

T

dt ,τ ,N=β . The estimation of the three parameters in this NLP problem may be difficult for 

some range of values of parameters 0τ  and N  where matrix ˆ( )corV β  shows that a high degree of 

correlation between these two parameters exists, whereas the value of parameter dt  remains 

unconcerned. 

A plot of the OLS criterium ( )OLSJ β  in the 2D space ( )0τ ,N  for a given dt  value and a given noise 

σ  (Figure 3) makes the consequence of such bad conditioning quite clear. 
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Figure 3 : Level sets for ( )OLSJ β  in the ( )0τ ,N  parameter space 

 
All level sets draw a very narrow valley oriented along a line which graphically corresponds to the 
relation 02N τ≅ . A 3D plot would show that the central line of this valley does really correspond to a 

descending slope and hence that no real minima can be found. The level set indicated in the figure 

corresponds to exactly 20 07OLSJ . mσ= = . Trying to make the iterative optimization algorithm 

working below this limit for the stopping criterion is useless. In other words, the larger the noise, the 
higher the stopping level-set should be.  
 
In the present case, this will not change the identifiability criterion. Depending on the initial guesses 
for the parameters, the deterministic algorithm will find different minima and different parameter 
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estimates (Table 1 : Example of local minima found β̂ , case Nr 1,2,3). The big dots in Figure 3 and 
the local minimum Nr 4 given in Table 4 have been obtained with a stochastic algorithm (Simulated 
Annealing) proving that when the problem is ill-conditioned, stochastic algorithms are of little help for 
a correct estimation process  (as it is usually believed).  
 
Such behavior is more likely the result of a model which is not suitable with respect to the physics 
involved. In the present case, it is interesting to note in Table 1 that all local minima that were found 
follows the relation ( )0 01N τ τ Cons tant+ = . 

 
In fact, an approximate modeling for conductive-radiative transfer in optically thin media can be 
shown to be more pertinent and more parsimonious. It makes naturally arise the notion of radiative 
resistance rR  which can be expressed as ( )0 01rR N τ τ= + . This resistance is the appropriate 

parameter in this limiting behavior and prove that there is no way to identify independently 0τ  and N  

(Many different pair are able to produce the same value for rR ) 

 
 

Parameter 
vector 

components 

Local Minima 
 
(found using either deterministic 

or stochastic algorithms) 
 N°1 N°2 N°3 N°4 

a  (107 m²/s) 5.2 4.9 5.85 4.8 
N  0.6 0.74 0.16 0.82 

0τ  0.38 0.5 0.076 0.56 

Rr = ( )1
N

0
0

Pl +τ
τ

 2.18 2.22 2.26 2.28 

 

Table 1 : Example of local minima found β̂  
 
TOOL Nr3: For an independent noise with known standard deviation and for a given model, it 
may be interesting to look at the level-set representation of the optimisation criterion in 
appropriate cut-planes (for given pair of parameters if n > 3), and compare it with the minimum 
achievable criterium given by 2J mσ= , where m is the number of measurements.  

3.3.2. Rank of the sensitivity matrix.  

We focus here on the scaled (or reduced) sensitivity matrix (6 and 7). This (m, n) matrix is composed 

of n  column vectors, the reduced sensitivity coefficients *
jS  
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and where t is a column vector composed by all the m times of measurement: 
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[ ]1 2

T

mt t t=t L     (18) 

These n column vectors *
jS  are in fact just the components of a set of n vectors *

jS
r

in a m-dimension 

vector space. One can recall here that this set of vector Σ = { *
1S
r

, *
2S
r

,…, *
nS
r

} is linearly independent 
only if: 

njjj

n

j

*
jj ≤≤=⇒=∑

=

1withanyfor0
1

αα 0S   (19) 

 
This means that a linear combination of all these m vectors is equal to zero only if all its coefficients 
(the jα 's here) are equal to zero. If it is not the case, system Σ is linearly dependent. Let us note that 

the presence of a null vector in the  set of vectors Σ  makes it linearly dependent: such a null vector 
*
jS

r
 would correspond here to a parameter that has no influence on the variation of the model output, 

(the very specific case of a parameter jβ  equal to zero is discarded here).  

So, if the set is dependent, one has to remove one vector *
jS

r
 from the original set Σ and try again to 

test the independence condition (19) with the n-1 remaining vectors. This can be made with the n 

possible choices for the vector *jS
r

that is removed from set Σ. If one finds one such independent set of 

n-1 vectors, the rank of the set is n-1. In the opposite case, one has to test the independence with n-2 
vectors and so on... The rank r of Σ is the larger number of vectors for an independent subset of Σ that 
can be formed with the n original vectors. 

 In order to illustrate this, we will assume that m = n =2 and we assume that the model is linear. 
This corresponds to two observations of a model with two parameters β1 and β2 . This leads to the set 

of two sensitivity vectors Σ = { *
1S
r

, *
2S
r

} from which the situations shown in Figure 4 can be 
considered: 

 

 
 

Figure 4 :  Reduced sensitivity vectors: 

a - independent sensitivities (r = n = 2) b - dependent sensitivities c- nearly dependent sensitivities 
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Case a corresponds to linearly independent sensitivity coefficients: the rank of Σ is equal to 2. It is 

also the rank of the reduced sensitivity matrix *S  and hence the rank of the sensitivity matrix, since 
RSS =*  (where R is the square diagonal matrix with two  diagonal coefficients  1β  and 

2β according to equation 7). One can say that the observations of the model output provides two 
degrees of freedom since two parameters can be estimated.  

Case b demonstrates a pathological nature of the sensitivity coefficients: they are proportional, with 
*
2S
r

= 2 *
1S
r

(one sees that the choice α1 = 2 and α2 = -1 in  (19) allows to show that the set of vectors Σ 
is not independent) and estimation of both coefficients is not possible anymore. In this case, the rank 

of *S and hence the rank of S is r = 1 and the determinant of the information matrix SS T is equal to 

zero. This means that the explicit value of OLSβ̂ , in the linear case and with a noise of spherical 
covariance matrix, which requires an inversion of this information matrix is not possible. The same is 

true for the calculation of the variance-covariance matrix of OLSβ̂ : the observations of the model 
output provide only one degree of freedom and only one parameter can be estimated, if the value of 
the other one is known. 
 

Case c lies in between: the two reduced sensitivity vectors are nearly proportional *2S
r
≈ 2 *

1S
r

 . Even if 
the mathematical rank is still equal to 2 (the previous equality is not an exact one) , one guesses that 
the number of degrees of freedom is somewhere between one and two and a more refined statistical 
analysis, taking into account the noise level in the measurements, has to be implemented.  
 
Let us note that it is possible to test the presence of two nearly proportional vectors in set Σ, in the 
very general case, with of course a number of parameters less or equal to the number of observations 

( mn ≤ ), by testing the assumption 0or
rrr

≈=− *
jjk

*
k c SS , where jkc  is a proportionality constant: a 

plot of )( i
*
k tS as a function of )( i

*
j tS , for the m common values it of the independent variable where 

observations are available (parametric representation of a curve) shows whether the plots gather on the 

)()( tSctS *
kjk

*
k = line or not.  

 
As an example of this type of representation, Figure 5 illustrates the case taken from [1] of a 1D rear 
face transient response of a low insulating sample (conductivity λ) sandwiched between two very thin 
copper layers. The knowledge model (RDM1 in [1]) assumes pure thermal resistance for the insulating 
layer and pure known capacities for the copper layers. The front face is stimulated by a Dirac pulse of 
energy Q (J.m-2 ) and with a heat loss coefficient h (W.m-2 K-1) equal on its two faces: the sensitivities 
to the three parameters Q, λ and h seem to be qualitatively independent, but only in terms of  two by 
two linear dependencies: this does not mean that the rank of the reduced sensitivity matrix (if only 
these three parameters are looked for) is equal to three, because three by three linear dependencies 
may be possible.  
 
This aspect, a possible dependency between the three sensitivity coefficients, is studied in Figure 6, 

for the same experimental design: a linear combination of the form 0or22113

rrrr
≈=−− *** cc SSS  is 

looked for between the three sensitivity coefficients (for β1 = Q, β2= h and β3 = λ) and a linear OLS 

estimation is made using the )(1 i
* tS 's and the )(2 i

* tS 's as the new independent variables and the 

)(3 i
* tS 's as new observations. The corresponding )(3 i

* tS values are plotted as a function of the 
recalculated values (optimal linear combination) of the corresponding 
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model, 1 1 2 2( ) ( )* *
i iˆ ˆc S t c S t+ : since the corresponding curve is very close to the first bisecting 

line, a qualitative 3 by 3 possible linear dependency is detected.  
 
However one can wonder how close it should be to impede the estimation of the three parameters: this 
has to be confirmed by a calculation of the covariance or corV  matrix of the corresponding 

estimations, as explained in 3.2.  
 
So, we will focus here on non linear parameter estimation problems where local linearization concepts 
as well as a Singular Value Decomposition of matrix deserve to be introduced.  
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Figure 5 :  Sensitivities plotted by pairs 
Figure 6 :  Evidence of Linear Combination 

between all three parameters 

3.3.3. Generalization : Use of SVD to track PEP degrees of freedom 
 
It has been shown previously (see Lecture 2) that the question of identifiability of the parameters of a 

model relies on the condition number of the information matrix ( )tS S . However a systematic tool for 

tracking down hidden correlations is lacking. Such a tool will be presented now to circumvent this 
problem. Ultimately it will allow determining which parameters it is wise to exclude from the 
estimation (metrological) process, in order to get better estimates of the remaining ones.  

 
In the next section two sequential steps will be presented.  
 
First, in order to use all the tools available for linear estimation (see Lecture 2) on which  the iterative 
OLS estimation (12) is based, the differential moyd  of the model will be calculated around a reference 

point nomβ , that is a nominal value of the parameter vector for which a sensitivity analysis has been 

carried out (see previous sections) and the original parameter vector β  will be made dimensionless 

using the components of nomβ : a reduced parameter vector x with a well-defined norm will be 
constructed. 
 
Second, Singular Value Decomposition (SVD) will be applied to the reduced sensitivity matrix of the 

"tangent" local linearized model around nomβ , the ultimate goal being the determination the r 
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parameters that can be estimated in a problem with n original parameters (with rn ≥ ), when the 
levels of the measurement noise and measurement magnitude are known (SNR).  
 
The non linear model moy ( , )t β is still considered here with m  available measurements. 

3.3.3.1. Parameterizing a non-linear parameter estimation problem around the 
nominal values of its parameters  

 
The following one-output non linear model is considered here: 
 

);( βtymo η=       (20) 
 
where β  is the column vector of the n parameters, of size (n, 1), moy its (scalar) output at time t and 

η  is a scalar function on t . If m observations of moy  are available for times ti, one can use a column 
vector notation: 
 

);( βtηy =mo       (21) 
 
where moy is the output vector of the model, of dimensions (m, 1) and t the column vector of the m 
times of observation. )(.η is a vector function whose values belong to Rm. 
 
Since the model is non linear, it will be written under a differential form, in the neighbourhood of a 

reference point nomβ , which corresponds to a nominal value, where a sensitivity study has been 
already implemented . This allows to use a local linearity : 
 

ββtSy d) ;(d nom
mo =       

jkfor,j

nom
i

ji

k

t
S

≠
∂

∂=
β

β
η

t

β ) ;(
with  (22) 

 
Let us note that in the notation moyd , the column vector t of the measurement times has been 
"frozen". S is the sensitivity matrix. 
 

[ ]
  for

21
);(

with
jk,j

nom

jn

k ≠
∂

∂==
β

β
t

βtη
SSSSS L   (23) 

 
In (22), the column vector moyd has a norm, because all its m components have the same physical 

unit. However, such is not the case for column vector βd , which is only a column matrix composed 

of n parameters whose physical dimensions are not necessarily the same: 1dβ  is a very small variation 

in the neighbourhood of nom
1β , which can be a thermal conductivity λ . 2dβ  a very small variation 

around nom
2β , which can be  a volumetric heat capacity ρc and so on … 

 
So βd  is not really a vector belonging to any vector space of dimension n, but a simple collection of 
n parameters. 
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In order to transform it into a real vector, a normalization of all its elements is necessary. The 

components of  nomβ will be used for that purpose.  A new dimensionless parameter x is introduced.  
 
Its components are defined by: 
 

( )nom
jjj /x ββln=     (24) 

 
And its nominal value is equal to zero:  
 

[ ]Tnom 000 L== 0x    (25) 
 

In the neighbourhood of nomβ , each component of x is equal to the relative variation of the 

corresponding component of β  around its nominal value (first order series expansion): 
 

( )
nom
j

nom
jj

nom
j

nom
jjnom

jjj /x
β

ββ
β

ββ
ββ

−
≈













 −
+== 1lnln    (26) 

 
The new parameter vector x is written the following way : 
 

( ) ( )nom
nomnom ββRβRx −≈= −− 11ln      (27) 

 
with : 
 

 





















=

nom
n

nom

nom

nom

β

β
β

L

MOOM

O

L

00

00

00

2

1

R      (28) 

 
With this definition, the differential dx of x is the logarithmic differential of β : 
 

[ ] )(lnd
dd

dwithdddd 21 j
j

j
nom
j

j
j

T
n xxxx β

β
β

β
β

=≈== Lx   (29) 

 

Let us note that the very last equality is only valid in the neighbourhood of nomβ . It can also be 
written in a column vector notation : 
 

βRβRx ddd 11 −− ≈= nom     (30) 
 
where R is the square diagonal matrix whose diagonal is composed of the components of β , in the 

same way as (28) for the definition of nomR  starting from nomβ . 
 
Equation (22) is rewritten in order to make xd appear : 
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nommo ** RSSxSy == withdd     (31 a-b) 
 
 

*S  is the reduced sensitivity matrix calculated for nomβ , see (17, 23).    
 

So, moyd is a column vector belonging to mR  (it can be made truly dimensionless by a division 

by );( nomβtη  but it is not necessary here) and xd  is a true column vector belonging to mR  

because its norm can be defined. 
 

3.3.3.2. Reminder of the Singular Value Decomposition of a rectangular matrix 
 
Any rectangular matrix (called K here) with real coefficients and of dimensions (m, n) with nm ≥ , 
can be written under the form : 
 

TVWUK = ,  that is  
















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
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





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


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





















T

nw

w

VUK
0

0

O

1

 (32) 

 

 
This expression is sometimes called "lean" singular decomposition or "economical" SVD and involves  
 
- U , an orthogonal matrix of dimensions (m, n), : its column vectors (the left singular vectors of K) 

have a unit norm and are orthogonal by pairs : n
T IUU = , where nI  is the identity matrix of 

dimension n. Its columns are composed of the first n eigenvectors Uk, ordered according to decreasing 

values of the eigenvalues of matrix  TKK . Let us note that, in the general case, m
T IUU ≠ . 

 

- V , a square orthogonal matrix of dimensions (n, n), : n
TT IVVVV == . Its column vectors (the 

right singular vectors of K), are the n eigenvectors Vk, ordered according to decreasing eigenvalues, of 

matrix  KK T ; 
 
- W , a square diagonal matrix of dimensions (n , n), that contains the n so-called singular values of 
matrix K , ordered according to decreasing values : nwww ≥≥≥ L21 . The singular values of 

matrix K  are defined as the square roots of the eigenvalues of matrix KK T . If matrix K  is square 
and symmetric, the eigenvalues and the singular values of K are the same. 
 
 

3.3.3.3. Singular Value Decomposition of the scaled sensitivity  matrix 
 
This singular value decomposition can be implemented for any matrix K . 
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A double change of basis, in the measurements domain and in the parameter domain, using the 
matrices of the left U  and right V, in the SVD of  S*  written for K = S* yields : 
 

T* VWUS =      (33) 
 

Matrix V is used as a (square) change of matrix basis and it transforms the differential of the reduced 
parameter vector xd  into a new differential vector pd , where p can be called the diagonal parameter 
vector, of dimensions (n, 1). 
 
Matrix U allows to change the differential observation vector moyd of dimensions (m, 1) into a 
differential vector dzmo of smaller length, where zmo  can be called the diagonal observation vector, of 
dimensions (n, 1).  
 

pVxzUy ddanddd == momo    (34 a,b) 
 
Let us note here that the reduction of the length of the observation vector (m observations for 

moyd and only n components in dzmo stems from the fact that the (m-n) singular eigenvectors Uk not 
present in matrix U corresponds to null singular values wk (for k > n). 
 

Use of equations (32) and (33) to (34), together with the property n
TT IVVUU == , allows to get the 

equivalent of the differential model (31a) in the double transformed space: 
 

pWz dd =mo      (35) 
 
This equation corresponds to a diagonalization of the model in Rn, and one gets then, component by 
component: 
 

n,,,korz
w

p k,mo
k

k L21fd
1

d ==    (36) 

 
Combining (34a, b) and (35) yields: 
 

mo
*

mo
T ySyUWVx ddd 1 +− ==     (37) 

 

where +*S = TUWV 1− is the pseudo-inverse, or inverse of Moore-Penrose, of the scaled (rectangular) 

sensitivity matrix *S . 
 
Combination of the preceding equations leads to a relationship between βd  and moyd : 
 

mo
T

nom yUWVRβ dd 1−=     (38) 
 

 
and an integration can be implemented to give the relationship between the diagonal and original sets 
of parameters in a column vector form: 
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( ) ( ) 0x ==−≈== −− nomTnomnom
nom

T
nom

TT VpββRVβRVxVp becauseln 11      (39) 
 

 
The transformed observation vector can be expressed: 
 

0==== nomnom
mo

nom
momo

T
mo pWzpWβyyUz because))(-(       (40) 

 
Combining (39) and (40) yields: 
 

( ) ( ) ( )( ))(-exp)(-ln 111 nom
momo

T
nom

nom
momo

T
nom

T βyyUWVRββyyUWβRVp −−− =⇒==
 

(41) 

An approximation of this expression in the neighbourhood of nomβ is available: 
 

( )[ ] ( ))(-)(- 11 nom
momo

T
nom

nomnom
momo

T
nom βyyUWVRββyyUWVRβ −− +=+≈ 1  (42) 

 
 
where 1 is the column vector of length n whose coefficients are equal to unity. 

3.3.3.4. Non linear ordinary least square estimator and SVD 
 

It is interesting to compare diagonal equation (36) that shows the interest of an inversion in 
the left and right singular spaces with the OLS estimator (12) of parameter β . So, if the first order 

approximation in the neighbourhood of nomβ is considered, the difference between measurements and 
model outputs can be expressed with the residual vector  defined in (10), and r lin the linearized form of 
this difference vector: 
 

)() (-)(   )()()( nomnomnom
molinmo βββSβyyβrβyyβr −−=≈−=  (43) 

 

The least squares sum JOLS can be written as a quadratic form ◊J , using the fact that JOLS = JOLS 
T 

(scalar) : 
 

( ) ( )
( ))() ()(2 )() () ()(

)()()()()()(
nom

mo
nomTTnomnomnomnomTTnom

nom
mo

Tnom
mo

T JJ

βyyβSβββββSβSββ

βyyβyyββrβrβ

−−−−−+

−−=≈= ◊

 

(44) 
 

When the minimum is reached, one gets:  
 

( ))() ()() () (0
d
d nom

mo
nomTnomnomnomT ˆJ

βyyβSβββSβS
β

−=−⇒=
◊

  (45) 

 
which leads to an approximation of the OLS estimator: 
 

( ) ( ))() () () (
1 nom

mo
nomTnomnomTnomˆ βyyβSβSβSββ −=−

−
  (46) 
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This is exactly the same equation as the iterative algorithm (12), with )()1( and k
OLS

nomk
OLS

ˆˆˆ ββββ == + . 
One shows, using (31b) and (33) : 
 

( ) T
nom

nomTnomnomT UWVRβSβSβS 11
) () () ( −−

=     (47) 
 

The least square estimator (46), with the diagonal parameter p and the experimental diagonal signal z 
in their new bases, can be written thanks to (47) : 
 

))(-(with1 nom
mo

Tˆ βyyUzzWp == −    (48a, b) 
 
Equation (48a) is diagonal. Use of (46) and (47) provides a new expression for the OLS estimator of 
β :  
 

( )))(-(-1 nom
mo

Tnomˆ βyyUWVRβ += 1     (49) 
 

This expression is the same as relationship (42) that links β  and )(βy mo : these corresponding two 

values are simply replaced by the linearized OLS estimator β̂  and by  measurements y respectively. 
 
The linearized OLS estimator of the reduced parameter vector x̂  stems directly from (49):  
 

( ) ( ))()()()(
1 nom

mo
nomT*nom*nomT*ˆ βyyβSβSβSx −=

−
  (50) 

 

3.3.3.5. Mean quadratic estimation error and singular values 
 

With the noise properties defined in (8), the variance-covariance of the linearized OLS 

estimator β̂  given by equation (46), can be written thanks to (31b) and (33) : 
 

( ) ( )
( ) nom

T
nomnom

T
nom

nom
T

nom
nomnomT

**

**ˆ

RVWVRRSSR

RSSRβSβSβ

2212

111212 ) () ()(cov
−−

−−−−

==

==

σσ
σσ

  (51) 

 

This expression is valid if the difference between β̂  and nomβ is small: it is always the case near 

convergence of algorithm (12) where nomβ  can be redefined as )(k
OLS

nom β̂β =  and with )1( += k
OLS

ˆˆ ββ . 

  

The expression of the variance-covariance matrix of βRx ˆˆ nom
1−=  becomes:  

 

( ) TT

nomnom
ˆˆ VWVRβRx 2211 )(cov)(cov −−− == σ    (52a) 

 

The first relationship in equation (52a) allows to calculate the reduced covariance matrix of β̂ , 

)(rcov β̂ , whose diagonal coefficients are the reduced variances of the estimators of each parameter, 
using the nominal values of the parameters as scaling factors: 
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(52b) 

where 
jβ̂σ is the standard deviation of jβ̂ . The square roots of the diagonal terms of this matrix, 

nom
ˆ / 1
1

βσ β , can be considered as a measure of the relative error made for each parameter and caused 

by presence of noise in the measurements y. 
 
It is very interesting to calculate the trace of this matrix, which is equal to the sum of the variances of 
the different components of x̂  : 
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where σx j is the standard deviation of the estimate of reduced parameter xj  and σβ j the corresponding 

one for  βj. Since the right singular vectors have a unit norm ( 1
1

22 == ∑
=

n

i
ikk VV ), this last equation 

becomes : 
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2 1
)(covTr σβσ βx    (54) 

 
In order to get a good estimation (in percents) of all the parameters of the model, the quadratic mean 

of the relative standard deviations of their estimates qm  should be smaller than a given level 

maxqm (NB: subscript q corresponds here to the quadratic mean of the normalized standard deviations)  

: 
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One of the objectives of the "inverter" (the person in charge of the inversion) is to get a relative error 

qm , expressed in term of quadratic mean, lower than an upper threshold maxqm  equal to a few 

percents. This means that as soon as the number n of parameters that have to be estimated becomes 
large, the singular values  wk of the corresponding reduced sensitivity matrix decrease, which 
increases the error. This increase of the error is proportional to the standard deviation of the noise. 
This standard deviation has the same unit as the output of the signal and the same is true for the 
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singular values which do not depend on the structure of the model (function ηηηη) only, but also on the 
intensity of the stimulation (in a problem where the output is related to a field: temperature, 
concentration, …) and on the choice of the "times" of observation t. 
 
Both a lower and an upper level can also be constructed for the criterion of global relative error qm  

defined in (55), using the smaller singular value nw : 
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1
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   (56) 

 
This clearly shows that a too large value for the ratio nw/σ , between the standard deviation of the 

measurement noise and the smaller singular value of the reduced sensitivity matrix )( nom* βS , can 

make the estimation of the whole set of parameters « explode ». In that case, one of the  jβ  

parameters (the parameter "supposed to be known", skβ )  has to be removed from the original set of 

parameters to be estimated. This will lead to a new parameter vector 'β  to be estimated, of smaller 
dimensions (n-1, 1), with a better (smaller) associated mq criterion (lower average dispersion) but 
with the apparition of a bias on its n-1 estimates, because of the biased value of the removed 
parameter skβ that will be fixed to its nominal value that is different from its exact value (see Lecture 
2).  
 
TOOL Nr4: The SVD of the normalized sensitivity matrix calculated for nominal values of 
parameter vector β  can bring valuable information to quantify the real identifiability of the 
parameters, once the level of noise known.  

3.3.4. Residuals analysis and signature of the presence of a bias in the metrological 
process 

One way to analyse the results of the estimation process is to calculate the residuals (equation 10) at 
convergence. When conditions (8) are fulfilled, it can be easily shown that the expectancy of the 

residuals curve ˆ( , )r t β  is equal to a null function:  

( ) ( ) ( ) ( ) ( ) ( )1 1T T T T
i mo i

ˆ ˆy y t ,
− −    − = − = − = −

      
E r  = E E S E S S S S S S S S Eβ β β ε εβ β β ε εβ β β ε εβ β β ε ε      (57) 

Since ( ) =E ε 0  , ( ) =E r 0   which means that if the model used for describing the experiment is 

appropriate, the residuals curve is “unsigned” (unbiased theoretical model). On the contrary, "signed" 
residuals can be considered as the signature of some biased estimation. 

The bias can stem from different causes such as: 

(i) the a priori decision that some parameters of the model are known and therefore fixed at 
some given value (maybe measured by another experiment). As active parameters in the 
PEP, they can alter the estimates of the remaining unknown parameters.  
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(ii)  Experimental imperfections which makes the model idealized with respect to the reality of 
the phenomena.  

 
The existence of a bias means that a systematic and generally unknown inconsistency exists between 
the model and the experimental data. 

We give here an example taken from [1] and already studied in section 3.3.2 above. It concerns the 
simulation of a flash experiment applied to a three-layer medium: two highly capacitive and 
conductive coatings and a central layer made of a material with very poor conductivity (highly 
insulating material) and heat capacity (aerogel material). This system can be modelled through some 

function ),( βtyT mo
rear = . An artificial bias is introduced under the form of a linear drift 

superimposed to the output simulated observations. It corresponds practically to a linear deviation of 
the signal from the equilibrium situation before the experiment starts. A noise respecting equations (8) 
is also added to the simulation of the measurements so that we have at each time kt : 

  kkykmokk
drift
mok tbtytyy εε +−=+= )();(),( ββ   (58a) 

 
Model ),( βtymo  used for direct modelling is exact if no drift is present in the experiment. However, 
in the opposite case, it becomes biased, since it does not accounts the presence of this drift. The output 
bias yb above is defined by: 

 

),(-),()( ββ k
drift
mokmoky tytytb ≡     (58b) 

 

Let us note that in this definition, the drift model is the reference one ( drift
mo

exact
mo yy = ) and the 

preceding thermal model is the biased one ( mo
biased
mo yy = ). 

 
This model used for parameter estimation is ill-conditioned: some correlation exists between the 
parameters (Case 3n =  corresponding to the correlation existing between parameters shown in 
Figure 5 and Figure 6). Figure 7 below shows: 
 

•  the simulated rear face noisy output of the system, with the drift (dotted curve) 

•  the rear face recalculated output using the biased estimate ̂β  (solid line curve) 

•  the drift of the model output (function - )(tby ) introduced. At the final time of the 

experiment ( 1000ft s= ), the magnitude of the drift represents less than 4% of the 

maximum level of the signal. 
•  the residuals curve (with the noise, and after substraction of the noise)  
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Figure 7 :  Signed character of "post-estimation" residuals in the presence of a bias and using a badly 
conditioned PEP  

 
The "signed" character of the residuals is obvious (oscillation around zero with a much smaller 
frequency than the noise). The three parameters estimated using these biased "measurements" has led 
to expectancies of the parameter estimates with respectively a 18%− , 7 5. %− , 19%+  difference 
with respect to the exact  input values. These differences are not of stochastic origin (caused by noise 
only) but result from the introduction of the bias. One possibility for the experimenter who wants to 
check whether his estimations are biased or not, is to observe the output of the inversion process for 
varying identification ranges of the independent variable. 
 
For example, we can vary the identification time interval. If a bias affects the data when compared to 
the modelling, then the estimations will vary, depending on the selected identification interval. This is 
what can be observed in Table 2 where three identifications have been performed for three different 
time intervals [0-70s], [0-150s], [0-300s]. In this case we have used a more refined model than the one 
used for Figure 7  and thus a more badly-conditioned PEP. In this table both thermal properties of the 
insulating material (thermal conductivity and thermal diffusivity) were estimated from the biased data. 
Obviously with such a material, the small heat capacity makes a good estimation of this parameter 
difficult, but sadly (because of a lack of sensitivity) this also affects the estimation of the second 
parameter. The thermal diffusivity and conductivity estimated from the data of Figure 7 depend 
strongly on the identification intervals. The values can change within a factor of 60% or 170% in that 
case. 

 

Time Interval  70 s 150 s 300 s 
a (m²/s) 3.76.10-6 3.22.10-6 2.21.10-6 

λλλλ (W/m.°C) 0.031 0.064 0.084 

 
Table 2 : Influence of the existence of some bias on the parameter estimates for a badly 

conditioned problem 
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TOOL Nr5: The "post-estimation" residuals have to be analysed carefully to check the potential 
existence of a bias of systematic origin. Its magnitude can be compared to the standard deviation 
of the white noise of the sensor in order to check whether this bias may introduce too large 
confidence intervals for the estimates (with respect to the pure stochastic estimation of the 
variances of parameter estimates in the absence of any bias). Invariant estimates for different 
identification intervals suggest that the bias is acceptable. In the opposite case, strategies must be 
implemented, either to change the nature of the estimation problems (reduction of the initial 
goals) or to use residuals to give a fair quantitative evaluation of confidence bounds of the 
estimates. Some hints on that topic will be given in the next sections. 
 
4. Enhancing the performances of estimation 

 
Some tools have been given above: they can help the experimenter to gain insight into its metrological 
problem. They can lead to a conclusion of failure: the problem is ill-conditioned regarding the 
estimation of the interesting parameters. This means that the parameters we initially wish to measure 
will actually never be estimated accurately. Two strategies are possible: recognizing that the initial 
goal is in vain, or modifying the problem through physical thinking to make it well-posed or 
adequately conditioned even by changing the goals themselves (number of parameters to estimate). 
Quoting J.V.Beck: "the problem of nonidentifiability can be avoided, through either the use of a 
different experiment or a smaller set of parameters that are identifiable". This position emerges from 
the well-known parsimony “principle” (see http://en.wikipedia.org/wiki/Parsimony) which in the field 
of science could be summarized by this sentence : “trying to perfectly recover reality is indeed very 
easy, when one adds parameters to each others so that it connects-the-dots”. There is much more to 
learn and to retrieve from the distance maintained between a model and the observations it is supposed 
to match. The resulting consequence is that any minimization algorithm is a good one because the 
problem is well defined. This section will now proceed to give additional tools to work out badly 
conditioned problems with special analysis regarding the role of known versus unknown parameters. 
 

4.1 Dimensional analysis or natural parameters: case of coupled conduction/radiation flash 
experiment 

 
 Through the preceding sections, the reader should have been convinced of the importance of 
notions like the pertinence of a model (good representation of reality, controlled origins of bias), the 
application of a parsimony principle, that is to adapt one's metrological objective by making the 
"quality" of the available information match the degree of complexity of the model.  
 
A reduced model, seen as a model with a reduced number of parameters, has to be considered first in 
the light of Dimensional Analysis. The principles of Dimensional Analysis in Engineering precisely 
relies on the construction of "appropriate" natural parameters (the Pi-groups) emerging from the rank 
determination of the dimensional matrix of all physical quantities involved in the problem with respect 
to a basis of "base" quantities [6].  
 
If we consider the heat transfer problem in a semi-transparent material like glass, coupled conduction 
and radiation transfers must be considered. Material parameters involve classical thermophysical 
properties of the opaque material (thermal conductivity λ , specific heat ρc ) with the additional 

parameters accounting for radiative transfer : the absorption (extinction coefficient) ( )1β m− , the level 

of temperature of the material 0T  (in Kelvin) which rules the magnitude of radiation emission, the 
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Stefan-Boltzman constant SBσ , the refractive index n , and the inner emissivities iε  of the boundaries 

(no units - opaque coatings of the glass slab are considered here). 
 
Let us assume that a flash experiment is planned, with an absorbed heat density Q .  In order to study 
the possibilities for a transient thermal characterization technique of such materials (which parameters 
can be measured with this experiment ?), the model will give the rear face temperature response of the 
slab (thickness e) as  the following function: 
 

  ( )0
flash

mo rear SB iy T t,e,Q,ρc,λ,β ,σ ,T ,ε ,n=  (59) 

 
Practicing a "blind" Dimensional Analysis leads to the construction of a new function depending on a 
new set of parameters: 
 

 20
0 02 3

0 0

*
flash

flash * *rear
mo rear i*

T T λβ
y T t at / e ,τ βe,N ,T Q ρce ,ε

T n σT

 −= = = = = = 
 

 (60) 

 
which naturally produces 4 pi-groups governing heat transfer inside the sample, with a reduction of the 
number of initial parameters of the model from 10 to 5. 
 
Another classical example deals with conductive and convective mechanisms of transfer which appear 
jointly in problems of heat transfer within boundary layers. Solving the Inverse Heat Conduction 
Problem in order to get a heat exchange coefficient estimation will require the introduction of the 
classical Reynolds, Nusselt and Prandtl numbers. 
 

4.2  Reducing the PEP to make it well-conditioned: case of thermal characterization of a deposit 

 

� Model: Case of the contrast method 

 
 The method of the thermal contrast already presented in Section 3.1 consists in making two 
"flash" experiments in order to estimate the thermal properties of the coating layer, denoted (1) in 
Figure 8 below (the same as Figure 1). We will now on detail the modelling already presented briefly 
in section 3.1, in order to be able to find out which parameters of the model can be really estimated, in 
this non linear parameter estimation problem. 
 
Let us remind that the first flash experiment is carried out on the substrate denoted (2), which  allows 
characterization of the substrate in terms of diffusivity (the thermal capacity of the substrate is 
measured by another facility). The second flash experiment is performed on the two-layer material 
denoted (1)/(2). 
  
In both cases, the variation of the rear-face temperature T with time, called thermogram, is measured. 

By taking the difference of theses thermograms 
*

AT  and 
*

BT  normalized by their respective 
maximum, we obtain a curve called a thermal contrast curve, which is a function of the 
thermophysical parameters of the film (1) and of the substrate (2). 
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experiment  A 

ϕ 0 

(2) 

a 
λ 

ρ C p T A 

experiment  B 

ϕ 0 (2) 

e 1 e 2 

(1) T B 

 
 

Figure 8 :  Principle of the Method 
 
The thermal quadrupoles method [7] is very appropriate to find the rear-face temperatures. Taking the 
Laplace transform of the heat equation yields a linear relationship between the different quantities of 
the "in" and "out" faces of each layer of the material.  
 
Let ( )pz,θ  and ( )pz,φ  being the Laplace transforms of the temperature ( )tzT ,  and heat density 

( )tz,ϕ  respectively, with z the axis normal to both faces : 
 

 ( ) ( )[ ] ( ) ( )∫
∞

−==
0

dexp tptt,zTt,zTp,z Lθ   (61) 

and  

 ( ) ( )[ ] ( ) ( ) ( )
z
T

t,ztptt,zt,zp,z
∂
∂−=−== ∫

∞

λϕϕϕφ withdexp
0

L  (62) 

 
The thermal quadrupoles method allows to linearly link the temperatures and the heat flux densities of 
a homogeneous layer (numbered i here)  without any source term and with zero initial temperature, 
through a transfer matrix iM , defined in the following way: 
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 (63) 

with the coefficients of the matrix being calculated as: 
2 2 2

i i i
i i i i i

i i i i
i

i

pe pe pe1 p
A  = D  =  , B  =   C  = λ  

a a a ap
λ  

a

 and cosh sinh sinh
     

λ     
     
     λ

 

The subscript ( )i  is related to the layer ( )i  : film (1) and substrate (2). 

 

ie  : thickness of the material 
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ia   : thermal diffusivity 

iλ   : thermal conductivity 

ipCρ  : specific heat 

It is convenient in this 1D transient problem, to notice that time can be made dimensionless with the 
thermal diffusivity a2 of the substrate and with its thickness e2, to make a Fourier number t* appear, 
which  will be associated to a reduced Laplace parameter p* defined as: 
 

 2
2

2 = 
e

ta
t*  , 

2

2
2  = 

a
e

pp* and  *ps =  (64) 

We can then define a reduced Laplace transform θ~  as: 

 

 ( ) ( )[ ] ( ) ( ) ( )p,z
e
a

*t*t*p*t,zTt,zT*p,z~ *~ θθ 2
2

2

0

dexp =−== ∫
∞

L  (65) 

 

� Flash Experiment on the substrate: 

The expression of the rear face response to a pulsed (Dirac) stimulation ( ) ( )tQt δ2=ϕϕϕϕ  , where Q2 is 
the energy density (in J.m-2) absorbed by the front face, is given by the following relationship: 

 

 
2in 2out2 2

2 2out2 2

A B
 =   

Q 0C D

θ θ    
    
φ = φ =        2int

 (66) 

 

Hence:  










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

2

2
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2
2

2

2

2
2

sinh
a

pe
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p 

Q
 = 

C
Q

 = out

λ

θ  (67) 

Here subscript 'in' designates the front (stimulated) face while subscript 'out' is associated to the rear 
face, where temperature can be measured. This rear face is supposed to be insulated here ( 0φ =

out2  in 

(66)). 

Setting *ps = and normalizing the thermogram with respect to its maximum that corresponds to the 

adiabatic temperature: 
222

2
2 ec

Q
T

ρ
=

∞
 reached for long times for this adiabatic model, we obtain: 

   

( )ss a
e

 = 
T
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Using the reduced Laplace transform (65), we can write:  

 

( )ss 
 = 

T
T

  = ~ ~*
out sinh

1

2

2
2 














∞

Lθ      (69) 

� Flash Experiment on the two-layer material: 

The expression of the rear face response of the two-layer material can also be obtained easily through 
the quadrupoles method: 
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and where 
21/

Q is the energy density absorbed by the front face in this second flash experiment on the 

two-layer sample. 

In the case of good conductive materials with small thicknesses, the Biot number which represents the 
ratio between the internal resistance and the external resistance is low, which justifies neglecting the 
heat losses in the model output (rear face temperature) above. The expression of the temperature takes 
the following form: 

 

  
C+ACA

Q
 = 

C

Q
 = //

eq
/

1221
21

2121θ  (72) 

Note:  If we switch the two layers of the material, it means inverting subscripts 1 and 2, and the 
expression of the rear-face temperature can be proved to remain unchanged. 
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If we now scale the thermogram with the adiabatic temperature of the two-layer material, that is with 

222111
21

21

ecec

Q
T / ρρ +

= /

∞
, the expression of the Laplace transform of this reduced temperature 

temperature ∞2121 // T/T  takes a simpler form: 
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As in section 3.1 two reduced parameters are introduced: 

 
1

2

2

1
1    

a
a

e
e

K = :  ratio of the root of characteristic times  

or             21forwith 2
211 ,ia/etctc/tcK iii ===    (75) 

222

111
2   

c
c

K
ρλ
ρλ= :  ratio of the thermal effusivities  

or  21forwith212 ,icbb/bK iii === ρλ     (76) 

We can note that 1K  is a function of the thicknesses of the substrate and coating and 2K  is an intrinsic 
parameter of the materials. The reduced Laplace transform of the response of the two-layer system can 
then be written, using (65): 
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The heterogeneous nature of the two-layer material system appears here through the expression of the 
denominator that cannot be simplified: this makes the definition of an equivalent material associated to 
this two-layer sample impossible. 
 
 

� Contrast Curve:  

The contrast curve is obtained by taking the difference between the two thermograms, that is: 

 

 ( ) ( )***
/
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/
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The expression of the reduced thermal contrast in the Laplace domain is: 
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Theoretically, 1K  and 2K  can be measured from an experimental thermal contrast curve through an 
"inverse" technique. The numerical inversion of the model is implemented by De Hoog algorithm. 

From 1K  and 2K  (or by a parameter substitution), it is also possible to calculate the thermal capacity 
and conductivity of the deposit by the following relations: 
                            

       
222

111
213 ec

ec
KKK

ρ
ρ==  thermal capacities ratio 

  
 or 21forwith213 ,iecCC/CK iiittt === ρ     (80) 

                     and 

 
1

2

2

1

2

1
4     

λ
λ

e
e

K
K

K ==    thermal resistances ratio  

 
 or 21forwith214 ,i/eRR/RK iii === λ    (81) 

Another parametrization of the same model consists in writing expression (79) as a function of 3K  and 

4K .  

The expression of the theoretical model with reduced parameters clearly shows that the problem is in 
this case only function of two parameters. This means in particular that the thermophysical properties 
of the deposit can theoretically be obtained only if the properties of the substrate are known and the 
thicknesses of each layer as well. Thus, the precision of the measurement also depends on the 
precision of these known parameters. 

In the followings, our attention will be focused on two particular cases. The first one corresponds to a 
conductive deposit on an insulating material. The second one corresponds to an  insulating film on a 
conductive substrate. 

In these two cases, the materials we consider have low thicknesses and are good conductors. So, the 
Biot number based on the properties of the substrate 22 λheBi =  is low and it is possible, as a first 

approximation, to neglect its influence on the measured reduced rear face contrast *T∆ . It can be 
shown that even in the presence of heat losses, there is some kind of compensation through the 
construction of this contrast, which is a difference, which means that the present adiabatic model is a 
robust one: we will see in a later section that this parameter has a low influence in the estimation of the 
coating properties. The thicknesses and thermophysical properties are given in Table 3.  
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 Thickness (µm) a (m2/s) λ (W/m.°K) pCρ  (J/m3.°K) 

Case 1 : Aluminium coating on a Cobalt/Nickel substrate 

Film (1) 220 9.46 10-5 230 2.43 106 

Substrate (2) 1 100 2.36 10-5 84.5 3.57 106 

Case 2 : Insulating film on a Alumina substrate 

Film (1) 247 6.84 10-7 2.23 3.26 106 

Substrate (2) 640 7.47 10-6 23 3.08 106 

 
Table 3: Thermophysical  properties and thicknesses of the materials 

The reduced thermograms for the substrate and two-layer material as well as the contrast curve are 
plotted for the conductive/insulating and insulating/conductive cases in Figure 9 and Figure 10 
respectively. 

  

Figure 9 : Case 1 – Conductive coating / 
Insulating substrate 

Figure 10 : Case 2 – Insulating film / 
Conductive substrate 

� Sensitivity Study 

The contrast curves and reduced sensitivities to parameters 1K  and 2K  for the two cases considered 
(conductive and insulating deposits) are plotted in Figure 11 and Figure 12.  
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Figure 11 : Contrast curve and reduced 
sensitivities to 1K  and 2K (Case 1) 

Figure 12 : Contrast curve and reduced 
sensitivities to 1K  and 2K (Case 2) 

These two examples are representative of most of the cases that can be met. In the first case, both 
sensibilities are of the same order of magnitude but seem to be strongly correlated: they exhibit a 
nearly constant ratio, which means that they are proportional. In the second case, one of the sensitivity 
is low. 

� Covariance and correlation matrices 

 Table 4 gives the scaled covariance matrix ( ) 12)(rcov
−

= *T*ˆ SSK σ defined in (52b), as well as  the 

correlation matrix )(cor K̂ defined in (15), for the two cases considered (the standard-deviation of 
noise σ  is taken equal to unity here and 1000 points in time are used for the simulation of the thermal 
contrast curve). 

 
Variance-Covariance 

 
   28.0302   -35.9846 
  -35.9846   46.6417  

 

Variance-Covariance 
 

    0.1067     3.1409 
    3.1409   99.1677  

 
Correlation 

 
    1.0000   -0.9952 
   -0.9952    1.0000 

Correlation 
 

    1.0000    0.9655 
    0.9655    1.0000 

 
Case 1 Case 2 

 

Table 4 : Reduced covariance and correlation matrices 1K  and 2K (for σ = 1) 

The most interesting information is given by the reduced variance-covariance matrix )(rcov K̂ :  it 
takes into account at the same times the reduced sensitivities through the inversion of the reduced 

information matrix *T* SS as well as the noise through its standard deviation σ. 
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We calculate now the square root of the diagonal terms of matrix )(rcov K̂ , that is the relative 
standard deviations of the estimates of each parameter K1 and K2, for a reduced standard deviation of 

the noise on each of the two *T2  and *
/T 21  scaled thermograms now equal to 010.* =σ . This 

corresponds to a signal over noise ratio of 100. So measurement of the (experimental) reduced 

thermal contrast exp*T∆ is affected by a (relative) standard deviation *T∆ equal to *σ2 (for two 

independent experiments, because 2*exp
1/2

*exp
2 2)(var)(var)(∆var *TTT exp* σ=+= ), one gets 

(application of equation (52b) with *σ2 replacing σ): 

 

- for case 1: 
361 for %590.096646.64172

10 for %7.50.0749 28.03022
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=≈==

=≈==

σσ
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 (82a) 

 

It is interesting to calculate the singular values of the reduced sensitivity matrix *S .They are the 
square roots of the eigenvalues (equal to the singular values) of the reduced information matrix 

*T* SS and can also be calculated through the inverse of the eigenvalues of ( ) 1−*T* SS : 
 

( ) ( )( )
( ) ( )( ) 11590)(w1)(w)(w

43472)(w1)(w)(w
211-

1

21

22

211-
2

21

11

./

./
/*T*/*T**

/*T*/*T**

===

===

SSSSS

SSSSS
  (82b) 

 

This allows to get the condition number of *S (see Lecture L3): 
  

21 )()/w(w)(cond 21 == *** SSS     (82c) 
 
We can also calculate the root mean square reduced standard deviation qm  of the estimates of both 

parameters 1K  and 2K  defined in (55): 
 

( ) 08640112
212

2
2
1 .w/w/m

/*
q =+= σ    (82d) 

 
It is easy to check that this value is simply the root mean square of the relative standards deviations 
given in (82a). 
Let us note that this value (82c) is close to the lower bound of qm  defined in (56), here: 

08620)2)/(2( 22 .w/w ** == σσ . The smallest singular value is mostly responsible for the 
relative errors on both parameters.  
 
The same calculations can be made for the second case: 

 

- for case 2:   
320 for%11414080 99.16772

281 for %5000460 0.10672

22

11

2

1

.K..*K/

.K..*K/

K̂

K̂

=≈==

=≈==

σσ

σσ
   (83a)
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and :    10040)(w785111)(w 21 .. ** == SS    (83b) 
 

So, the condition number of *S is: 
  

171 )()/w(w)(cond 21 == *** SSS     (83c) 
 

which means that matrix *S is more ill-conditioned in the second case with respect to the first one. 
 

One also get here:       09960:forboundlowerand09960 2 .w/m.m *
qq == σ   (83d) 

 

So, returning to case 1, it appears clearly that both the ratios K1 of the characteristic times  and K2 of 
the effusivities can be estimated with a relative error nearly equivalent for both parameters (in the 7 to 
10 % interval): this was already apparent in Figure 11 where the reduced sensitivity curves 
corresponding to both parameters were very close, with a slightly higher absolute value for the 
sensitivity to K1. 
 

For case 2, it is clearly the ratio K1 of the characteristic times that can be reached, with a very good 
precision (0.5 % here): this is quite natural since the reduced sensitivity to K2 in Figure 12 is close to 
zero. So, because of the non linear character of this PEP problem, the accessible parameter depends on 
the location of the (K1 , K2) parameter vector in the R2 plane. 
 

The question that remains is to know if is possible to measure, with higher precisions, two parameters 
derived from (K1 , K2) using the experiment corresponding to case 1 for example. Let us introduce for 
instance the ( )43 K,K  pair instead of ( )21 K,K  in the analytical model. 
 

 

Variance-Covariance 

2.6921   -18.5189 
-18.5189  145.8475 

Correlation 

1.0000   -0.9346 
-0.9346    1.0000 

Case 1  

Figure 13 : Contrast curve and reduced 
sensitivities to 3K  and 4K  - case 1 

Table 5 : Reduced covariance and correlation 
matrices 3K  and 4K (for σ = 1) - case 1 

 
 

The thermal contrast is naturally the same (the materials are identical). Table 5 gives the scaled 

covariance matrix )(rcov K̂ as well as the correlation matrix )(cor K̂  for the estimator of 

[ ]TKK 43=K .  The relative standard deviation of both parameters becomes (for 010.* =σ ): 
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- for case 1:   
07350 for%11717080 145.84752

 1360 for%320.0232 2.69212

44

33

4

3

.K..*K/

.K.*K/

K̂

K̂

=≈==

=≈==

σσ

σσ
 (84a) 

 
So, when comparing (84a) and (82a), one clearly sees that instead of having (K1 , K2) with quite 
poor precisions, the ( )43 K,K  allows to retrieve very precise values for the ratio of volumetric heat 

capacities 3K . This was already apparent in Figure 13: the relative sensitivity to K4 was quite low 
when compared to the one of K3, but both minima of the corresponding curves occurred at times far 
apart, with a degree of colinearity much weaker than in figure 11 (see also section 3.3.2 of this 
lecture). 
 
This result obtained for the two cases can be explained from the expression of the contrast 
curve.  
 

( ) ( ) ( ) ( ) ( )






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+
+=
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s
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11
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  1
 

1
  ∆

2

21θ   (84b) 

In the previous case (conductive coating on an insulating substrate), 1K  is close to zero. A 

rough approximation can be obtained by setting: 
( )
( )




−
−

1cosh

sinh

1

11

~sK

sK~sK
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


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−

+
+=

ss  ss K
K

s
~*
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sinhcosh

  1
 

1
  ∆

3

3θ    (84c) 

 

We can see then that within this first order approximation, the model is only a function of 

3K = 21KK . We can check the other criteria already considered for case 1 with the (K1 , K2) 
parameters : 
 

08210)(w72701)(w 21 .. ** == SS    (84d) 
 

So, the condition number of *S is: 
  

21 )()/w(w)(cond 21 == *** SSS     (84e) 
 

Compared to the preceding parameterization, the reduced sensitivity matrix  *S as well as its singular 
values have changed, but the condition number is the same, see (82c). 
 

One also get here: 
 

 12180:forboundlowerand12190 2 .w/m.m *
qq == σ   (84f) 

When both qm 's are compared, see (82d), one can say that the global precision of the estimation of 

the ( )43 K,K  parameterization is lower than the ( )21 K,K  one. However we will see later on that this 
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superiority of  the ( )43 K,K  parameterization is only an apparent one if both thermophysical 
characteristics of the film are looked for. 
 

 

Variance-Covariance 
 

103.5845   -97.1801 
-97.1801   91.1985  

 

Correlation 
 

1.0000   -0.9999 
-0.9999    1.0000 

 
Case 2  

Figure 14 : Contrast curve and sensitivities to 3K  

- case 2 and 4K (Case 2) 

Table 6 : Reduced covariance and 
correlation matrices 3K  and 4K  (for σ = 1) 

 
 
In case 2 (insulating coating on a conductive substrate), parameters 3K  and 4K  are strongly 
correlated and exhibit the same sensitivity curves – see Figure 14. This confirms the result we 
observed previously, that is a thermal contrast mostly sensitive to 1K . 

2
1

2

1

22

11

2

1

2

1
43 K

tc
tc

CR
CR

R
R

C
C

KK ====     (85a) 

This can be also explained by the fact that 1K  is close to unity : 
 

( ) ( ) ( ) ( )sKsK~ssK 111 coshsinhcoshsinh −    (85b) 

This yields: 
 

( ) ( ) ( )






−=

ssKss
~

1

*
out sinh

1
  

coshsinh
1

 
1

  ∆θ     (85c) 

 
So, the thermal contrast is mainly a function of 1K . Returning to the same calculation as in the 
other case, using Table 6, one gets: 
 

- for case 2:   
4 for%51313510 91.19852

 40960 for%4140.1439 103.58452

44

33

4

3

=≈==

=≈==

K..*K/

.K.*K/

K̂

K̂

σσ

σσ
 (85d) 

 
The singular values of the reduced sensitivity matrix are: 
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07170)(w36248)(w 21 .. ** == SS   (85e) 

So, the condition number of *S is: 
  

117 )()/w(w)(cond 21 == *** SSS     (85e) 
 
We observe here the same thing as for case 2: the condition number of the reduced sensitivity matrix is 
independent of the parameterization, see (83c). 
 
One also gets here: 
 

 13950:forboundlowerand13960 2 .w/m.m *
qq == σ   (85f) 

 
When both qm 's are compared, see (83d), one can say that the global precision of the estimation of 

the ( )43 K,K  parameterization, which provided an excellent estimation for K3. is lower than the 

( )21 K,K  one. 
 

4.3  Note on the change of parameters 

It has been suggested earlier that some change of parameterization would allow to overcome 
parameter estimation difficulties such as in the case of high correlation coefficients inducing 
high variances for the estimated parameters for example. We want here to come back to this 
discussion to give, very briefly, some precisions and our conclusions.  
 
First, and taking experience of what has been shown previously, if a change of 
parameterization is made that results in the production of a new parameter of sensitivity close 
to zero (and thereof excluded from the model), this new parameterization will have a positive 
effect and will allow to properly estimate the remaining ones. Note that it is the object of 
Dimensional Analysis to help making such reparameterization efficient. 
 
Second, if all the parameters of the problem have non negligible sensitivities but appear 
correlated, the question is: is it possible to find a new set of parameters defined from the 
initial one, to enhance the quality of the estimation process? 
 
The answer is no. It can be demonstrate, see Remy [9] that the sensitivities to a new set of 
parameters can be derived from the sensitivities of the current set (using the Jacobian of the 
transformation). The same is true for the variance-covariance matrix and the explanation is 
obvious from the quantified SVD analysis given above (the same condition number of *S is 
obtained whatever set of parameterization is used) These relationships show that: 
 

• if two parameters appear correlated in a given set of parameters, two parameters of a 
new set, recombined from the previous ones, will also be correlated. 

 
• if the sensitivity of a parameter is changed with a new parameterization (for example, 

it is enhanced), this will not change its variance in fine. 
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For instance, if we keep the parameter 1K  and choose another second parameter instead of 

2K , we can show that the sensitivity curve to 1K  can become higher or lower: we have to 
remind that the partial derivative that appears in the definition (4) of a sensitivity coefficient 
is associated to the variation of the output of the model for a variation of a given parameter, 
which  requires that the other ones stay fixed at given values. This means that if the definition 
of these other parameters is changed, such is also the case for the sensitivity coefficients. So, 
talking of a sensitivity coefficient to a given parameter does not mean anything if the other 
parameters in the parameter vector are not specified. 
 
This observation could lead us to consider astheoretically possible to improve the estimation 
of 1K  by combining this parameter with a particular parameter that can increase its sensitivity. 
In fact, this is not true because the standard-deviation of the estimates of the parameters not 
only depend on the sensitivities of parameters but also on the correlation between the 
estimates of the different parameters.  
 
To show this, we are going to see through an example how the standard-deviations (square 
roots of variances) of the new set of parameters change when one parameter is kept as for 
instance parameter 1K = βα

21 KKKa =  with α =1;β =0 while 2K  is replaced by 
( )21  K,KFK bb = :  

 
( )
( )21

11

  

  =   

K,KFK

KKFK

bb
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=
=

  (86) 

We have: 









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


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
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==
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KKSKSyKKtηy withdddwith);(

2

1  (87) 

 
where S is the sensitivity matrix to the old ( )21 K,K  set of parameters and S' the sensitivity matrix to 

the new ( )ba K,K  one. This requires the calculation of the Jacobian matrix J of this transformation 
since ; 
 

Tˆ'ˆ'' JKJKJSSKJK )(cov)(covanddd ==⇒=   (88) 
 
The last equation in (88) stems from the linearization around the exact value of the K parameter 
vector: 

)(dcov)(cov KK ˆˆ =     (89)  

with:  
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So, the sensitivity matrix to the new parameter set K'  is: 
 

[ ] [ ] [ ]222211
221

21
1 )1()(

1

01
SSSSSJSSSS ,b,b,b

,b,b,b
ba F/F/F

F/F/F
' −=









−
=== −  (91) 

 
Here the old sensitivity column vectors 1S  and 2S  , as well as the new ones aS  and bS  , have been 

explicitly written in the corresponding sensitivity matrices, S  and 'S  respectively.   
 
Application of (88) allows the calculation of the variances and covariance of the estimators of the new 
set of parameters ( )ba K,K : 
 

( ) ( )
( ) ( )

( ) ( )
( ) ( ) 




























=












=

2

1

221

211

21 0

1

varcov

covvar01

varcov

covvar
)'(cov

,b

,b

,b,bbba

baa

F

F

K̂K̂,K̂

K̂,K̂K̂
FFK̂K̂,K̂

K̂,K̂K̂
K̂ (92) 

 
that is:  

 

( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( )21211

21212
2

21
2

1

1

covvarcov

cov2varvarvar

varvar
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K̂,K̂FFK̂FK̂FK̂
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,b,b,b,bb

a

+=

++=

=

 (93a) 

We can see that even if the change of parameters modifies the sensitivity to parameter aK , which 

replaces parameter 1K  in the new set of parameters, the variance of this parameter remains unchanged 
whatever the choice of the second parameter.  
 

This means that the variance of a given parameter (and consequently the error on this parameter) is 
independent on the choice of the second parameter. Thus, identifying the parameter 1K  from the 

( )21 K,K  pair is equivalent to estimating 1K  from the ( )31 K,K  or ( )41 K,K  pairs.  
 

Similarly, we can show that aiming at estimating parameters ( )43 K,K  either through the 

parameterization ( )21 K,K  or directly  is strictly the same. 
 

The conclusion is that the interest of a change of parameters is justified only when an improved 
estimation of a particular parameter of interest is looked for. 
 

Whatever the parameterization, if the thicknesses of both layers are known, as well as the 
thermophysical properties of the substrate, we have: 
 

2casefor%40

1casefor%32

11

31

11

31

.K/a/

.K/c/

K̂â

K̂ĉ

==

==

σσ

σρσ ρ
   (93b) 

 

So, this rear face thermal constrast technique allows estimation of the capacity of the film for a case 1 
and of its diffusivity in case 2, for high enough signal over noise ratios. 
 
In case of very low sensitivity to a given parameter, it is possible to fix the value of the 
corresponding parameter to its nominal values. So, if the number of parameters that are looked for 
is reduced, then the stochastic errors on the remaining parameters (reduced standard deviations)  go 
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down. However, their estimation becomes biased and leads to a systematic error on each estimated 
parameter such as:   
 

( ) ( ) ( )exact
c

nom
cc

T
rr

T
rrrˆ

ˆ
r

ββSSSSββb
β

−−=−=
−1

E  (93c) 

 

Here the initial parameter vector has been decomposed into two parts 







=

c

r

β

β
β , where rβ  

gathers the parameters that are looked for and its complementary part cβ is supposed to be known, that 

is its value is blocked to a nominal value  nom
cc ββ = which differs from its exact value exact

cβ . 
Equation (94), which has already been derived in the case of a linear model in lecture L2 of this series 
(see also [1]), corresponds here to a linearization in the neighborhood of the  exact value of β . 
 
This technique, which consists in reducing the number of parameters that are looked for, presents an 
interest only if the bias caused by the reduction of the number of parameters and its associated 
standard deviations are much lower than the initial stochastic error as illustrated in Figure 15.  
 

 
 

Figure 15 : Comparison between the probability density distributions of the jth parameter of the 
parameter vector for two different estimators 1) all the parameters in β  are estimated 

altogether (red) or 2) only the components of one of its part rβ (blue) are estimated 

while its complementary part cβ are blocked to its nominal value. NB: here one 

assumes that index j in   β  and in rβ  are the same ( jjr ββ = ) and that the scale of the 

vertical axis is different for both distributions for practical plotting reasons (the area 
below both distributions should be equal to unity)  
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5. Models with different numbers of parameters: the hot wire case 
 

5.1 Different models for thermal characterization by the hot wire method 
 
The Hot-Wire technique [8] consists in a constant heat power generation by Joule effect through a thin 
cylindrical wire embedded in the material that is assumed to be a semi-infinite medium (no heat 
losses), see Figure 16. The transient temperature rise of this wire is measured by a thermocouple 
(crossbar technique).  
 

5.1.1  The standard hot wire model: model 0  
 

At longer times, the Hot-Wire temperature evolution (asymptotic expansion) is only a function of the 
thermal conductivity of the material and is given by the following expression (this model will be 
called model 0 now on): 
 

X

Y

Z

1r 2r

l

θ

Thermocouple

Hot-Wire

 

( ) ( ) stCt
l

t,r += ln
4

1
11 λπ

θ ΦΦΦΦ
                                           (94) 

• 1r  and l  : Hot-Wire radius and length 
• r2 : medium radius 
• 1θ  and 1ΦΦΦΦ : temperature and flux (Power dissipation in watts) in 1rr =  

• 1λ  : thermal conductivity of the material/powder 
• Cst : arbitrary constant 

 

Figure 16: Theoretical model in cylindrical coordinates system 
 
In a semilog time plot, the temperature rise, equation (94) in Figure 16, is then linear. Knowing the 
heat power dissipation, the heat conductivity of the material can be determined from the slope.  
 

5.1.2  The finite hot wire model: model 1  
 

A quadrupole approach [7] can be efficiently used to build this model in which hot-wire (modelled by 
a resistance R between average wire temperature and the lineic power dissipation at its output radius rl 
and by a thermal capacity C) and medium (through 1Z , 2Z  and 3Z  impedances) thermal properties, 
contact resistance between Hot-Wire and material (Rc) and convective resistance (heat losses) with the 
surrounding environment (Rconv) will be taken into account. This method allows us to represent each 
part of the system by a transfer matrix that linearly links in Laplace domain the temperature/flux in or 
out each material or interface, see [8]. 
 

mθ
~

mΦ
~

1

~
θ

1

~
Φ

C

R cR

Hot-Wire
Finite

Medium
Heat

Losses
Contact

Resistance

1Z 2Z

3Z
hS

1

  
Figure 17: Schematic representation of the Hot-Wire / Medium system - Model 1 
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Let mθ~  and mΦ~  be the Laplace transforms of the Hot-Wire mean temperature variation and mean 

power dissipation respectively. 
 
Their expressions are given by:  
 

∫ ∫=⋅=
1 1

0 0
2

11

2
2

1
r r

m drr
r

drlr
V

~ θπθθ    (95a) 

and by:                               ( )pGV~
m 01=ΦΦΦΦ     with : lrV 2

11 π=       (95b) 

where ( ) ( )( )tgpG 00 L=   is the Laplace transform of the volumetric Hot-Wire heat dissipation 

g0 (W.m-3). 

1

~θ  and 1

~Φ  represent the Laplace transforms of temperature and flux in 1rr =  (the inverse Laplace 
transform is implemented through a numerical algorithm)  
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The expressions of 321 Z and Z,Z  are given by: 
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321 =−=−=                           (97) 

with:  
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where mediumapk =  ( p being the Laplace variable and mediuma the heat diffusivity of the material) 

and ( ) ( ).I.K nn   and  are the modified Bessel functions 
 
The Hot-Wire resistance R and capacity C can be easily obtained from these general expressions of by 
assuming that the Hot-Wire response time and size are small when compared to the medium ones (i.e. 

0→p  and 21 rr << ). 
 
We obtain for the "hot" wire ([7]:  
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Resistance:
8

1
l

R
Wireλπ

=   ( ) Capacity:2
1 WirepClrC ρπ= (99) 

 
The heat loss resistance is given by (r2 being here the radius of the sample): 

 
2

1
hS

Rconv =    with:  lrS 22 2π=     (100) 

Knowing the mean heat power dissipation mΦΦΦΦ , this model perfectly describes the real time evolution 

of the hot-wire temperature 1θ  that is measured by the thermocouple. 

 
5.1.3  The semi-infinite hot wire model: model 2  
 
In the case of a semi-infinite medium where 12 >>kr , we show that 2Z  and 3Z  tend to zero and 1Z  

to a very simple expression, called model 2 now on, see Figure 18: 
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1
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1
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Figure 18 :  Quadrupole formulation of a semi-infinite medium - Model 2 
 

5.2 Sensitivity study 

 
In Figure 19, the reduced sensitivity curves are plotted in the cases of the semi-infinite (model 2) and 

finite (model 1) samples, and the corresponding  correlation matrices )(cor β̂ , for the following 
parameters: 
 

• Hot-Wire Conductivity, wireλ  

• Hot-Wire Diffusivity, wirea  written as ( )
wirepwire C/ ρλ in the sensitivity calculations 

• Medium Conductivity, mediumλ  

• Medium Diffusivity, mediuma  

• Contact resistance between Hot-Wire and medium, cR  

• Convective Resistance (Heat Losses with the surrounding), convR  
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Case of the semi-infinite medium (model 2) 

 
Case of the finite model (model 1) 

 
 

Figure 19: Sensitivity curves and correlation matrices in the case of the semi-infinite (2) and finite (1) 
models 

 
In the case of the semi-infinite material (model 2), we can observe that the sensitivity curves to Hot-
Wire conductivity and diffusivity exhibit the same shape with opposite signs. Such is also the case for 
the sensitivities to the contact resistance and to the medium diffusivity within a proportionality factor. 
The sensitivity curve to the medium conductivity is increasing with time and exhibits the same type of 
variation as the temperature response  of the wire, while the others rapidly tend to zero or to an 
asymptotic value. This also clearly shows that the ( )wirewire a,λ  and ( )mediumc a,R  pairs are correlated 

and that the more sensitive and non-correlated parameter is the thermal conductivity mediumλ  of the 

material, the parameter we are seeking for.  
 
The sensitivity coefficients obtained in the case of a material of finite size (model 1) are also shown in 
Figure 19. They are similar except for longer times. The ( )wirewire a,λ  pair remains correlated but 

because of the introduction of a new parameter convR , the contact resistance cR  and the medium 

diffusivity mediuma  become non correlated while convR  appears to be correlated with mediuma  and 

mediumλ . All the previous remarks can be quantitatively confirmed by evaluating the correlation 
parameters shown in the matrices in Figure 19.  
 
This validates the thermal conductivity measurement by the inverse method presented here. To 
perform a good measurement, we have then to consider an acquisition time large enough to reduce the 
Hot-Wire convolution effect (thermal properties) and small enough to avoid the boundary effect (heat 
losses). Plotting sensitivity curves allows to determine the best estimation interval over which the 
asymptotic model 0 can be applied (lower bound chosen to prevent the effects of the Hot-Wire 
properties and of the contact resistance and upper bound to prevent the convective resistance effect).  
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5.3 Model Reduction using fewer parameters 

 
We can observe that in the two cases we considered, the ( )wirewire a,λ  pair is always correlated, see 

Figure 19. 
A close examination of the analytic form of the temperature response shows that, after simplification, 
that only the ratio wirepwirewire Ca/ ρλ = appeared : this explains the fact that their scaled sensitivities 

to these two coefficients are  equal, with opposite signs. 
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Figure 20: Sensitivity curves in the case of the semi-infinite and finite models (Reduced Models (1') 

right and (2') left) 
 
So, the previous finite (1) and semi-infinite (2) models are replaced now by the corresponding models, 
noted (1') and (2'), with a conductivity for the wire that is supposed to be known and that is 

consequently fixed to its nominal value nom
wirepwirep CC ρρ =  . The scaled sensitivity curves of reduced 

models (1') and (2'), as well as the  corresponding  correlation matrices )(cor β̂ , are shown in Figure 
20. 
 
This reduction (one parameter is removed) is of great interest because it allows to reduce the 
computation time and to increase the precision on the estimated parameters (the sensitivity matrix is 
better conditioned).  
 
The fact that in this case the estimation of the thermal conductivity of the medium is less affected by 
the others parameters can be shown through direct simulations. Figure 21 shows the different 
thermograms obtained for different values of the contact resistance (left) and of "hot" wire volumetric 
heat (right) respectively for model (2'). 
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We can show that the slope of the curve which is directly proportional to the inverse of the thermal 
conductivity of the medium and is not affected by the values of these two parameters.   
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Figure 21: Thermograms for a given thermal conductivity versus cR  and WireCρ  

 
 
As explained in section 3.3 of this lecture, reducing the number of degrees of parametric freedom of 
the model allows to improve the estimation. We will present the case of a three layer system next. 
 

6. Design optimization: flash experiment for thermal characterization of a liquid 

 
6.1 Modelling  
 
The problem is described in Figure 22. It consists of a liquid layer in between two cylindrical walls. If 
the liquid layer thickness is small with respect to its inner radius modelling in a plane geometry 
becomes justified. A pulse heat flux is absorbed by the front face (inner surface).  
.  
 

L i q u i d
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Figure 22: Model of flash experiment for thermal characterization of a liquid 
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The implementation of the analytical model is simplified by the use of thermal quadrupoles [7].  After 
a Laplace transform on the problem, our model is given by a chain of quadrupoles. A diagram of the 
system is given in Figure 23. 
 

 
 
 

Figure 23: Quadrupole representation 
with: 
 

− hS1  being the resistance of the convective heat losses with the surrounding inside 
and outside environments; 

− A, B, C and D being the coefficients of the inverse transfer matrices for the walls and 
the liquid. Their expressions are given by: 
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(lower subscript i indifferently refers to the fluid or to the wall layers) 
 

and: 
 
 ie  : thickness of the material 

 ia  : thermal diffusivity  

 iλ  : thermal conductivity 

 
6.2 Solution 
 
The rear-face temperature ( )pθ  is then given by: 
 

 ( ) ( )
2BA2 )hs(hSC

p
p

++
= φθ   (103) 

A , B  and C  represent the coefficients of the transfer matrix obtained by taking the product of the 
transfers matrices for the three materials: 
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with: 
 
 ( ) ( ) wlwlwwlwlw CABBAACBAA +++=A  

( ) ( ) wlwlwwlwlw AABBABCBAA +++=B  

( ) ( ) wlwlwwlwlw CAABCACAAC +++=C  
 
By assuming that the heat pulse ( )tϕ  absorbed by the system (W.m-2) is infinitely short (Dirac of 

flux), then its transform ( )pφ  S/Q=  is equal to the pulse energy Q per unit area of the front face S.  
 
For 0=h , the temperature at long times is obtained by:   
 

 ( ) ( )pptTT
pt

θ
0

limlim
→∞→∞ ==   (105) 

Thus, 

 
( )

( )p
pp

T
p C
lim

0

φ
→∞ =      (106) 

and: 

 ( )llww ececS
Q

T
ρρ +

=∞ 2
   ( ∞T  is called the adiabatic temperature)  (107) 

In the general case (for any t), the inverse Laplace transform of relation (109) is implemented 
numerically. We use several algorithms which gives the same results, either the Stehfest 
algorithm [10] the De Hoog algorithm or a numerical Inverse Fast Fourier Transform (I.F.F.T). 
 
 
Figure 24 gives an example of the results obtained for two liquids (water and oil) and two different 
thicknesses of both walls (0,5 and 2 mm). The thermophysical properties used for the simulations are: 

 

− mm.el 54= , 125 −−= K.m.Wh  . 

− Water: 115970 −−= K.m.W.lλ , 12710431 −−= s.m..al  

− Oil: 111320 −−= K.m.W.lλ , 12810337 −−= s.m..al  

− Walls (copper): 11395 −−= K.m.Wwλ , 12410151 −−= s.m..aw  

− mmor.ew 250=  

− 24104 −= m.J.SQ  
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Figure 24: Simulation examples (Pulsed responses) 

 
6.3  Sensitivity study 
 
The model depends on several parameters. Some of them are supposed to be exactly known and the 
others will be identified. The initial goal is to thermally characterize the fluid, i.e. to estimate two 
quantities, its thermal diffusivity and conductivity (or any other set of parameters as the effusivity or 
the specific heat). Assuming the thermal properties of the walls and the geometry of the system 
known, the model is a function of four unknown parameters: 
   

* ll ae=1β   * ll /e λβ =2    (108) 

 * SQ=3β    *  h=4β  
 
One can wonder here whether simultaneous estimation of these four parameters is possible. So, a 
sensitivity study has to be implemented.   
 
Let β  being the unknown parameter vector, the temperature response of the rear face is: 

 ( ) ( )β;; 4321 tf,,,tfT == ββββ   (109) 

The experimental temperature being disturbed, one can assume an additive noise  

 ( ) iii tTy ε+= β;   (110) 

iε  being the random noise, associated with the measurement iy  at the time it .   

The sensitivity coefficient of the response T  to parameters jβ  at time t  is defined by:   
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 ( ) ( )β,t
T

,tS
j

j β
β

∂
∂=     (111a) 

Thereafter, we will use the reduced sensitivity coefficients which are easier to compare:   

 ( ) ( )β,tT
,tS

j
j

*
j β

ββ
∂
∂=     (111b) 

The estimation problem is non-linear. Thus, the sensitivity curves and consequently the estimation will 
depend on the nominal values of the unknown parameters but also on the known parameters and the 
geometry of the system. This is the reason why for instance, an optimum on the walls thicknesses 
exists.  
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Figure 25: Sensitivity curves for Water and Oil (0.5 mm and 2 mm) 
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As an example,  
Figure 25 gives the sensitivity functions for water and oil with 0.5 mm and 2 mm walls thicknesses 
respectively. The whole set of curves shows that some parameters are more or less correlated 

(proportional sensitivities), particularly ( )ll ae1β  and  ( )SQ3β  or 1β  and ( )lle λβ2 , which 

would not allow the simultaneous estimation of these parameters and consequently of the thermal 
diffusivity.  
 
In addition, one can notice that for times larger than twice the time of the maximum response, the 
parameters are strongly correlated. In fact, the system cooling seems to occur at a quasi-uniform 
temperature. The thermogram is a pure exponential which only depends on one parameter, the time-
constant of the system ( ) h/ecec llww ρρ +2 . This remark suggests a limitation of the estimation 

interval to short times. We have chosen to work between 0=t  and maxt.t 51= here.  
 
The high number of parameters (4) and their correlations make the reading and the interpretation of 
the sensitivity curves difficult. A stochastical study will allow a better comprehension of this problem.  
 
Useful measurements imply small variances associated to correlation coefficients far from unity. The 

reduced covariance matrix )(rcov β̂ , for a unit standard deviation of the noise (σ = 1°C) and the 
correlation matrix corresponding to the four preceding parameters are given in Table 7 and Table 8. 
 

From the reduced covariance matrices )(rcov β̂ , one can notice that the relative variance of 1β  is the 
smallest one, which shows that the thermal diffusivity will be better identified than the thermal 
conductivity. In the same way, the estimation will be better for oil than for water. Later on, one will 
consider the water as a fluid test knowing that for less conducting fluids, the results will be better. 
Finally, one can observe that the variances strongly vary with the thickness of the walls which have 
thus to be optimised.   
 

From the correlation matrices, one can note that 3β  is correlated with 1β  and 2β  in most cases, 

particularly for water, which confirms the preceding results. In case 4 (oil, 2 mm), one can notice that 
the parameters are less correlated. It will thus be possible to estimate a and λ  at the same time, if the 
thickness of the walls is chosen in an optimal way.  

One can also notice that the estimation problem is strongly non-linear since the four studied cases 
exhibit very different covariance and correlation matrices. 

 
Table 7: Reduced variance-covariance Matrices (1°C standard deviation for the noise) 

 
Water – 0,5 mm Water – 2 mm 

 
  0.3394   -2.3464    2.4913    1.4724 
 -2.3464   16.5302  -17.4179   -9.4267 
  2.4913  -17.4179   18.4144   10.4120 
  1.4724   -9.4267   10.4120    9.7216 
 

 
  0,3218   -0,8419    0,7528   -0,5216 
 -0,8419    2,4531   -2,0146    2,5528 
  0,7528   -2,0146    1,7770   -1,3092 
 -0,5216    2,5528   -1,3092    8,7357 
 

Oil – 0,5 mm Oil – 2 mm 
 
  0,0649   -0,2870    0,2533    0,1216 
 -0,2870    1,3529   -1,1408   -0,4388 

 
  0,1920   -0,4540    0,1500   -0,2349 
 -0,4540    1,3544   -0,2825    1,0794 
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  0,2533   -1,1408    0,9958    0,4599 
  0,1216   -0,4388    0,4599    0,3979 
 

  0,1500   -0,2825    0,1413   -0,0219 
 -0,2349    1,0794   -0,0219    1,4113 
 

 
 
 

Table 8: Correlation Matrices 
 

Water – 0,5 mm Water – 2 mm 

 
  1,0000   -0,9907    0,9966    0,8106 
 -0,9907    1,0000   -0,9983   -0,7436 
  0,9966   -0,9983    1,0000    0,7782 
  0,8106   -0,7436    0,7782    1,0000 
 

 
  1,0000   -0,9476    0,9954   -0,3111 
 -0,9476    1,0000   -0,9649    0,5514 
  0,9954   -0,9649    1,0000   -0,3323 
 -0,3111    0,5514   -0,3323    1,0000 
 

Oil – 0,5 mm Oil – 2 mm 
 
  1,0000   -0,9685    0,9965    0,7569 
 -0,9685    1,0000   -0,9829   -0,5981 
  0,9965   -0,9829    1,0000    0,7305 
  0,7569   -0,5981    0,7305    1,0000 
 

 
  1,0000   -0,8903    0,9104   -0,4512 
 -0,8903    1,0000   -0,6457    0,7807 
  0,9104   -0,6457    1,0000   -0,0491 
 -0,4512    0,7807   -0,0491    1,0000 
 

 
In all cases, it seems difficult to estimate the two parameters 1β  and 2β  simultaneously, because of 

the large relative standard deviation [ ]( ) 21

222 )(rcov
2

/

ˆˆ
ˆ// β== λσβσ λβ of 2β  in each of the four 

cases.   
 
6.4 Simplified study with a two-parameter model 
 
To simplify, let us consider the case with no heat loss ( )0=h . Since the heat losses are completely 
uncorrelated with the other parameters at short times (until the maximum of the thermogram). So, 
introduction of the heat loss coefficients will have no consequences in the estimation of the two 
parameters which are looked for the liquid.   
 
To get rid of the influence of the parameter SQ , which acts as a proportionality constant in model 
(104), we will work with the reduced thermogram defined by: 

( ) ( )
( )32

321
21 ββ

βββββθ
,T
,,,tT

,,t
max

=      (112) 

The four examples previously presented are given in Figure 26 and  
 
Table 9. 
 
In some cases, the correlation between the parameters 1β  and 2β  is large (greater than 0.99). The first 
idea is to seek a new couple of parameters which would be less correlated and thus could be estimated 
under better conditions but it is unfortunately impossible as shown in the previous section.  
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(d) 

Figure 26: Reduced Thermograms and Sensitivity curvesof the two-parameter model  
for Water and Oil (0,5 mm and 2 mm) 

 
 
 

Table 9: Covariance and Correlation Matrices - two-parameter model 
 

Water  Oil 

0,5 mm 2 mm 0,5 mm  2 mm 

Covariance Covariance 
 
  0.5007   -3.0373 
 -3.0373   18.6223 
 

  
  0.2369   -0.4378 
 -0.4378    0.8622 
 

   
  0.1911   -0.5548 
 -0.5548    1.6662 
 

 
  0.1977   -0.1851 
 -0.1851    0.1979 
 

Correlation Correlation 

  1.0000   -0.9947 
 -0.9947    1.0000 

  1.0000   -0.9688 
 -0.9688    1.0000 

   
  1.0000   -0.9832 
 -0.9832    1.0000 
 

  1.0000   -0.9358 
 -0.9358    1.0000 
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6.5  Change in the definition of the parameters 
 
However, there is a physical limitation with this theoretical approach. The parameter lle λβ =2  is 
unknown since it is the quantity that one seeks to measure. Then, its seems to be more relevant, if 
necessary, to introduce a parameter that one will be able to measure in an additional experiment, for 
instance llecρ  here.  

 

0 50 100 150 200
−2

−1.5

−1

−0.5

0

0.5

1

1.5
Reduced Sensitivies : Water − 1 mm

Time t,s

e
l
/√a

l
ρc

l
e

l
Q/S
h

 
 

Fluid (Water) [ef =4.5 mm, λf  = 0.597 W.m-1.K-1, al =1.43.10-7 m2.s-1, ρcl  = 4.17.106 J.m-3.K-1 ] 
Walls (Copper)  [ew =1 mm, λw =395 W.m-1.K-1, aw=1.15.10-4 m2.s-1, ρcw = 3.43.106 J.m-3.K-1 ] 

H =5 W.m-2.K-1 – Q/S=4.104 J.m-2  
 

Figure 27: Sensitivity curves - dimensional signal with the 'β parameter vector 
  

As it is impossible in all cases to eliminate a parameter and knowing that the parameters substitution 
does not have any influence on the quality of the estimation (if one keeps the same number of 
parameters), one chooses now:   
 

[ ]T

llll h'S/Q'ec'a/e'' ======== 4433211 ββββρββββ  

 
In difficult cases, one will fix 2β  to its nominal value (as the standard deviation on 2β  is too large).?   
 
Figure 27 gives an example of sensitivity curves obtained from the four parameters ( ll ae , llecρ , 

SQ  and h ) 'β  dimensional model and the three parameters (2β  being fixed in this case) models. 
Table 10 gives the corresponding covariance and correlation matrices. One can observe that the 
variances and the correlations are strongly improved as 2β  is fixed.  
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Table 10: Reduced covariance and correlation matrices 
 

Water – 1 mm 

4 parameters: ll ae , llecρ , 

SQ and h   

3 parameters ( llecρ  fixed):  

ll ae , SQ and h 

Covariance Covariance 
 
  0.2567    1.5697    1.0776    0.0993 
  1.5697    9.8171    6.6809   -0.2249 
  1.0776    6.6809    4.5673    0.1590 
  0.0993   -0.2249    0.1590    4.9007 
 

        0.0057    0.0094    0.1353 
        0.0094    0.0208    0.3121 
        0.1353    0.3121    4.8955 

Correlation Correlation 
 
  1.0000    0.9888    0.9952    0.0886 
  0.9888    1.0000    0.9977   -0.0324 
  0.9952    0.9977    1.0000    0.0336 
  0.0886   -0.0324    0.0336    1.0000 
 

        1.0000    0.8596    0.8074 
        0.8596    1.0000    0.9777 
        0.8074    0.9777    1.0000 

 
As shown in this section, by fixing parameters, we can improve the estimation of a particular 
parameter. By reducing the number of parameters, we have improved the estimation of the remaining 
parameters but we have also introduced a systematic error. We will show in the next and last section 
how it is possible to estimate this bias by taking it into account, to reduce the corresponding systematic 
errors on the estimated parameters. 

 

7. Taking the bias into account to reduce the variances on estimated parameters: case of 
the flash method [1] 

 
 In this section, we will show through a simple example how it is possible to reduce the 
variances on estimated parameters by taking into account the bias caused by the use of a reduced 
model. We have already shown in Section 3.3.4 that in the case of a biased model, where the structure 
(58) of the model is wrong (a drift )(tby  in  the recording system base line there), the estimated 

parameters are biased and the residuals curve is signed. We also have shown that the bias on the 
estimated parameters depends on the length of the time interval. The idea is then to estimate the bias 
on the estimated parameters from the residuals curve using a time variable estimation interval: it will 
concern either the case of an error in the structure of the model, or the case of an error on the nominal 
value of a subset of parameters of the parameter vector. In this last case only a part of the parameter 
vector is estimated while its complementary part is assumed to be known and taken equal to its 
nominal value that differs from its exact value. 
 
7.1 Modelling 
 
The Flash experiment consists in a uniform in space heat pulse stimulation of a sample with a very 
short duration (Dirac). The rear face temperature evolution is then considered and allows the 
estimation of the thermal diffusivity. Different non-ideal aspects as heat losses with the surrounding 
are then considered. The sample is assumed cylindrical with a thickness e and a radius R . This 
sample is submitted to an impulsed flux: ( ) ( )tQt δϕ = , where Q is the energy absorbed by unit area 
of the front face absorbed energy (W.m-2).  
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Figure 28: Principle of the Flash Method 
 
Heat transfer in 1D is given by : 
 

t
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 (113) 

 
with the following boundary conditions: 
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The solution can be easily obtained using a Laplace transform and is a function of two independent 
parameters: 
 

( ) 



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/

1
)/(coshwith apeapCape
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BapeA λ

λ
===  

 
The “unknown” parameters are: 
 

• the  characteristic frequency (inverse of the characteristic time ct ): νν /t,
e
a

c 12 ==  

• the Biot number (heat losses) :  
λ
he

Bi =  

 

The “unknown “ parameters” vector is defined by : 







=

Bi

ν
β  
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A third parameter is present in the response (116), the adiabatic asymptotic temperature, 
ec

Q
Tadia ρ

= , 

which is the maximum temperature that can be reached if no losses occur in the experiment, that is if 
0=Bi .  

 
In order to get a simpler model, a normalization is made here, using the maximum temperature maxT  
of the thermogram, which can be evaluated on an experimental basis: 
 

( ) ( )BiFtBi,tfTT maxmaxadiamax == νν with   (115b) 
 
where maxt is the time this maximum occurs and F  a function defining the corresponding Fourier 

number maxtν . This allows to get a scaled temperature model *T , with only two parameters: 
 

( )
( )

( )
( )( ) ( )Bi,tg

Bi,BiFf
Bi,tf

Bi,tfT
Bi,tfT

T
T

T
maxadia

adia

max

* νν
ν

ν ====    (116) 

 
We will assume now on that the exact values of these parameters are : 
 
 s10.exact =ν  

 050.Bi exact =  
 
7.2  Estimation with no bias 
 
The results of an inversion with a pseudo-experimental measurement are shown in Figure 29. 
Temperature T  has been calculated  by application of model (115a) for a simulated acquisition time 
step s010∆ .t = , that is for m = 1000 measurement [ ]mititi 1with∆ ∈=  , with the exact values 

of β . This temperature theoretical signal is then scaled by division by its maximum  to get the scaled 

temperature *
iT at any time it , which has been corrupted by an additive independent noise iε  of 

standard deviation σ = 0.01  to get a simulated experimental thermogram i
*
ii Ty ε+=  .  

 
Let us note that this scaled standard deviation corresponds in fact to the inverse of the signal over 

noise ratio of the original temperature signal.  The recalculated scaled temperature ( )iB̂,tˆgT i
*
i ν=  

as well as the corresponding residuals *
iii Tyr −= , are shown in Figure 29. 

 
The following estimates have been obtained through normalized least squares: 
 


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    (117) 
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Figure 29: Estimation from a thermogram corrupted by noise 
 

Figure 29 Comparison of  the recalculated thermogram (calculated from the estimated values of the 
« unknown » parameters given by a Levenberg-Marquardt algorithme: O.L.S 
minimization) with the (synthetic noised thermogram indicated as "experimental" in the 
plot) and residual plot in green (difference between direct exact model corrupted by noise 
of standard deviation and recalculated thermogram). 

 
 
The errors (absolute and relative) on both parameters can be calculated. They are quite low: 
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These errors can be still reduced by repetition of experiments and calculation of the corresponding 
statistical deviations of the corresponding estimations, since there is no bias in the model: 
 

exactˆ ββ =)(E     (119) 
 

It is also possible to compare them to their corresponding stochastical levels using the variance-
covariance matrix of the OLS estimator: 
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7.3 Estimation with a bias: whole domain approach 
 
Even if the previous estimation is excellent, in terms of estimation errors, we will try now to reduce 
the number of “unknown” parameters involved in the theoretical model by setting the second 

parameter Bi  to a nominal value nomBi  that differs from its exact value. So the same technique 
already presented in section 3, with a decomposition of the parameter vector into two parts: 
 

   







=

c

r

β

β
β      with  [ ] [ ]Bicr == ββ ν   (121) 

 
Only the first part rβ , which is composed of r parameters, will be estimated while its complementary 
part, composed of n - nr  parameters,  is supposed to be known. This second part will be blocked to a 

wrong nominal value nom
cβ =  nomBi = 0.04 here. So a deterministic error exact

c
nom
c ββe

cβ
−≡ will add 

its effect to the noise, in the rβ  estimation process. 
 
This means that estimation of rβ  will be made with a biased model 

);();( nom
cr

*
r

biased
mo ,ββtTβty = instead of the right one, );();( exact

cr
*

rmo ,ββtTβty = , which 
means that an output bias appears: 
 

 [ ]T
mc

exaxt
rmor

biased
moy ttt L21with);(-);()( =≈≡ teSβtyβtytb

cβ
 (122a) 

 
The last approximation derives from a first order approximation around the nominal values of both  

rβ  and  cβ . So, at a given time, the experimental signal can be written the following way: 
 

iiyri
biased
moirimoi tbtytyy εε +−=+= )();();( ββ   (122b) 

 
 
The corresponding deterministic error  

cβ
e for this parameter will produce a bias 

rβ̂
b for the estimation 

of  rβ , see equation (93c), which is recalled here: 
 

( ) ( )
cβββ

eStbββbtbSSSb cy
exact
rrˆy

T
rr

T
rˆ

ˆ
rr

=−≡−=
−

)(andEwith)(
1

    (122c, d, e) 

 
Up to now it has been assumed that the structure of the model is known (sensitivity to both set of 
parameters rβ  and  cβ are available) and that the estimation bias  for rβ  stems from an error of the 

parameters cβ  that are supposed to be known and that are fixed to a wrong value nom
cβ . Equation 



 
 
 
 
Metti 5 Spring School  Roscoff – June 13-18, 2011 
 

 Lecture 4: Non linear parameter estimation problems – page 61 

(122c to e) corresponds to a generalization of this approach: one considers now that the error lies in 
the structure of the model, without any specific reference to the fixed parameters. 
 

In order to analyse the effect of estimating with a biased model, synthetic measurements, using the 

exact model (116), ),;();( crmo
exactexact* tyBitgT ββ== ν  have been generated on the [0  10 s] 

time interval, in the absence of noise (σ = 0) and an OLS estimation of ν=rβ ,  using the same 

model (116), but with the nominal value of nom
c Bi=β  has been implemented: this means that the 

biased model has been used for inversion. OLS estimation over this time interval yields 

1010960.ˆ
r = β s-1, that is a bias  0010960.

r
=βb  s-1  hence, through application of its definition 

(122d). 
 

Direct application of (122c and e) for 010.−=
cβ

e  yields 1s010950 −= .
rβ̂

b , that is 

1010950)(E .r
ˆ = β  s-1, which is a value quite close to rβ̂ .  

 

The corresponding simulated 'experimental' biased residuals ),;( nom
crimo

ˆty ββ  (red line) as well as 
the residuals of the unbiased estimation (green line), are plotted in Figure 30. The corresponding 
theoretical bias )(tby , calculated using equation (122e) is also plotted (blue line):  this constitutes a 

validation of this equation. 
 
 

 
 

Figure 30: Residuals curve in the case of the biased (red) or a unbiased (green) model  
                   and theoretical biased  residuals (blue, equation 112e) 
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In case of noisy measurements (independent and identically distributed noise, with a standard 
deviation σ), it is very useful to look for the expression of the estimation error. It is a column vector 
defined as: 
 

rr
ˆrr

exact
rrrr

exact
rrˆ

ˆˆˆˆˆˆ
ββ

bββββββββe +−=+−=−= )(E-)(E)(E  (123) 

 

So the estimation error for rβ̂  is composed of a stochastic part )(E rr
ˆˆ ββ − caused by noise ε in the 

measurement output temperature signal, and of a deterministic part, the previous bias 
rβ̂

b  , caused by 

the error 
cβ

e on the fixed nominal value nom
cβ in the non estimated part of the parameter vector.  

 
The magnitude of this error can be quantified if the expectancy of the square of its "length" (or of its 
norm, if all the parameters present in the original parameter vectors have the same unit): 
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rrrrr
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ˆrˆ

T
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  (124) 

 
Using equations (122a) and the expression (14) of the variance-covariance matrix of an unbiased 
estimator: 
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cc ββββ

eSSSSSSeSSee c
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T
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T
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t
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t
ˆ
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212E
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+= σ   (125) 

 
In the present case, both rβ and cβ  are scalars and this equation corresponds to a "modified" variance 
of the estimation error: 
 

( ) 2
2

22 )()(E)(mvar νν
σνννν ˆ

r
t
r

ˆ
exact bbˆvarˆˆ +=+=−=

SS
  (126) 

 
In case of a noise of standard deviation σ = 0.01 K and an estimation over the [0 10 s] time interval, 

the value of this modified variance is 26 s1020311)(mvar −= .ν̂ , with a stochastic component 
211 s1041)(var −= .ν̂  and a deterministic component  262 s1020311 −= .bν̂ : the bias is then the 

dominant component of the estimation error, with a relative error 

%./b/ˆ exact
ˆ

exact 11)(mvar =≈ ννν ν . 

 
It is possible to link the residual vector to the preceding systematic error 

cβ
e and to the noise, using 

now the more general notation  ),;( crmo tyT ββ= ,, instead of (116) for the model output : 
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Use of equation (122) and the fact that the stochastic part of the error in rβ̂ is: 
 

( ) ( ) εSSSββ T
rr

T
rrr

ˆˆ 1
E

−
=−      (128) 

 
yields: 
 

( ) ( )
cβ

eSεSSSSIr c
T
rr

T
rr −
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−1
   (129) 

 
Taking the expectancy of this expression of the residual vector yields: 
 

with)()(E
cβ

eSAr c−=   ( ) T
rr

T
rr SSSSIA

1−
−=   (130) 

 
 

This equations shows that the modelled residual vector is a linear function of the deterministic error 

),;(),; exactexact exact
cr

nom
crc ( ββtyββtyeS

cβ
−=  for the temperature output induced by the error 

in the nominal value of the fixed part nom
cβ  of the parameter vectorβ . However, it is not possible to 

use this model to estimate 
cβ

eSc  because matrix ( ) T
rr

T
rr SSSSIA

1−
−= is idempotent (the 

corresponding linear operator is also called a projector): 
 

...=== 32 AAA  
 
Since matrix A  is idempotent, it is also singular and its inverse does not exist. This forbids the use of 
model (130) to  estimate the  error 

cβ
eSc  and hence to correct cβ .  

 
 
 

However, interesting conclusions can be drawn from equations (122a) and (130): 
 

- if 0=
cβ

e  then the residuals are not signed: 0=)(E r and the bias 
rβ̂

b is equal to zero. 

- if  0≠
cβ

e  then the residuals are signed: 0≠)(E r  

- if 0=c
T
r SS , the sensitivities to the parameter present in nom

rβ are completely uncorrelated 

with those present in nom
cβ (the corresponding two subspaces of nrnnr −RR and are orthogonal) 

and there is no bias for rβ̂ , whatever the error for nom
cβ . In this case, the residuals are still 

signed, with an expectancy 
cβ

eSr c−=)(E . 

 
The residual curves for OLS estimations with s10== mend tt  using either the unbiased model 
(green, already shown in figure 29) or the biased one (red) are shown in  Figure 30. 
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7.4 Estimation with a bias: use of a variable estimation time interval 
 
In the discussion of the different cases presented above, one can see that if either the sensitivities to 

the parameters present in nom
rβ are linearly independent of those present in nom

cβ  (case where 

0=c
T
r SS  which implies 

cβ
eSr c−=)(E and 0=

rβ̂
b ), or if there  is no error for nom

cβ ( 0=
cβ

e  

which implies 0=)(E r and 0=
rβ̂

b ) the residuals do not depend on the estimation time interval 

considered.  
 

So, in the general case where these two assumptions do not hold, the estimate of rβ depends on this 

interval: one can thus vary the length of the time interval (initial value [ ]mtt1 ) which can become  

[ ]endp ttt =1  with p ≤  m. So this estimate, that can be noted )( endr tβ̂  depends on the final time endt  

of the estimation interval considered. 
 
Consequently model (122a) is recast for the bias: 
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and it can written for two final times aend tt =   and bend tt = , with ab tt > . Substracting the 

corresponding two equations allows to get a model whose output, the expectancy of the difference of 
the two estimates, can be evaluated: 
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Writing the two sensitivity matrices over the two intervals [ ] [ ]ba tttt 11 and yields: 
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where abrS  and abcS  are the sensitivity to both parameter sets over the [ ]ba tt 1+  interval. Substitution 

of this equation into (133) yields: 
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If at and bt  are very close, it is possible to neglect the first difference in the bracket, since 

( ) ( ) 11 −−
≈ ar

T
arbr

T
br SSSS , which yields: 
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If we take 1+= ab  and introduce the sensitivities rS  of the output to the rn parameters present in 

rβ  at a single time abt  ( rS  is a line vector), as well as  its counterpart cS for the cn  parameters 

present in rβ  at the same time, the above equation becomes: 
 

 

( ) ( ) 2∆with)()()()(∆
11

/ttttbttt aababyab
T
rar

T
arabcab

T
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T
arabˆ

r
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−−
SSSeSSSSb

cββ  

(136) 
 

Here the bias )( aby tb  in the model output defined in (122c) appears explicitly. So, the above equation 

can be recast under the following form: 
 

abˆar
T

arabyab
T
r

r
tbt βbSSS ∆)()( −=    (137) 

 
It is possible to get a realization of 

abˆ
rβb∆  which is simply the difference of the two estimated values 

brβ̂  and arβ̂ . Equation (137) corresponds to a system of rn  equations with a single unknown 

)( aby tb . Its solution can be found in the ordinary least squares sense: 
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  (138) 

 
If we go back to the preceding example (biased model of the flash experiment with a single parameter 
ν ), one has 1=rn  and equation (138) becomes: 
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2
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a

iab
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aby tS
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−= ν
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where aν̂ is the characteristic frequency estimated over the [ ]att1  interval and bν̂ over the [ ]11 +att  

using biased model ),;();();( nom
crmo

nom
r

biased
mo tyBitgty βββ == ν . 

It is thus possible to plot the )( aby tb̂  using (139) with a  varying from 12 −mto .  

 
An alternate expression of the output bias estimation (139) can be implemented with a difference 

abk −=  larger than 1, in order to smooth the noise in the )( ab νν ˆˆ −  difference (a kind of "moving 
average filtering"). In this case, the estimated bias becomes: 
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Once the output bias )(tb̂y  estimated for each of the possible pair of intervals of the form: 
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[ ] [ ] kmatttt kaa −=+ to2forand 11    (141) 

 

one can build an output bias vector the components of which are the  )1( +− km  possible times abt  
 

[ ]T

mkmykykyy tb̂tb̂tb̂ˆ )()()( 3322 −++= Lb    (142a) 

 
and application of equation (122c), with sensitivities to the components of rβ  calculated on the 

corresponding values of abt  yields a corrected value of the preceding estimator: 
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The first components of the estimation of the output bias vector yb̂  are characterized by a high 

stochastic error, because their estimations are derived by a low number of measurement points. So, it 

is more interesting to use the last components, for example )( mkmy tb̂ − , for the estimation of the 

estimation bias thanks to the expectancy of the scalar form (122b) written for rr β̂β =  : 
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ˆtytyˆtyyr βββββ −+−=−= (143a) 
 
A first order expansion of the last expression yields: 
 

)()(E)(E iyˆiric
exact
rriri tbˆr
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ββ bSeSββS   (143b) 

 
Once an estimation of the output bias available, for mkmabi ttt −== , an observation of the residual at 

the same time on the [ ]mtt1  interval yields a relationship between the estimates of )( iy tb  and of 

rβ̂
b : 

 

)( iyˆiri tb̂ˆr
r

−−=
β

bS      (143c) 

 
If one single parameter is estimated, that is if 1=rn , the preceding sensitivity line vector irS at time 

it becomes a scalar, which allows an estimation 
r

ˆb̂β  of the estimation bias and hence the definition of 

a corrected estimator for rβ : 
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Let us remind that all the previous expressions for the output bias yb  are based on the assumption 

associated with equation (135):  
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1/)( <<− aab ttt      (143e) 
 

7.5 Correction of the bias using a variable estimation time interval: application to the flash method 
 
To illustrate these results, we consider the case of the Flash method. As previously shown, this 
problem involves two parameters: the characteristic frequency and the Biot number (heat losses).  
 
For the simulation of an experimental curve, the following exact values are considered: 
 
 
 s10.exact =ν  

 050.Bi exact =  
 
To simulate a bias on this detailed model, we consider the heat losses as a “known” parameter. The 

value of the Biot number is fixed to a nominal value 030.Bi nom = . To simplify, we will consider the 
signal without noise (only the determinist component of the error is considered).  

 
 

 
 

Figure 31: Thermogram with heat loss and scaled sensitivities 
 
Theoretical thermogram (detailed model) and scaled sensitivities to “unknown” ( rS ) and assumed to 

be “known” ( cS ) parameters are plotted in Figure 31. 
 
The sensitivity curves show that the thermogram is sensitive to νβ =r . This parameter has been 
estimated by an O.L.S method with the biased model. The solution is presented in Figure 32. It is 
clear that the estimated value is different of the nominal value.  
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Figure 33: Original (experimental) thermogram and recalculated thermogram  

with 030ands10210 1 .iB̂.ˆˆ nom
cr ==== − βνβ and residuals 

 
 

If we then try to perform this estimation for different time interval lengths pt , we can observe as 

illustrated in Figure 33 a variation of the estimated characteristic frequency )( ptν̂ with the estimation 

duration pt . This means, as explained before, that a bias νβ ˆˆ bb
r

=  exists for the estimated parameter. 

 
This information can be used for the determination of 

c
eStb iciy β=)( . Only one point in time is 

required to determinate the value of the rβ  parameter and consequently the bias on the estimated 
parameter. 
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Figure 33: Evolution of estimated diffusivity )( ptν̂  over the ][ 1 ptt  time interval versus duration pt  

for 1000to1 == mp   
 
 

In Figure 34, after an estimation of the output bias )59()( 9501000900 s.tb̂tb̂ yy ==  using equation 

(140), the estimation bias 1s00221860 −== .bb ˆˆ
r

νβ  has been calculated thanks to equation (143d).  

This yields  a corrected estimation corrected
rβ̂  equal to: 

 
1s099920002220102140 −=−=−= ...b̂ˆˆ

r
ˆr

corrected
r βββ  

 
that is a 0.08 % difference with the exact value. 
At this same time the output bias is plotted (blue point) in figure 34. This operation has been repeated 
for each time it  using a moving average (140) with 100=−= bak  (blue solid line).  
 
This estimation output bias has been compared to the theoretical one 

)(030)( iBiiciy tS.eStb
c

−== β (red solid line) which is known here. Both curves are quite similar 

with a time lag that  probably stems from the  fact that the upper bound in the summation (140) is a  
and not 2)( /ba + . 
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Figure 34: Comparison between theoretical and estimated  output bias curves   

 
 
So this method allowing the estimation of the bias on estimated parameters obtained by an inverse 
technique using a biased model seems to be validated by this example.  
 
8. Conclusion 
 
Useful tools have been introduced for the analysis of estimations (variance-covariance matrix) and the 
detection of the ill-conditioned character of the Parameter Estimation Problem (PEP). Different 
techniques have been presented for tracking the true degrees of freedom of a given PEP (matrix rank, 
correlations between parameters, SVD, ..). If we want to enhance the estimation of a given parameter, 
one solution is to use a reduced model. This reduced model can be either unbiased or biased. It is of 
particular interest to know if a reduced model is biased or not.  
 
We have proposed, in the last section of the lecture, to work with a variable estimation time interval in 
order to evaluate the systematic error caused in the estimated parameters. We hope that the different 
"realistic" examples of thermal metrology presented in this lecture will help the reader to master the 
corresponding  tools to get good estimates in a PEP. 
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