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Introduction

* The processing of space and time temperature fields is more and
more necessary (not only in heat transfer but also in all domains
related to continuous media such as solid or fluid mechanics...)

 Simple devices are now currently available in order to quickly
measure, store and process thermal information ( Infrared
thermography , optical or mechanical scans, ...)

e “how to process” and “how to estimate” thermophysical
properties from a great amount of thermal data, such as
temperature fields?

— Difficulties occurring with such instruments (noise and signal
perturbation, systematic errors...)

— Difficulties related to the manipulation of a great amount of data and
the suitable processing of such data



The processing of space and time temperature fields
is more and more necessary

e Velocity, strain or temperature fields, are any more
experimentally accessible for Continuum Mechanics...

 |n a near future, several different fileds will be simultaneously
recorded and processed.

PIV velocity Shearoraphy: sfréin
fields fields

Thermography: |
temperature fields



For thermal analysis, simple devices
are now currently available!

Irisys FLIR-Indigo-A10 FLIR-CEDIP Orion,
Titanium...

With a lot of active heating possibilities (Laser, flash lamps, acoustic or electromagnetic sources....)

e Scanners and in the future ...tomography Camera

Visible mirror
Transmitting IR

Laserdiod”__Laserbean

Black painted glass wafer:
2 inch diameter
170 um of thickne: 4

— Insulating foam



“How to process” and “how to estimate”
thermophysical properties from a great
amount of thermal data, such as temperature
fields?

— Partl-Difficulties occurring with the instruments (noise and
signal perturbation, systematic errors, filters, resolution...)

— Part2-Difficulties related to the manipulation of a great
amount of data and the suitable processing of such data, by
considering a heat transfer model.



1-1 Noise characterization
1-1-1Monosensor stationnary signal-simple observation
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Perfectly gaussian noise Correlated signal Digitized noise
(parasitic periodic noise
superposed to the signal)

histogram

0
-4 -3

All of them have the same rough statistical characteristics (zero mean
value, standard deviation), oher ways to study such signal?



Studies with Linear least squares theorem

T=Xp

Hypothesis :

-zero mean and additive errors

—( constant and unknown before the estimation and X; known without
error

-constant variance (0 known) and uncorrelated errors

B,ptimum Minimize the sum squares function S between theory and experiment

/A

Estimator L =(XtX)t X TA

Estimation error COV(eIB) = (Xt X)'l o2



Example : Stationary Signal -Estimation of the mean value

T(C) measurement Realvalue
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The processing of a great amount N of noisy and stationary data improves the
accuracy of the estimation.
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:Estimation of several parameters from the previous signal

Case where fand g are orthogonal
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- T.regularly spaced, N must be chosen as great as possible!

-The conditioning number is non-dependant on N !/




Example: T=B1+B2*sin(wt+phi)+NOISE

Signal

‘- || 11 R ,\‘ J ”“ & ‘u ‘
Y T \‘J I i .JI‘ LWL LR
: 1'1 | l“\ |{ |||H| ' |||l\ | 1 ‘| "\ "

\\\\\\\\\\\\
000000000000

Power Spectral density

fft(T). *conj(fft(T))

I SO N

N=100

N=800

-Even if the signal is noisy, it is advantageous to process a great amount of data

- The function: sin(wt) is « orthogonal » to the function: f(t)=1
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1-1-2 Sensor array- stationnary observation

N
| ! - N

5, o _---—777 |

Digitized noise Non-uniformity distortion

When a signal is multidimensional, instead of projecting on an orthogonal basis, it is
possible to set out a singular value decomposition (SVD).
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SVD decomposition of the previous images

The Singular values are giving an idea
about the « complexity » of the images

T _ T
T= Unxrznxrvnxrr

sigular values

Uniform singular values distribution
(non-compressible signal)

w

High order zero singular values
(compressible signal)
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1-2 Systematic errors
1-2-1 Monosensor (thermocouple, resistor, pyrometer...)

* Inthe best case, the sensor is measuring the « temperature of the sensor »! (see
Bourouga and Bardon, 2000), several illustrations:

— Perturbation of the Isothermal lines and Position error

Isothermal

/ lighes T

Well positioned

sensor Badly positioned

S~ sensor

— Inertia of the sensor

Observed signal
(noisy but also delayed)

Real temperature evolution

B. Bourouga, V. Goizet, J.-P. Bardon, Les aspects théoriques régissant
I'instrumentation d’un capteur thermique pariétal a faible inertie, International Journal of Thermal Sciences 39 (1) (January 2000) 96—

109. 13



1-2-1 Systematic error: inertia of a thermocouple

t
LLIEX _ h 7 U (t _ T)dT h: exchange coefficient
m 0

Y(t) = ,a)L pocL: heat capacity

Y. = Z H. .U.At U(t): r(.aal temperature
! R behaviour

J= Y(t): observed behaviour

. |=AtfH; H, H;

Ym_ _Hm Hm—l H2 H1__Um_

The observable signal Y(t) is a correlated signal!

Even if N observations are made, only less than N informations are really available.
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1-2-2 Systematic errors with thermographic sensor arrays

Calibration emission and reflexion, with infrared thermography
-Radiative balance between the sensor and the environment (proper emission, reflexion

and influence of the environment) (see [3], [4]).
- Luminance function of the temperature of the surface (calibration with Planck’s law)

Non uniformity correction (NUC)
A distribution of gain and offset for each pixel must be regularly re-estimated (Non
Uniformity Correction).

Bad or dead Pixels
Generally, these pixels are recognized initially by the device provider and corrected by a
signal averaged from the neighbouring pixels (Bad Pixel Replacement).

Thermal stability of the instrument
The freezing of the detector array and the thermal regulation is not always stable (1

to 5 mK).

Time recording, dead time step

Space resolution



Time recording, dead time step

L,=25Hz

Jitter=250 ns

A

Frame (n) Frame (n+1)

Delay=7,8 us (réglable)

IT

-
>

Frame (n) Frame (n+1)

The integration time of FPA cameras with quantum detectors is generally about 100us. The time for
electronic recording and storage is greater (about 40 ms at 25 Hz). If an accurate triggering is possible,

the heterodyne methods can be implemented.
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Principle of the stroboscopic effect or heterodyne technics

(k integer)

M
External trigger

|

Camera IR

Générateur 1

Driver

Diode
ILaser

L]

(k and N integers)

S884443311

1N

T

i

Synchro 10 MHz

Générateur 2

Echauffement local

Echantillon
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It is possible to reconstruct very fast transient periodic phenomena with a 25 Hz camera!



Space resolution

Slit response function
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The pixels of an infrared camera are generally correlated (N pixels, but less than N informations)!
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Conclusions of part 1

The experimental space/time temperature signal is coming from an experiment
(with unknowns and non perfect characteristics)

Tree categories of errors can be globally considered:

— the random noise : with zero mean value is an unwanted perturbating noise but able to be
processed with simples asumptions (related to the uniform covariance matrix).

— the systematic errors: (NUC, time derive, parasitic effects, sensor positions ...) which must be
fought, detected or bypassed by the experimenter.

— the space and time convolutions and correlations of the signal acting on the real time and space
resolution limit.

The signal is then not-only noisy but also filtered, and truncated in space and in time.
A great amount of data does not significate that all the possible data are available.

Nevertheless a multidimensional signal gives more processing possibilities than a
monodimensional one.

It will be assumed for the next steps that the systematic errors are mastered!
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2. Thermal » processing of a T(x,y,t) field

T(x.1)
di’ 1
o , _ —4+-T=0
Estimation ot a transverseresponzefine 4t 1
N
T(x.t)
aT
/\\ Estimation of o diffusavits & = aAl
A
T(x.t) 4
2
ﬂx% Estimation of conductivity field A T + 94 or _HT=0
e a’  Ox Ox
T i .
T(x.t) \
Estimationofa velocty or a shift g +V E —aAT-IIT+Q
o ox

In a lot of cases, the heat transfer models will consist in derivating the space and time temperature field.
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2.1 Strategies for the estimation of the time and space
derivative of the signal

sin(a,\b)

T(x,t)=b/L+2/LZN: exp(-aa,’t) cos@,X) O’n =n7n/L

n=1 n

40

1.2

20

0
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40+
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Derivative of T(x)
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-120 -

-140
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0 0.01 0.02 003 0.04 005 0.06 007 008 009 01 0 0.01 002 0.03 004 005 0.06 0.07 008 0.09 0.1
X X

Temperature field from the previous

analytical expression at a given time
at time t=0.5s; a=10°m? s'1; b=L/2; L=0.1m; (continuous
line: real signal, ‘o’: discrete noisy signal);

Finite differences space-derivative
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2.1.1 Finite differences

T -T
o i+l |
T =
AX
Ti — T| + e‘ri Random variable : “measurement noise”: eT

A T(X4q) = T(X) €11 — Er
T. = 1+1 ) 4 o(x . ) 4T+l *Ti
i A (%+1) A
lim
E (X) =0 Approximation error: g (XI )
X - X

Unfortunately, when the space step A4x is tending to zero, the approximation error is
effectively tending to zero, but the random error is tending to infinity!
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2.1.2 Polynomial fitting

1 X X12 ..
\ = T 1 x ¥, 2
T(X):Z,ann B=[8.005--8.] X = , X
n=0 - sz.
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Polynomial fitting Derivation of the polynomial expression

The projection of the signal on a reduced polynomial basis is giving quite good
results (excepted with the boundaries) when the rank of the polynom is adaptezgl.




2.1.3 Fourier cosinus basis
M —
T9=Y Bcos@,x  Gn=N7NIL
n=0

B = [,81,,82,,83....,8M ]T X t X matrix is orthogonal,

L L L L L L L
03 0.04 005 0.06 0.07 0.08 0.09 0.1

Fourier fitting Derivation of the serie

The derivation of the “Fourier estimated expression” is giving good results when the rank

of the serie is adapted.
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2.1.4 Filtering with a convolution kernel

L L
'F(X) = J. pONT(x— x)dy J(; p(y)dy =1 Filtering of the signal
0

daT . ¢, . dT(x-x)
S 0= pUn=—

0

L
dy = -[T(X)de Derivation by “derivated kernel”
0

The discrete approximation of the derivative is then conveniently considered by a convolution with a
« derived » kernel.

1.2 T T T T T T T T T 100f

1

N“% | 50+
0.8 X - o
0.6+ (‘b
= |
£ i
0.4 di
Filtering of the signal Derivation by a convolution with a “derivated kernel”
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1.2.5 Singular value decomposition of the whole space and time signal
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2.2 Estimation of a transverse diffusivity field from flash experiments
(comparison of classical Non Destructive Evaluation methods):

IR camera
v C7mposite sample

Experimental situation and

temperature evolution

Position sur | &chantillon en cm (Oy)

) =

NRRERRARRRRERA

Flash uniforme y=0

25 5 7.5 10
Position sur | €chantillon en cm (Ox)

Température
(unités arbitraires)

0.04¢

0.03¢

0.02

0.01¢

o O

25 5 75 210
Position sur I'échantillon en cm (Ox)



Transverse flash method and IR thermography

Metrology Imaging
Laboratory ~ method Industrial method
Sample :
17(t) >10 000 pixels Sample
measurement T(t)
measurement |Rcamera

1 T(t) measurement >10000 T(t) measurements
e measurement with contact * measurements without contact
e very accurate measurement * very noisy measurements

28



Can we discern two very noisy thermograms ?

Temperature level
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2.2.1 Estimation with physical asymptotic expansions:

1D température response:

T(z=0tt -—[E1+2DZ @n 2 tlatr1?)

el

Asymptotic expansion by considering a small thermal conductivity variation

f
(zt,4p)

T(x Y, z1t) =q(X, y)[ f(zt, By) + DA(X, Y)g_/]

With q(x,y) : spatial distribution of energy, and AA (X,y): spatial thermal conductivity variation
Other possibility : consider the conductivity sensitivity function as a logarithmic time derivative

Q
TOt)= Hf(Aoti /ch2)+ t

(Aot; ! pel?)
Other possibilities with other thermophysical properties :
Q AL

0= P‘?Lo L LOZ)_pc—LoL_o[f(ﬂti /o2 e 2

(At / pely?) J

Q 5 Q Apc AT
TOt) = f\At / poc L7 |- f\At: / pc L7 |+t—
| OL ( | 0 ) OL 0( ( [ 0 )

(At peol?) J



Linear Estimation method, if X is well known

TOL) =L X5 () + 52X g, (1)

Xg(t) .. Xgty)]'
Xp () .. Xg(ty)

T=[T0OY) .. TO)] *

{gjz(xtx)_lxtf

Is suitable only if X is perfectly known. If fis only a reference curve obtained from
experiment, the time logarithmic derivative will noisy and the estimation bad!
Shepard proposed to decompose the signal with a polynomial fitting, such as:

Ln(T(x,y,z=0,0)7B,X.y)+ B, y)Ln(O)+LAX,y)LIF(D)+...
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2.2.3 The SVD decomposition

réarrangement
1. Arrangement of the information cube in a T(X’ Y t) - T( X t)
space time matrix _ T
- , , T(x,t)_§ AU ( X) D4 ()
2. SVD decomposition of the resulting matrix ~

3. Arrangement of the spatial U vectors in spatial matrices

réarrangement

U(X) = Ug(xy)

P (temps) (modes) P (modes) P (temps)
—> —>
! I T
) — g 3
O o 7l Q
2 3 i
7] o <
O n =
— = EJ’
S =
< pd
e

UX.k) (k) Vi BT
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SVD and signal compression

From a sequence (about 100 or 1000 images), the SVD will give sometime 3
or 4 images related to the structure of the sample.

Flash




M

N

SVD and variable separation

SVD
T(X,1) = uzV'

1 Diagonalisation
(Mo = [T (0%, 9 0r( %, 1) ot T LV

t : . :
temporal covariance matrix only depending on

: 1

U Only dependingon X
Diagonalisation
N =T or(x ) |oax = PV
X
Space covariance matrix only depending on

L

\/ Only dependingon t

X
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Comparison between SVD and asymptotic expansions

Asymptotic expansion:

o Vz(t) ASVD
= 8T fat normalisé
moy

30

5 10 15 20 25
Temps en secondes aprés le Flash
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Practical example: NDE and tensile test on a composite
medium

Relative evolution of U, (x) versus the
t=0,1s t=02s 1=2s stress = transvers diffusivity variations.

20MPa 150MPa 250MPa x10°

; I ‘. g I._. " I_ -' : .l_ ____'_____.ll i
100MPa 200MPa 275MPa
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Remarks about the previous methods

* From the great amount of data, the most
previous methods consisted in trying to
compress the data, by a projection on a
suitable basis (very often non related to the
physics)...

e |sit possible to look directly to the
phenomena of physical interest?
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2.3 Estimation of in-plane diffusivity field-Time-space
correlation and elimination of the non useful data

Randomly flying spot




Experiment
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« Nodal » method in the case of a source point

e Only afew pixels are available on an image at a given time

e The in-plane diffusion is approximated with a finite difference scheme:

Foi,jATi,kj +cbi‘fj :5E!(j
with
ATS = (%, +T  +TX

I, ) +1, ] 1= i, j+1

+THL—4Th) 5 oL =TT =T Fo, =
If the system is in pure relaxation it gives
Fo, AT =T
The diffusivity is to be estimated only if the correlation coefficient is near from 1:

ZAT OT




Correlation indicator method

Foi, j ATifj-

o)

10| i - 1
zm * [Sork?
I,
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1.4
12
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L2 o 9P o §o O o
1h i Heat source on )
1 \Qg Q o o
&o o
T 0.8f ] 5 08 ° & Co
O
,\ L—j 0.6f 8
£ 06 g <
g § 0.4
@ = . .
> o) Pure diffusion
s 04r | S 0.2+ 50
he] o o
. . . 0, — T
No diffusion or bad pixel ® O H
0.2 . @) 0 +
Pure diffusion 0.2r o) 8@ o +
0 RO +
0 04 O O 4
© No diffusion or Bad pixel
-0.6 | | | |
-2.5 -2 -1.5 -1 -0.5
2 | | | | | | .
-1.8 -1 08 06 -04 02 0 02 Laplacian(T)
Laplacian(T) A T
Perfect data Noisy data
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Pixel number
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Pixel number
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Example with an in-plane source point
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Time step (wu)

Evolution of a central pixel
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Correlation at a central pixel

Fourier number (wu)
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Time step (wu) 42

Diffusivity estimation at a central pixel



Mombre dePixels eny

20 40 I B0 il 100 120

Results for a heterogeneous plate

Coefficient de corrélation & un instant t donné

| Nombre de Pixels en x | | Nombre de Pixels en x |

NEN K — K
Fo — R S1 FOi,jATi’j —OTi’j
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General Conclusion

e Space/ time signal=great amount of noisy and
« non-perfect » data.

e Several strategies:

— Analysis of the different kinds of noise and bias of
the signal.

— Compression (projection, filtering, averaging...)
and estimation with a model by the
implementation of a « suitable » basis.

— Direct use of the physical model

(example: Correlation analysis)



