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Abstract. Two basic examples of Linear Inverse Heat Condadimblems (LIHCP) are presented. They aims
both to determine the time varying heat flux dgnghtering a solid wall, from noisy data given hyme
measurements of the temperature rise inside thie lwahe first case, the wall is assumed to beraisnfinite
body, the second case is the standard plane wasdl.ifstabilities of the numerical solutions arelgred. The
influences of the level noise, the sensor locatitims time step are investigated. The use of tleetsl value
decomposition (SVD) of the linear operator to buédularized solutions is also illustrated.

1. Introduction

How to determine the time varying heat flux dengityering a solid wall, from noisy data given by
some temperature measurements inside the wally@syastandard Inverse Heat Conduction Problems
(IHCP), and the choice in practice of a numericathod for solving such problems is not obvious, it
will depend on the complexity of the model equaticare they linear or not? What is the dimension?
What is the shape of the spatial domain? In ang,casme specific difficulties are “expected”,
because IHCP are known to be ill-conditioned arglilagized processes have to be developed for
avoiding instable solutions due to noisy data.

In this lecture we considered two basic exampldmear IHCP: in the first case, the wall is assumed
to be a semi-infinite body, and the second cadieeistandard plane walBy investigating the model
equations, it is possible to exhibit the matrixnfioof the linear operator to be inversed. We areemor
interested in the analysis of the instabilitiestirathe development of the regularization methéas.
such linear problems, it will be shown how the $pdcvalue decomposition (SVD) of the linear
operator is a powerful approach.

2. Semi-infinite heat conduction body
2.1- The model equations

The semi-infinite solid is a simple geometry forigrh analytical solutions of the heat conduction
equation may be obtained. Since such a solid estéadinfinity in all but one direction, it is
characterized by a single identifiable surfacea Isudden change of condition is imposed at this
surface, transient, one-dimensional conduction ioegthin the solid. This configuration provides a
useful idealization for many practical problems [1]

Lecture 10 Linear Inverse heat conduction problemage 1



Metti 5 Spring School Roscoff — June 13-18, 2011

Let us consider a semi-infinite body in the axisediion x, which receives the heat flux density) u(t
(W.m-2), on the boundary x = 0, at the initial émt = 0. The spatial distribution of the initial
temperature field J(x) can be non uniform. A temperature sensordatied at x

The temperature field'(x,t), solution of the heat conduction equation, depemwlsthe physical
parameters: thermal conductivity (W.m*.K™), heat diffusivitya = A /pc (mf.s?) and thermal
effusivity b = (A pc)*?

The output signal of the modeling equations is:

Yimo (1) =T (X, 1) (1a)
By introducing:
* the Green function
1 (x, — x)? (x. + x)?
G X 1) —— - 7 |+ -—c - 1b
(e, %, 1) 21/nat{eXp[ 4at J exp[ 4at (1b)

* and the impulse responZe(t) = exp (— xZ /4at) (1c)

1
bt

the output can be written as the sum of two terms
0 t
Yoo (1) = IO G (X, X, 1) T, (x) dx + J'O ZA-1)u@)dr =Y, oremx & F Yoo torced 1) (2)

The first termy,,, ..x (1) corresponds to the relaxation of the initial fidtdyanishes for long time,

the second termy,, .ceq (1) is the thermal response expressed as the reghl abnvolution of the
input signal heat fluxi(t), with the impulse responZgt)

When the initial field is assumed to be uniformyalgto Ty, then the first term remains equalTg
and the output signal becomes

Ymo() =T (Xc, 1) =To = j;z (t-t) u(t)dt 3)
Rewriting the impulse response as:

T r . X2 2
Z[{t)=K [—exp|—-— with 7=-—*% and K=——
0 \/; p[ tj 4a pocx N

and considering the input as a (unitary) impulse,
u,; (t) = Q J(t) with Q=1Jm? and jjd(t) dt =1

the plot of the impulse outpuf * (t) = Z (t)/ K (with To = 0) versus the reduced tint& =£ is
T

shown on figure 1. It must be noted that the cltargstic time to reach the maximum value is given
by
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2
X
t,=2r =—,
2a
During experiments which lead to temperature mesmsants, this typical value has to be reminded to
choose correctly the data acquisition time sidp in practice it must be chosen in order to satisf

At <<T.

The discrete output respongg, (t;),i =1,2,... to any arbitrary inputy, = u(t;),i =1,2,... can be
then approximated from a numerical solution of ¢igna(3):

| |
Ymo(t;) = At Z Z (t _tj—l) u, = Z S|j u; (4a)
i=1 j=1
(az(i-j+Dat)=z.,, for j=1ai and i=1am
g 0 dse
(4b)
which can be written in the linear matrix form : Yo =S U (4c)
S is a Toeplitz matrix, and takes the specifiangular form
"2 0 -
z, 7, 0 0
S = Z3 4 Z
z, Zg z, 0
z, O
[Zm  Zm-1 Zm-2 Z, 7y (4d)

Note that the sensitivity coefficientzsdepends on the time stéyd , and goes to zero whekt — 0

0.5 : : :
0.4

0.3

0 | i |
0 5 10 15 20
t/tau

Figure 1— The impulse output signal - Heat conduction semi-infinite body
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2.2- The IHCP in a semi-infinite body — a non regizled solution

The inverse heat conduction problem which aimgtonstruct the heat flux signaft) from the noisy
output signaly(t) is obviously a time deconvolution problem ahe solution is well known to be

very sensitive to the noise measurement. Reguthgakitions have to be developed.
To illustrate how the inverse problem is ill-conalited, let us examine first the influence of theele

noise on a non regularized solution given by:
0=S7y (5)

Without loss of generality, we consider the follaginumerical case:
the heat flux density(t) is given by the triangular signal, plotted on fig2, over the time

intervaI[O, t, =20 s]

« the thermal properties and the sensor location Xxre=2 mm;a=10°m?s™; r=1s

A=1Wm'K™ pc=10°Jkg™" K™, K =0.56410° Km?*J™.

* The output signal y(t) is plotted on the same fg@a, it is computed with a time step
At = 05 s, and an additive (zero mean) gaussian noise @ith0.005K

Heat flux v (f) (kW.m?2) and temperature response y (f) (K)

s
4 "\
! \ T
f \ Te——
/ £ 4 A T TT——
/ 2 )
0.5/ / : ; \\ =1
/ /A
i \
S/ A
i A
A
D-r‘ | VIR — . e e . e, e . e e e . i e e, i -
05 | | | 1 | | |
0 2 4 6 8 10 12 14 16 18 20
time t (s)

Figure 2a— Input signal (t) and output responsgt) computed witho = 0.005K andAt =0.5s
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Figure 2b— Estimated heat flux — cases a, b and c - Inflaerfi¢che noise level on the computed heat
flux -time stepAt =0,5s
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Figure 2c— Estimated heat flux — cases a, b and ¢ - Infleari the noise level on the computed heat
flux -time stepAt =0.8s
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The computed heat flux, according to equation¢a3es a, b and c, are plotted on figure 2b, faethr
noise levels ¢ = 0,0;0,002 et 0,005 K), with a time stegAt =0,5s

By computing the heat flux, according to equatid) but with a greater time stept =0,8s, (now
m =20), and for the same noise levets the numerical solutions are plotted on figure 2c.

The comparison of the inversion results, case bcaisé c, show that by increasing the time step, the
solution becomes less sensitive to the noise uneaent. This numerical phenomena is not specific
to that example, it is “generic” for this kind @ivierse problem.

To increase the accuracy of the numerical appraiimaf the solution of the forward problem, the
time step is usually decreased. It must be obdeneee that decreasing the time step leads to make
the solution of the inverse problem less stable.

In fact by decreasing the time step, the sengjtiw@efficients of the Toeplitz matrixS , equation
(4c), goes to zero, and the condition number grexponentially:

Table 1— Condition number of the matr&— IHCP in a semi-infinite body
At At =0,8s At =05 s At =04s

Cond(S) 46,5 292 28420

Then by decreasing the time step, the inversiocga® of the noised data leads to more and more
unstable solutions. On the contrary, by increasivegtime step, some “regularization” process ogcurs
the computed solution becomes more stable, bubafse this is done by decreasing the accuracy of
the solution. Some compromises have to be seafohed

2.3- The IHCP in a semi-infinite body- Influencelw# time step

In this example, another simple analysis of théuarice of the time step\t on the stability of the

inversion process of noisy data can be derivecttyrérom the model equations and the output noise
level.

As shown on figure 2.a, fdr<5 the heat flux density signal is triangular, theps! (800 Wnis™ is
known, so the mean value of the increnjéku(t)| on each time ste[mk t, +At] satisfies

1 ptetat
Au= — j 800t dt = 400At (6a)
At Y &

The resulting increment on the output signal caagy@oximated by

Ay= KAtW/é exp(- T/At)Au (6b)

This increment of the output signal will be “sigo#&nt” only if this value is greater than the level
noiss Ay>o. In this example, we haveK = 0.56410° Km?J™, r=1s, ¢ =0.005K,
then we get :
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Ay= 0.564* 400 (At)z‘/i exp(- 1/At) = o

= 0.225At)"?exp(- 1/At) = o

(6c)

By plotting the variation of the incremefly versus the time stef t, figure 3, it is observed that
« for At =0.8s, the output incremefty =46,3mK is much larger than the level noise,
o for At =0.5s,Ay > 0.01mK is only twice more than the level noise
o for At =0.4 s.Ay=4,7mK becomes less than the level naise 5mK .

Of course, these values are specific to this numakexample, but they could be computed for other
examples of semi-infinite heat conduction probleithwlifferent values of thermal parameters, and/or
sensor location. They well explain how increasing time stepAt contributes to the stability of the
numerical solutions of the inverse problem.

Influence of the time step on the output variation - example 1
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Figure 3: Output incremenfy versus time stef\t — semi-infinite conduction model

2.4- The IHCP in a semi-infinite body — a reguladzsolution

The inverse heat conduction problem being lindsr spectral value decomposition (SVD) analysis of
the sensitivity matrix is a powerful method toatetine a regularized solution.

For example, the solutian=S™y , computed without regularization, with a time st&p=10,4s

and plotted figure (3), illustrates how the noiséh® output data is amplified, and the need ofesom
regularization.
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The use of the SVD method is straightforward:
« the sensitivity matrix is first decomposed in tbenfi
S=UuwV' (7)
whereU, V are orthogonal matrices
andW is the matrix of the singular valuéwk, k = 1..m}
In this example, the matrices are squared and $imdrism = n= 51
» The SVD regularized solution is then
R r<n a .
0, => %V, with a =Ujy (8)
k=1 W

The « hyper-parameter » is used to decide of the “good regularization Fev&he expected
compromise between accuracy and stability is fixgdome optimal value of. We have to avoid:

. L a
* atoo big error amplification whek — m, becausew, — O, hence™ — o
Wk

« Atoo large bias whelk — 0, because all the componel{&i = UIY, k=r +l..,m} of the

output noisy data are ignored, only the componéa;s= Uly,k =L..,r} are taken into
account.
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i

square of the norm of the error in the solution

truncation order r
Figure 5 - Quadratic errof (r) =, - u ||2 versus (At =04 s,o = 0,005 K ), m =51

It is possible (in this example) to compute thecexsolutionu*, and for each value of the
regularized onéi, . Then the quadratic errdr (r) =| 0, —u* ||ann be plotted versus figure 4. It
is observed that a minimum is reached in the n@ididnd of r = 15.

The heat flux computed witlh =12,15 et 18 are plotted on the figure 6. Compared to the non

regularized solution (figure 4), we conclude on ¢fiiciency of this method: the solutions are stabl
even for At =0,4 s and o = 0,005 K . However a slight bias is observed, (see therdida), the

peak value is less than the exact value (= 23Vm
Other standard methods are well adapted and caonsed for solving such linear inverse heat

conduction problems, the well known Beck's methaggiential algorithms), or the conjugate
gradient algorithm [3] are recommended and givedgesults.

In practice, the exact solution is unknown, thea ttetermination of the optimal SVD truncation
cannot be done by searching for the minimurfofr) = |0, - u* ||2
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Figure 6 - SVD Regularized Heat flu¥, computed forr = 12,15 et 18
(At=04s,0 =0,005K)

Some bound of the error estimage = U, —u*, has to bea priori given to select the best
truncation order. A “L-curve” approach (see lecture L9) can alsalbeeloped.

However, a more detailed analysis can be doneus éenote =m—r , £ the additive noise and

w' 0 u'
Uu=|U" Ul ;v=[V" V°| W = d = 9
S R S T b S IR A B C
Then, the error estimate can be put in the form
e, =V W)U e-vea (10)
which leads to
Elee)=0?Y L+ Y e (11)

i=1 Wy k=r+1
* The first term is directly linked to the variandetloe measurement noise, it increases by
increasing the truncation parameter
» and the second term depends only oncthen—r spectral components of the exact heat flux
signal, which have been “lost” by truncation.
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It means that the ill-conditioning of the inverseah conduction problem depends both on the
mathematical model equations (singular valugs of matrixS ), and on the spectral values of the

input signal to be determined. The compromise imosing the parametertakes into account these
both contributions.

3. Heat conduction in a Plane wall
3.1- The model equations

One dimensional transient heat conduction is nomsickered in a plane wall of thicknesssubjected

to a convection condition at the boundary= e Like in the previous example, the wall receives a
heat flux density(t) (W.m-2), on the boundary = 0, at the initial timet = 0. For convenience, the
initial and ambient temperature field are takenaé¢m zeroT, =T, =0

u(t)

EEEEEER

%
ZC

0 e

Figure 7 — Transient heat conduction in a plane wall

A standard approximation of the spatial derivativethe one-dimensional heat conduction equation,
with a regular spatial mesh includihgnodes, leads to a “state-space” model equations

(jj—-[zAT +bu(t) avec T (t=0)=0 (12a)

where :
T@O=[MLO T,0 - T, 0] avecT ©)=T (z,1)
e (12b)

and z, =(i-1) Az ; Az=
N-1
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-2 2 0 0 | [1]
1 -2 1 0 0
A= | : ot b=—2 | (12¢)
(Az) _5 1 pe bz |
0 0 - 2 -2(1+Bi)] 10|
Bi =h Az/ A (Mesh Biot number) (12d)

A temperature sensor is assumed to be located at (i, —1) Az. The output equation of the model
takes the matrix form

Yoo ®=CT(® with C=[0 0 -~ 1 - 0 whereC =0 sii#i, (13

and the output signa},, (t) is given by
y () =C j; exp (A (t - 7)) bu () dr (14a)

At t, =k At,k =1,..,n, the discretized output is given by:
y. () =C j; exp (A, -7)bu(r)dr  for k=12--,n  (l4b)

Let us introduce the parameterized form of the firgignal

U() = Upgam (1) = D uj (1) (15)
j=1

Then, the input-output model equation takes theeshnear matrix equation than in the previous
example

ymo = S u Wlth ymo,k = ymo (tk)

n

Yoo ()= Y Sq Ui S;=C[ exp (A, -1)bf (1)dr  (16)

i=1

3.2- Numerical example - Influence of the senscations

Numerical results are obtained with the followiragal

e=005m; A1=03Wm™K™? pc=1.210° Im3K™, and h=0Wni’K™

The chosen input heat flux is plotted on the figare

The output signat,,,(t) is computed at three different locations=e/ 4, e/ 2, 3e/ 4, over the
time interval [O, t; =8000 s], with N =21 nodesetn,= 40 time steps At =200s ), the output
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are plotted on the same figure xx. The node numisish corresponds to the sensor locations are
theni, 0{6,11,16}. An additive (zero mean) Gaussian naisewith o =0,02 K is considered:

Y =Ym t & (17)

Heat flux u (£//100 (W.m2) and temperature responses y (f) (K)

a0

- z.=eld
-z, =82

z. =3eld
0 - R : & : u (£) /100180

251

/ \
J
sl-.../ o\
> / N
| | 1 I |

1 N |
0 1000 2000 3000 4000 5000 6000 7000 8000
time £ (s)

Figure 8 —Input heat flux and output thermal measuremeiiare wall

3.2- The IHCP in a plane wall — non regularizedwin

These noised output data are now used to solventleese heat conduction problem, which aims to
reconstruct the input signal.
A non regularized solution is first computed toslirate the ill-posedness of the problem

Su=y = (0=S'y (18)

As in the previous example, the influence of tineetistep on the computed heat fiuxs shown on
the plot, figure 9. Two values are comparefit:= 200 s and At = 320s. Moreover the influence
of the sensor locations is also clearly illustdate

Obviously, as far as the sensor location moves dveary the boundaryx = 0, where the heat flux has
to be estimated, the computed solution becomes rante more unstable. Like in the previous
example, increasing the time step has a benegfiett to make the solution less sensitive teyoi
data. The ill-posedness of the inverse problenmuantified by the condition number cong) (which
grows exponentially with the sensor location, asaghin the following table.

As in the previous example, regularized solutionsil@ be easily computed by using the SVD
approach.
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Table 2— Condition number of the matr&- IHCP in a plane wall

Z e/l el/2 3el/4
At =200 s 730 8700 1,0244 10
At =320s 343* 2349 1,710
2000 —
- ef/d
1500

N\ 3 i i ; &

o
o
=]

=4

n

=]

=]
T

1000 |-

Estimated heat flux ¢ () (W.m2)

1500

At=200s

2000 i | i | i i ! j
0 1000 7000 3000 4000 5000 5000 7000 8000

time t (s)
Figure 9b — Estimated heat flud - Influence of the sensor locatiopat =200 s ; 0 =0,02K )

1600 -

—el/d
-e/2
-3 eld

1400

1000

At=320s

800

600 [ oooof.

400

200ffees 3 i O

-200—

Estimated heat flux v (f) (W.m2)

-400

0 1 OIOU QOBU 3000 4£JIUD SUIDO SOIOO 70i00 8000
time t (s)
Figure 9c— Estimated heat flug - Influence of the sensor locatiopat =320 s ; 0 =0,02 K)

3.3- The IHCP in a plane wall — Effect of a biaseddel
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Up to now, the model equations used to develogl#ta inversion process, have been assumed to be
exact! In practice even for this simple heat cotidmomodel, some model errors may occur.

40 """"" " :' """" b T T T T T T e I""""':

35 [----one-

30

25

20

15

Responses y (f) (K)

0 | | | | 1 |
0 1000 2000 3000 4000 5000 6000 7000 8000

time t (s)
Figure 9d — Heat conduction in a plane wall- Output sigrahputed witth = 20 W n? K™

Suppose, for example, that the heat transfer ciedfiti of the model equations lis= 20 W n¥K™,
instead of the insulated boundary hypothesie € 0). The value of the Biot number which
characterizes the heat losses at the boundarye is thenBi = 3,3. The output signals in that case,
should be as in the above plot, figure 9d. Theubtice of this parameter on the output signal besome
more and more significant (compare with the fig8)e when the sensor is located closer to the
boundaryx = e, where the “wrong” condition occurs.

The numerical inversion process= Sy, is now applied to the same original noisy otiighata,
figure 8, but a model erroth(= 20 W n¥K™), is included in the matris.

Numerical results are plotted on figure 9e. Théuirice of the sensor location is clearly illustdate
There is a systematic errob, (t) = U, _,, (t) - U,_, (t) between the solutions computed with the

biased and the exact models. The mean value ofbtash,(t) is evident at the end of the time
interval.
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.
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Estimated heat flux u (f) (W.m2)

-500
: h =20 W.m-2K-1
1500
(wrong value: model error)
2000 | | | | i i I |
o 1000 2000 3000 4nnn 5000 EO00 7000 8000

time t (s)
Figure 9e -Estimated heat flux(, _,, (t) with a biased modgh = 20 W n¥ K™, instead oh = 0);
At =200s; 0=002K

3.4- The IHCP in a plane wall — Effect of a muéinsor output

Some improvements are obtained by considering samebusly the output signals of several sensors.

» With only one sensor, the matrix S in the obseovraéiquationy ., = S u, is squared.

« With two sensors, the size of the mati@ equation xxx, becomes sigej= (2 x n)and the
size of the output signal vector is sigef 2n, then S is rectangular and sizZ8(= (2n x 1,
so the inversion process has to be done in thedgaared sense

(STS)u =Sy = l,4.=(8'9 'Sy (19)

Numerical results plotted on figure 9f, show thusons obtained with two sensors located at €4
et z = €2 with noisy data ¢ =0,02 K) and a time step\t = 200 s, the plots compare the heat flux

computed
* with the exact modeh(= 0),

e and with the biased moddi € 20),
By eliminating the output signal close to the baanydz = e, the estimated input heat flux is less

sensitive to the noise, but the systematic erratherestimated heat flux remains significant whea t
model is biased.
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Figure 9f — Estimated input heat flux from combined outpusyalata ¢= 0,02 K), given by two
sensofocated atz=e/4 ez=¢/2 .

To avoid such situation, it is recommended to dpt®uhe estimation problem of the boundary
condition atz = 0 from that occurring atz = L. It means that several sensors have to be indtalle
within the wall.
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Figure 10— Splitting the Inverse heat conduction probleorsaf plane wall case
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For example, in the configuration including threasors:

= To estimateu (t) atz = 0, the model equation in the plane wall can be lichite the spatial
domain g=0 , z=3é4]; the output signal & =3 €4 is then used to fix the boundary condition
(Dirichlet condition); the inverse problem can lmdved from the output data taken atez4
and z=€2, without knowing the heat transfer coefficidmt

= To estimateh atz = L, the model equation in the plane wall can be &nhito the spatial
domain g=e/4 , z=& the output sighal at = g4 is then used to fix the boundary condition
(Dirichlet condition); the inverse problem can lmdved from the output data taken atez2
and z=3¢4, without knowing the heat flu (t) atz = 0.

More improvements could be done with a Bayesiamaggh [2]

4. Conclusion

In the analysis of heat conduction problem, theigefimite solid is a simple geometry that provides
useful idealization for many practical situations.numerical solution of this inverse heat condurcti
problem has been easily investigated, thanks tdirtkarity of the model equation. The influence of
variables like the noise level, the sensor locatiaime time step on the instabilities of the non
regularized solutions have been analyzed andriited. The SVD method is a powerful approach to
control the regularized solutions.

For the linear heat conduction problem in a plaa#,\a standard discretization of the spatial \aga
leads to a similar analysis of the instabilitiestltd numerical inverse problem solutions. Moreover
the influence of a biased model, and the use dfili-sensor output model have been illustrated.
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