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Abstract. Two basic examples of Linear Inverse Heat Conduction Problems (LIHCP) are presented. They aims 
both to determine the time varying heat flux density entering a solid wall, from noisy data given by some 
measurements of the temperature rise inside the wall. In the first case, the wall is assumed to be a semi-infinite 
body, the second case is the standard plane wall. The instabilities of the numerical solutions are analyzed. The 
influences of the level noise, the sensor locations, the time step are investigated. The use of the spectral value 
decomposition (SVD) of the linear operator to build regularized solutions is also illustrated.  

1. Introduction 
 
How to determine the time varying heat flux density entering a solid wall, from noisy data given by 
some temperature measurements inside the wall, is a very standard Inverse Heat Conduction Problems 
(IHCP), and the choice in practice of a numerical method for solving such problems is not obvious, it 
will depend on the complexity of the model equations: are they linear or not? What is the dimension? 
What is the shape of the spatial domain? In any case, some specific difficulties are “expected”, 
because IHCP are known to be ill-conditioned and regularized processes have to be developed for 
avoiding instable solutions due to noisy data.  
In this lecture we considered two basic examples of linear IHCP:  in the first case, the wall is assumed 
to be a semi-infinite body, and the second case is the standard plane wall. By investigating the model 
equations, it is possible to exhibit the matrix form of the linear operator to be inversed. We are more 
interested in the analysis of the instabilities than in the development of the regularization methods. For 
such linear problems, it will be shown how the spectral value decomposition (SVD) of the linear 
operator is a powerful approach. 
 
 
2. Semi-infinite heat conduction body 
 
2.1- The model equations 
 
The semi-infinite solid is a simple geometry for which analytical solutions of the heat conduction 
equation may be obtained. Since such a solid extends to infinity in all but one direction, it is 
characterized by a single identifiable surface. If a sudden change of condition is imposed at this 
surface, transient, one-dimensional conduction occur within the solid. This configuration provides a 
useful idealization for many practical problems [1]. 
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Let us consider a semi-infinite body in the axis direction x, which receives the heat flux density u(t) 
(W.m-2), on the boundary  x = 0, at the initial time  t = 0. The spatial distribution of the initial 
temperature field  T0 (x) can be non uniform. A temperature sensor is located at xc  

The temperature field T(x,t), solution of the heat conduction equation, depends on the physical 
parameters: thermal conductivity λ (W.m-1.K-1), heat diffusivity a = λ /ρc (m2.s-1)  and thermal 
effusivity b = (λ ρc)1/2 

 
The output signal of the modeling equations is:  
 

),()( txTty cmo =      (1a) 
By introducing: 

• the Green function  
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the output can be written as the sum of two terms 
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The first term )(ty relaxmo corresponds to the relaxation of the initial field, it vanishes for long time, 

the second term )(ty forcedmo  is the thermal response expressed as the result of the convolution of the 

input signal heat flux u(t), with the impulse response Z(t) 
 
When the initial field is assumed to be uniform, equal to T0, then the first term remains equal to T0, 
and the output signal becomes 
 

t't'u'ttZTt,xTty
t

cmo d)()()()(
0

0 ∫ −=−=                           (3) 

Rewriting the impulse response as: 
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and considering the input as a (unitary) impulse,  
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the plot of the impulse output K/tZt*Z )()( =  (with T0 = 0) versus the reduced time 
τ
t

t =*  is 

shown on figure 1. It must be noted that the characteristic time to reach the maximum value is given 
by  
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During experiments which lead to temperature measurements, this typical value has to be reminded to 
choose correctly the data acquisition time step t∆ , in practice  it must be chosen in order to satisfy 

.∆ τ<<t  
 
The discrete output response 1,2,...i ),t( =imoy  to any arbitrary input 1,2,...i ),t( == ii uu  can be 

then approximated from a numerical solution of equation (3): 
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which can be written in the linear matrix form :         uSy =mo        (4c) 

S  is a Toeplitz matrix, and takes the specific  triangular form  
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Note that the sensitivity coefficients zi depends on the time step t∆ , and goes to zero when 0∆ →t  

 
Figure 1 – The impulse output signal -  Heat conduction in a semi-infinite body  
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2.2- The IHCP in a semi-infinite body – a non regularized solution 
 
The inverse heat conduction problem which aims to reconstruct the heat flux signal u(t) from the noisy 
output signal y(t) is obviously a time deconvolution  problem and the solution  is well known to be 
very sensitive to the noise measurement. Regularized solutions have to be developed.  
To illustrate how the inverse problem is ill-conditioned, let us examine first the influence of the level 
noise on a non regularized solution given by: 
 

ySu 1ˆ −=                                  (5) 
 
Without loss of generality, we consider the following numerical case: 

• the heat flux density u(t)  is given by the triangular signal, plotted on figure 2, over the time 

interval [ ]s20,0 =ft  

• the thermal properties and the sensor location are s1;sm10; mm2 126 === −− τaxc    

11 KmW1 −−=λ  116 KkgJ10 −−=cρ , 123 JmK10564.0 −−=K . 

• The output signal y(t) is plotted on the same figure 2a, it is computed with a time step 

s5.0∆ =t , and an additive (zero mean) gaussian noise with K005.0=σ  

 
Figure 2a – Input signal u (t) and output response y(t)  computed with K005.0=σ and 50.t =∆ s 
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Figure 2b – Estimated heat flux – cases a, b and c - Influence of the noise level on the computed heat 
flux  - time step s 0,5=∆ t  
 

 
Figure 2c – Estimated heat flux – cases a, b and c -  Influence of the noise level on the computed heat 
flux  - time step 0.8s=∆ t  
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The computed heat flux, according to equation (5), cases a, b and c, are plotted on figure 2b, for three 
noise levels ( K0050et002000 ,,;,=σ ), with a time step s 0,5=∆ t  
 
By computing the heat flux, according to equation (5), but with a greater time step s 80,t =∆ , (now 

20=m ),  and for the same noise levels σ , the numerical solutions are plotted on figure 2c. 
 
The comparison of the inversion results, case b and case c, show that by increasing the time step, the 
solution   becomes less sensitive to the noise measurement. This numerical phenomena is not specific 
to that example, it is “generic” for this kind of inverse problem.  
 
To increase the accuracy of the numerical approximation of the solution of the forward problem, the 
time step is usually decreased.  It must be observed here that decreasing the time step leads to make 
the solution of the inverse problem less stable.  
 
In fact by decreasing the time step, the sensitivity coefficients  of the Toeplitz matrix  S , equation 
(4c),  goes to zero, and the condition number  grows exponentially: 
 
Table 1 – Condition number of the matrix S – IHCP in a semi-infinite body 

t∆  s 0,8=∆ t  s  50,t =∆  s 0,4=∆ t   

Cond(S) 46,5 292 28420  
 
Then by decreasing the time step, the inversion process of the noised data leads to more and more 
unstable solutions. On the contrary, by increasing the time step, some “regularization” process occurs, 
the computed solution becomes more stable, but of course this is done by decreasing the accuracy of 
the solution. Some compromises have to be searched for. 
 
2.3- The IHCP in a semi-infinite body- Influence of the time step 
 
In this example, another simple analysis of the influence of the time step t∆ on the stability of the 
inversion process of noisy data can be derived directly from the model equations and the output noise 
level.  
 
As shown on figure 2.a, for 5<t  the heat flux density signal is triangular, the slope (800 Wm-2s-1)  is 

known, so the mean value of the increment )(tu∆  on each time step[ ]ttt kk ∆+   satisfies  
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The resulting increment on the output signal can be approximated by 
 

u)/∆(-exp
t∆

t∆ ∆≈∆ tKy ττ
                                           (6b) 

 
This increment of the output signal will be “significant” only if this value is greater than the level 

noise: σ>∆y . In this example, we have: 123 JmK10564.0 −−=K , s1=τ , K005.0=σ , 
then we get : 



 
 
 
 
Metti 5 Spring School  Roscoff – June 13-18, 2011 
 

 Lecture 10 Linear Inverse heat conduction problems – page 7 

( )

( ) σ

σ

≥⇒

≥=∆

)/∆1(-expt∆225.0

)/∆1(-exp
t∆

1
t∆*400*564.0

2/3

2

t

ty
                                             (6c) 

 
By plotting the variation of the increment y∆ versus the time step t∆ , figure 3, it is observed that  

• for t∆ = 0.8s, the output increment y∆ =46,3mK is much larger than the level noise,  

• for t∆ = 0.5s, y∆ > 0.01mK is only twice more than the level noise 

• for t∆ = 0.4 s. y∆ =4,7mK becomes less than the level noise mK5=σ .  
 
Of course, these values are specific to this numerical example, but they could be computed for other 
examples of semi-infinite heat conduction problem with different values of thermal parameters, and/or 
sensor location. They well explain how increasing the time step t∆  contributes to the stability of the 
numerical solutions of the inverse problem. 
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Figure 3: Output increment y∆ versus time step t∆ – semi-infinite conduction model 

 
 
2.4- The IHCP in a semi-infinite body – a regularized solution 
 
The inverse heat conduction problem being linear, the spectral value decomposition (SVD) analysis of 
the sensitivity matrix  is a powerful method to determine a regularized solution. 

For example, the solution yû 1−= S , computed without regularization, with a time step s 0,4=∆ t  
and plotted figure (3), illustrates how the noise of the output data is amplified, and the need of some 
regularization. 
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Figure 4  
Heat flux u(t) 
computed  without 
regularization 

( ySu 1ˆ −= ),  
from noised data   

K0050,=σ , 
 for a time step 

s40∆ ,t =  

 
The use of the SVD method is straightforward: 
 

• the sensitivity matrix is first decomposed in the form 

TVWUS =                         (7) 
where VU, are orthogonal matrices  

and W is the matrix of the singular values { }mkwk ,..1, =  

In this example, the matrices are squared and their size is m = n=  51 
 

• The SVD regularized solution is then  
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The « hyper-parameter » r is used to decide of the “good regularization level”. The expected 
compromise between accuracy and stability is fixed by some optimal value of  r. We have to avoid: 

• a too big error amplification  when mk → , because 0→kw , hence ∞→
k

k

w

a
 

• A too large bias when 0→k , because all the components { }mrkya T
kk ,..,1, +== U  of the 

output noisy data are ignored, only the components { }rkya T
kk ,..,1, == U are taken into 

account. 
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Figure 5  - Quadratic error 

2
)( uu −= rˆrf  versus r ( s40∆ ,t = , K0050,=σ ), m =51 

 
 
It is possible (in this example) to compute the exact solution u*,  and  for each value of r, the 

regularized one rû . Then the quadratic error
2

*ˆ)( uu −= rrf can be plotted versus r, figure 4. It 

is observed that a minimum is reached in the neighborhood of  r = 15. 
 
The heat flux computed with 18et1512,r =  are plotted on the figure 6. Compared to the non 
regularized solution (figure 4), we conclude on the efficiency of this method: the solutions are stable, 
even for  s40∆ ,t =  and K0050,=σ  . However a slight bias is observed, (see the figure 2a), the 
peak value is less than the exact value (= 2 Wm-2). 
 
Other standard methods are well adapted and can be used for solving such linear inverse heat 
conduction problems, the well known Beck’s method (sequential algorithms), or the conjugate 
gradient algorithm [3] are recommended and give good results. 
 
 
In practice, the exact solution is unknown, then the determination of the optimal SVD truncation 

cannot be done by searching for the minimum of 
2

*ˆ)( uu −= rrf .  
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Figure 6 -  SVD Regularized  Heat flux rû computed for  18et1512,r =  

( s40∆ ,t = , K0050,=σ ) 
 
Some bound of the error estimate *ˆ uue −= ru , has to be a priori given to select the best 

truncation order r. A “L-curve” approach (see lecture L9) can also be developed. 
 
However, a more detailed analysis can be done. Let us denote c = m – r , ε  the additive noise and 
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Then, the error estimate can be put in the form  
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• The first term is directly linked to the variance of the measurement noise, it increases by 
increasing the truncation parameter r,  

• and the second term depends only on the c = m – r  spectral components of the exact heat flux 
signal, which have been “lost” by truncation.  
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It means that the ill-conditioning of the inverse heat conduction problem depends both on the 
mathematical model equations (singular values jw  of matrix S ),  and on the spectral values of the 

input signal to be determined. The compromise in choosing the parameter r takes into account these 
both contributions. 
 
3. Heat conduction in a Plane wall 

3.1- The model equations 

One dimensional transient heat conduction is now considered in a plane wall of thickness e, subjected 
to a convection condition at  the boundary x  = e. Like in the previous example, the wall receives a 
heat flux density u(t) (W.m-2), on the boundary  x = 0, at the initial time  t = 0.   For convenience, the 
initial and ambient temperature field are taken equal to zero 00 == ∞TT  

 
Figure 7 – Transient heat conduction in a plane wall 

 
A standard approximation of the spatial derivatives in the one-dimensional  heat conduction equation, 
with a regular spatial mesh including N  nodes, leads to  a “state-space” model equations 
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λ/zhBi ∆=  (Mesh Biot number)                                  (12d) 

 

A temperature sensor is assumed to be located at ziz cc ∆)1( −= . The output equation of the model 

takes the matrix form 
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and the output signal )(y tmo  is given by 
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At tktk ∆= , tnk ,..,1=  the discretized output is  given by: 
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Let us introduce the parameterized form of the input signal 
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Then, the input-output model equation takes the same linear matrix equation than in the previous 
example 
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3.2- Numerical example - Influence of the sensor locations 

 

Numerical results are obtained with the following data:  
13611 KJm1021KWm30m050 −−−− === .c;,;,e ρλ  , and   h = 0 Wm-2K -1. 

The chosen input heat flux is plotted on the figure xx 

The output signal )t(ymo  is computed at three different locations 43;2;4 /e/e/ezc = , over the 

time interval  [ ]s80000 =ft, , with nodes 21=N  et nt = 40  time steps ( st 200∆ = ), the output 
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are plotted on the same figure xx. The node numbers which corresponds to the sensor locations are 
then { }16116 ,,ic ∈ . An additive (zero mean) Gaussian noise ε , with K,020=σ  is considered: 
 

εyy += mo                                                                            (17) 
 

 
Figure 8 –Input heat flux and output thermal measurements – Plane wall 

 
3.2- The IHCP in a plane wall – non regularized solution 
 
These noised output data are now used to solve the inverse heat conduction problem, which aims to 
reconstruct the input signal. 
A non regularized solution is first computed to illustrate the ill-posedness of the problem 
 

ySuyuS 1ˆ −=⇒=     (18) 
 

As in the previous example, the influence of the time step on the computed  heat fluxû  is  shown on 
the plot, figure 9. Two values are compared : s200∆ =t  and  s320∆ =t . Moreover the influence 
of the sensor locations is also clearly  illustrated. 
 
Obviously, as far as the sensor location moves away from the boundary  x = 0, where the heat flux has 
to be estimated, the computed solution becomes more and more unstable. Like in the previous 
example,  increasing the time step has a beneficial effect  to make the solution less sensitive to noisy 
data. The ill-posedness of the inverse problem is quantified by the condition number cond (S)  which 
grows exponentially with the sensor location, as shown in the following table. 
 
As in the previous example, regularized solutions could be easily computed by using the SVD 
approach.  
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Table 2 – Condition number of the matrix S - IHCP in a plane wall 
zc e / 4 e / 2 3  e / 4 

s200∆ =t  730 8700 1,0244 105 

s320∆ =t  343* 2349 1,7 104 

 

 
Figure 9b – Estimated heat flux û  - Influence of the sensor locations ( s200∆ =t  ; K,020=σ  ) 

 
Figure 9c – Estimated heat flux û  - Influence of the sensor locations ( s320∆ =t  ; K,020=σ ) 

 
3.3- The IHCP in a plane wall – Effect of a biased model 
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Up to now, the model equations used to develop the data inversion process, have been assumed to be 
exact! In practice even for this simple heat conduction model, some model errors may occur.  
 

 
Figure 9d – Heat conduction in a plane wall- Output signal computed with h = 20 W m-2 K-1 

 
 
Suppose, for example, that the heat transfer coefficient of the model equations is h = 20 W m-2K -1, 
instead of the insulated boundary hypothesis ( h = 0). The value of the Biot number which 
characterizes the heat losses at the boundary  x = e, is then Bi = 3,3. The output signals in that case, 
should be as in the above plot, figure 9d. The Influence of this parameter on the output signal becomes 
more and more significant (compare with the figure 8), when the sensor is located closer to the 
boundary x = e, where the “wrong” condition occurs. 
 

The numerical inversion process ySu 1ˆ −= ,  is  now  applied to the same original noisy output data,  
figure 8, but a model error ( h = 20 W m-2K -1), is included in the matrix S. 
 
Numerical results are plotted on figure 9e. The influence of the sensor location is clearly illustrated. 
There is a systematic error  )(-)(ˆ)( 020 tututb hhu ===  between the solutions computed with the 

biased and the exact models. The mean value of this bias )(tbu is evident at the end of the time 

interval.  
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Figure 9e –Estimated heat flux )(ˆ 20 tuh=  with a biased model (h = 20 W m-2 K-1 , instead of h = 0); 

s200∆ =t  ;  K,020=σ  
 
3.4- The IHCP in a plane wall – Effect of a multi sensor output 
 
Some improvements are obtained by considering simultaneously the output signals of several sensors.  
 

• With only one sensor, the matrix S in the observation equation uSy =mo , is squared.  

• With two sensors, the size of the  matrix  C, equation xxx, becomes size(C )= (2 x n) and the 
size of the output signal vector is size(y) = 2n, then  S  is rectangular and size(S) =  (2 n x  n), 
so the inversion process has to be done in the least squared sense 

 

ySSSuySuSS TT
OLS

tT 1)(ˆ)( −=⇒=    (19) 

 
Numerical results plotted on figure 9f, show the solutions obtained with two sensors located at z = e/4 
et z = e/2 with noisy data ( K,020=σ ) and a time step s200∆ =t , the plots compare the heat flux 
computed 

• with the exact model (h = 0),  

• and with the biased model (h = 20), 

By eliminating the output signal close to the boundary  z = e,  the estimated input heat flux is less 
sensitive to the noise, but the systematic error on the estimated heat flux remains significant when the 
model is biased. 
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Figure 9f – Estimated input heat flux from combined output noisy data (σ = 0,02 K), given by two 

sensor located at  z = e/4 et z = e/2 .  
 
To avoid such situation, it is recommended to decouple the estimation problem of the boundary 
condition at z = 0  from that occurring at  z = L . It means that several sensors have to be installed 
within the wall.  
 

 
Figure 10 – Splitting the Inverse heat conduction problems for a plane wall case 
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For example, in the configuration including three sensors: 
 

� To estimate u (t) at z = 0, the model equation in the plane wall can be limited to the spatial 

domain [z=0 , z=3e/4]; the output signal at z =3 e/4  is then used to fix the boundary condition 

(Dirichlet condition); the inverse problem can be solved from the output data taken at z=e/4 

and  z=e/2,  without knowing the heat transfer coefficient h,  

� To estimate h at z = L, the model equation in the plane wall can be limited to the spatial 
domain [z=e/4 , z=e]; the output signal at z = e/4  is then used to fix the boundary condition 
(Dirichlet condition); the inverse problem can be solved from the output data taken at z=e/2 
and  z=3e/4,  without knowing the heat flux u (t) at z = 0. 

 
More improvements could be done with a Bayesian approach [2] 
 
 
4. Conclusion 
 
In the analysis of heat conduction problem, the semi-infinite solid is a simple geometry that provides a 
useful idealization for many practical situations.  A numerical solution of this inverse heat conduction 
problem has been easily investigated, thanks to the linearity of the model equation. The influence of 
variables like the noise level, the sensor locations, the time step on the instabilities of the non 
regularized solutions have been analyzed and illustrated. The SVD method is a powerful approach to 
control the regularized solutions. 
For the linear heat conduction problem in a plane wall, a standard discretization of the spatial variable 
leads to a similar analysis of the instabilities of the numerical inverse problem solutions.  Moreover 
the influence of a biased model, and the use of a multi-sensor output model have been illustrated.  
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