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Abstract. Introduction to the inverse approach is made starting by simple examples (solution 
of a linear system of equations, with noised second hand member, case of a slab, in steady 
state regime, with either flux or conductivity estimation). The inverse terminology, the pitfalls 
of inversion (noise amplification effect), as well as the corresponding methodological 
approach are highlighted. 
The objective is not to solve these problems but to pinpoint the main crucial points in inverse 
measurement problems. 
The last two lectures (L9 & L10) will be used to show how to solve them, with the help of the 
points studied in the lectures in between. 

1. Introduction 
 

Inverse problems are part of our daily practice, even if we do not know they are inverse 
problems. We consider here a scientific field (heat transfer, mechanical or chemical 
engineering, physics, ...)  where a quantitative model is available, that is a mathematical 
procedure which is able to simulate, with a good enough precision, the phenomena at stake.  
The inverse use of this model gives rise to an inverse problem. Instead of introducing the 
different notions used for such problems, which will be progressively dealt with in the 
following lectures of this advanced school, we will present examples that correspond to an 
inverse use of a model, as well as the specific problems that appear concomitantly. These 
examples will correspond to exact matching between measurements and model outputs, with 
no use of a least square approach. 
 
 

2. Example 1: square system of linear equations 
 

Let us suppose we have a linear model that allows to get m  output values 

mmomomo y...,,y,y 21  for any values of the input values mx...,,x,x 21 . Note that we 

assume here that both numbers of input and output values are the same and that the output 
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values are subscripted by the index “mo” to remind us that it is only a model. It is very 
convenient to use here column vectors to represent this linear relationship under the form: 
 

xSy =mo     (1.1) 
 

where moy and x are both (m, 1) matrices (column vectors) composed of the moy ’s and of 

the x’s and S a square (m, m) matrix, which is called a « sensitivity matrix » in the inverse 
problem terminology. 
 
In the direct problem input  x is known and  moy , the output of the model, is calculated. 
 

The example that will be studied here corresponds to the m = 2 case, with: 
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We have supposed here that, in the given problem, we know the exact value exactx of the 
input vector x. 
 

Conversely, if that is moy  which is known, solution of system (1.2), or inversion of matrix S, 

provides the true value of the input: 
 

 mo
exact ySx 1−=      (1.3) 

 

We have therefore solved the inverse problem using exact data x. 
 

Let us now assume that the output, that is the data, corresponds to some measurements of 

moy  which are corrupted by an additive noise [ ]T.. 3010 −=ε . Superscript T designates 
the transpose of a matrix here. Each component of this noise represents less about 1 %, in 
absolute value,  of the corresponding component of the exact output moy : 
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The natural idea for retrieving an approximate solution of the inverse problem is to replace 
the exact model output moy   by its measured value y in (1.4), or to solve linear system (1.1) 

yxS =  with this noised right hand member: 
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to recover an estimated value of the input      
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This means that  an error of 53 % has been made for  1x  and of 77 % for 2x . This 

phenomenon is illustrated in  figure 1: two far away values of x, exactx the exact value and x̂  
the solution of (1.4), yield approximately the same values, within ε , in the y1 - y2 plane. In 
this case, the determinant of matrix S is not very close to zero: its value is 9. 
 

Let us note that, in this particular case, this solution x̂  of system yxS =  is also an 
ordinary least squares solution of model (1.1) with noisy data y. 
 

In order to analyse the possibly "pathological" character of the solution of yxS = , two 

global criteria, the amplification coefficients of the absolute and relative errors,  ak  and rk , 

respectivelly can be introduced. Their values can be calculated, using the Euclidian norm  L2: 
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Figure 1 shows the amplification effect of the measurement noise in the above example. 
 
 

 
 

Figure 1 – Effect of the measurement error on parameter estimation through inverse mapping  
 
Criteria (1.7), which measure the amplification effect of the measurement noise ε allow to 
quantify the unstable character of the solution. In practice, calculation of these criteria, which  
requires a prior knowledge of the exact value exactx  of the unknown, is not possible. In order 
to analyze this stability problem, a condition number of matrix S shall be introduced, here for 
a square matrix. 
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Remark 1 
 

In  figure 1, the exact exactx  and estimated x̂  values of parameter vector x are shown 
in the left hand side, in the two-dimension vector space  of the parameters X (also 
called input space), where an orthonormal basis that corresponds to  the components 

)( 21 x,x  of these vectors has been chosen. In the right hand side, the output moy  of the 
model, and measurements y  are shown in the observation space Y where a 

corresponding  orthonormal coordinates system )( 21 y,y  has been selected. The two 

norms present in the definition of ak  are the lengths of the vectors of the estimation 

error exactˆ xxex −= and of the measurement noise  moyyε −= . The other extra 

norms present in the definition of rk  are the lengths of the vectors representing the 

exact values exactx  (model input) and moy  (model output). 
 

Remark 2 
 

The norms used in (1.7) are not necessarily the same in spaces X and Y .  For 
example coordinates )( 21 x,x  can be expressed in W.m-2, if the unknows are fluxes 

and  coordinates )( 21 y,y  can be temperatures (Kelvin). However, in order to define 

such norms in each space, 1x and 2x should have the same units as well as 1y and 2y . 
If it is not the case a scaling has to be implemented in both domains. 

 

Remark 3 
 

Coefficient rk does not depend on the physical dimensions in X and Y: it explains the 

transformation of the noise/signal ratio mo/ yε  into a relative estimation 

error */ xex . The inverse process, where one starts from the measurement 

domain Y to get a value of the input in the parameters domain X, corresponds to the 
inverse linear mapping 1−S . Passage from Y space into X space is associated with a 
high amplification of the error: this problem is therefore ill-conditioned. 
 

Remark 4 
 

The high value 65.8)( =εrk of the relative amplification coefficient is not the highest 
possible here: things can become even worse. This maximum value of this coefficient 
is the condition number (see lecture L2) of S, that can be reached for a specific value 
of noise ε : 
 

958)(cond)( =≤ Sεrk     (1.8) 
 
3. Example 1: Different inverse problems for steady state 1D heat transfer through a 
wall 
 
3.1 Case of exact locations 
 
The problem of one-dimension heat transfer through a homogeneous plane wall is 
considered now. Exact temperature eT  of the x = e rear face is assumed to be known while a 

sensor located at a depth sx  inside the wall allows the measurement of a temperature y . 
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Using these two informations and the knowledge of the exact values of the conductivity λ and 
of the thickness e of the wall, three quantities can be looked for, see figure 2a: 
 

- temperature 0T , of the other face (x = 0); 
- the internal temperature distribution; 
- flux q that flows through the wall.  

 

One temperature is observed :  
 

), ,  ; ( 01 λη TqxT ss =       (1.9) 
 

However, its measurement y by the sensor is supposed to be corrupted by an additive noise 
ε  of zero mean and of standard deviation σ : 
  

ε+= eTy        (1.10) 
 

The observed temperature eT  can be considered as a particular output of the model 1η  of 
temperature distribution, at location x = xs : 
 

λλη /xqTTqxTx −≡= 001 ), , ;(      (1.11) 
 
In the parameter estimation terminology : 
 

- xT is the dependent or output variable, 
- x is the explanatory or independent variable,  
- 0 , Tq  and λ  are the parameters,  

- and function )  ; (1 ....η is the model structure. 
 

Parameters 0 , Tq have a special status: they are also called input variables (or solicitations), 
because if they are both equal to zero, the wall temperature field is equal to zero. They 
correspond respectively to the right hand members of the two boundary conditions of the 
second and first kinds for the heat equation whose model (1.11) is the solution: 
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The wall conductivity λ  is called a structural parameter: if its value changes, the material 
system also changes. 
 

As a consequence of model (1.11), the known value of the rear face temperature verifies: 
 

λ/eqTTe −= 0      (1.13) 
 

Elimination of q between the two equations (1.11) and (1.13) yields a second model 2η  for 

the output of the sensor located in sx  : 
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Inversion of this second model is straightforward, replacing sT  by its measured value y : 
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The hat superscript α̂  over a α quantity designates here either an estimator of α, in the 
statistical sense, that is a random variable whose realization is an approximate value of the 
exact value of α, or its estimated (observed) value. 
  
This allows the calculation of the estimation error for 0T , 000 TT̂eT −= , which is a random 

variable proportional to ε , of zero mean (symbol E (.) is used here for the mathematical 
expectancy of a random variable) , with its own standard deviation 0σ : 
 

)1(da0 )(E)1( 000
**
sTsT x/nex/e −==⇒−= σσε   (1.14) 

 

 
 

Figure 2a – Estimation of temperature/flux in a wall 
Noised temperature measurement 
Exact sensor location 

 
A direct consequence of (1.14) is that estimation of 0T  is unbiased, 00 )(E TT̂ = , and its 

standard deviation )1(00
*
sT x/ −== σσσ  is an increasing function of the relative depth *

sx  
of the sensor inside the wall. 
  



 
 
 
 
Metti 5 Spring School  Roscoff – June 13-18, 2011 
 

 Lecture 1: Getting started – page 7 

An obvious property of the linear extrapolation related to the straight line model (1.12) can be 
highlighted: 
 

- error on 0T , measured by its standard deviation 0σ , becomes infinite if the sensor 

is located at the  le x = e face. It reaches a minimal value for a measurement at  
the x = 0 face;  

 
The estimated temperature distribution that derives from 0T̂ , also called recalculated 

distribution, is given by ),,( 02 eTT̂e/xη : 
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The random error xxTx TT̂e −=  for temperature xT  at any depth x, can be assessed by the 

same type of derivation, as well as its standard deviation Txσ :  
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Two regions can be distinguished inside the wall (see figure 2a) :  
 

- the external layer, between  sx and e, that is the layer whose points 2x  are located 
in between boundaries where temperature boundary conditions (1rst kind) are either 
approximately (y) or exactly ( eT ) known: going from y to xT̂ corresponds to a  
graphical interpolation with a reduction of the estimation error with respect to the 
noise ( 1≤K ) . The inverse temperature xT  estimation problem is well-posed in this 
region. 

 
- layer in between 0 et cx , with external points 1x , where the same operation consists 
in making an extrapolation. This corresponds therfore to an amplification of the 
measurement noise ( 1≥K ) : the inverse estimation temperature xT  problem is called 
ill-posed in this region.  

 
Remark : 
 

This partition of the space domain into two zones, an internal one located between 
limits where noised boundary conditions are available, and an external one, beyond 
these limits, leads to ill-posed problems as soon as the temperature field, or its 
derivative, is looked for in the external zone. This is true not only in this 1D steady state 
type of diffusion problem, but also in transient regime, whatever the space dimension (1 
to 3D) of the geometrical domain. 
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An estimation q̂  of heat flux q can be given here, as well as an assessment of its error qe  

and of its standard deviation qσ  (a statistical quantification of what is called « absolute » 

error) and of its relative standard deviation  qσ  /q (a statistical quantification of what is called 

« absolute » error) :    
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  (1.16a, b, c, d) 
 
Let us note that the relative standard deviation of the estimated flux (1.16d) depends on the 
temperature signal/noise ratio σ)/( 0 eTTSNR −=  and on the relative depth *

sx  of the 

sensor. 
 
We consider a numerical example here. The wall is 0.2 m thick with a thermal conductivity 
equal to 1 W.m-1.K-1, with a 30°C temperature difference between its fa ces and a 0.3 °C 
value for the standard deviation of the temperature noise for a measurement in m180.xs = :  
 

120 KW.m150
20

30
1 −−==−= .

.e
TT

q eλ  and  1003030)/( 0 ==−= ./TTSNR e σ     (1.17) 

 
This yields a 10 % error (relative standard deviation) for q̂ (see equation 1.16d). A mid-slab 

measurement ( m10.xs = ) would have given a 2 % error for this flux: the location of the 
measurement is therefore a key parameter. 

 
 

3.2 Case of imprecise sensor locations and errors for parameters "assumed to be 
known" 
 
Measurement noise is not the only cause of the estimation error: in numerous practical 
experimental situations, where a sensor has to be embedded in a material, the precise 
location of its active element (the hot junction for a thermocouple, for example) is not 
precisely known. So a different type of error has to be taken care of. 
 
Let us assume that, in the above example, the objective is the same (estimation of the front 
face temperature 0T , of the inner temperature distribution xT  and of the heat flux q), but the 

sensor which was thought to be positioned at a nominal location nom
sx  is actually located at 

depth sx , with : 
 

δ+= s
nom
s xx      (1.18) 

 
see figure 2b. So, the noised output y of the sensor stems from the error δ in its depth, see 
figure 2b : 
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Figure 2b - Estimation of temperature/flux in a wall 
      Noised temperature measurement 
      Noised sensor location 

 
 
If one assumes here that this position error δ  is also a random variable, which is 
independent of temperature noise  ε,  of zero mean ( 0)(E =δ  ) and of standard deviation 

posσ , we find the same type of error as in section 3.1, simply replacing σ by a standard 

deviation 'σ : 
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Contribution of this position error may become important in 'σ  and in all the statandard 
deviations of the subsequent estimation errors ( 0Tσ , Txσ  an qσ ) considered in section 3.1, 

as soon as the signal/position error posR  ratio becomes non negligible with respect to the 

signal/temperature noise ratio SNR .  
 
Let us go back to the numerical application (1.17), with the additional assumption of a 
position error of standard deviation 2 mm. These two ratios become:  
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1002200pospos === //eR σ  and 1003030)/( ==−= ./TTSNR ec σ     (1.21) 

 
So, in this case, the presence of the position error is equivalent to a 41 % increase of the 

temperature measurement noise ( 2=σσ /'  here). The consequence would be a 14.1 % 

error for the estimated flux (for m180.xs = . 
 
This problem of error in the dependent variable in parameter estimation problems can be 
solved using total least squares [1, 2] or Bayesian estimation techniques. The interested 
reader can also refer to [3, 4, 5]. 
 
Let us note that this type of error belongs to a broader class of errors not directly linked to the 
measurement noise: it concerns the 'parameters supposed to be known' (but not estimated 
generally) in a parameter estimation problem.  
 
Such a problem arises if, in the preceding example, thermal conductivity λ  is not precisely 

known. We can assume than a 'nominal' value nomλ  is known, but it differs from the exact 

value exactλ by an error λe : 
 

λλλ eexactnom +=      (1.22) 
 

If we refer to the derivations made in section 3.2, this conductivity error will not have any 
additional effect on the errors on 0T  and xT . However estimation (1.16) of flux q has to be 
revisited: 
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In the case of a small relative error exact/e λλ for the conductivity and for large signal over 
noise ratio SNR , the preceding equation can be linearized, which yields the relative error 

exact
q q/e for the estimated flux : 
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To go further on, it is necessary to assume that exactλ is a random variable of mean equal to 
nomλ and of standard deviation λσ . Taking the variance of equation (1.21b) yields: 
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If we consider the case given by (1.17) in section 3.1, with 0pos =R  (no position error, with 

m180.xs = ) , and an error of 10 % for the conductivity, that is λe  of zero mean around 
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 nomλ =1 W.m-1.K-1, with a standard deviation  λσ = 0.1 W.m-1.K-1) the error qσ  /qexact  

becomes equal to 10.1 % instead of 10 % for an exact conductivity. This error caused by the 
supposed to be known conductivity can even become dominant error if the sensor is better 
located ( m100.xs = ).  
 
The interested reader can refer to lecture L4 in this school to gain a deeper insight onto the 
effects of the errors on the parameters that can not be estimated thanks to temperature 
measurements and that are 'supposed to be known' in thermophysical characterization 
problems. 
 
4. Conclusions 
 

The first example that has been presented in this short lecture has been used to precise the 
notion of an ill-posed problem: under certain circumstances, a small error in the right hand 
member of a linear system of equations, which can correspond to noised measurements, can 
yield a very large error in the solution.  
 

Study of the condition number of the corresponding matrix allows to assess the severity of  
this effect. The reader can refer here to the Singular Value Decomposition of this matrix, on 
which the condition number relies, see lectures L2 and L4. 
  
In the second example, the inverse 1D steady state input problem has been considered. The 
very important effect of the location of the temperature sensor on the estimation of the 
temperature distribution and of the flux through a wall has been highlighted. It has been 
shown that the temperature noise is not the unique source of error in the estimates. 
  
Errors on the location of the sensor, as well as more generally the effect of the parameters 
'supposed to be known', have also to be studied with great care in order to get reliable 
estimations. 
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