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Introduction

• The processing of space and time temperature fields is more and 
more necessary (not only in heat transfer but also in all domains 
related to continuous media such as solid or fluid mechanics…)

• Simple devices are now currently available in order to quickly 
measure, store and process thermal information ( Infrared 
thermography , optical or mechanical scans, …) 

• “how to process” and “how to estimate” thermophysical
properties from a great amount of thermal data, such as 
temperature fields?
– Difficulties occurring with such instruments (noise and signal 

perturbation, systematic errors…)

– Difficulties related to the manipulation of a great amount of data and 
the suitable processing of such data
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The processing of space and time temperature fields 

is more and more necessary

• Velocity , strain or temperature fields, are any more 

experimentally accessible for  Continuum Mechanics…

• In a near future, several different fileds will be simultaneously

recorded and processed.
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For thermal analysis, simple devices 

are now currently available!

• Cameras

• Scanners and in the future …tomography

With a lot of active heating possibilities (Laser, flash lamps, acoustic or electromagnetic sources….)

FLIR-CEDIP Orion, 
Titanium…

Irisys FLIR-Indigo-A10
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Insulating foam 

Black painted glass wafer: 
2 inch diameter 
170 µm of thickness 

z 

Visible mirror 
Transmitting IR 

Laser diode 

IR 
Camera 

IR microscope 

Laser beam 
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– Part1-Difficulties occurring with the instruments (noise and 

signal perturbation, systematic errors, filters, resolution…)

– Part2-Difficulties related to the manipulation of a great 

amount of data and the suitable processing of such data, by 

considering a heat transfer model.

“How to process” and “how to estimate”

thermophysical properties from a great 

amount of thermal data, such as temperature 

fields?
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1-1 Noise characterization

1-1-1Monosensor stationnary signal-simple observation
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Hypothesis :

-zero mean and additive errors

−−−−ββββ constant and unknown before the estimation and X
ij

known without

error

-constant variance (σσσσ known) and uncorrelated errors

Studies with Linear least squares theorem

^ ^

ββββoptimum minimize the sum squares function S between theory and experiment

T = X ββββ

^^ββββ = (Xt X)-1 Xt T

cov(eββββ) = (Xt X)-1 σ 2
Estimator

Estimation error
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Example :Estimation of several parameters from the previous signal

Case where f and g are orthogonal
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- Ti regularly spaced, N must be chosen as great as possible!

-The conditioning number is non-dependant on N !
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Signal
Power Spectral density

fft(T).*conj(fft(T))

N=100

-Even if the signal is noisy, it is advantageous to process a great amount of data

- The function: sin(wt) is « orthogonal » to the function: f(t)=1

N=800

Example: T=B1+B2*sin(wt+phi)+NOISE
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1-1-2 Sensor array- stationnary observation
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When a signal is multidimensional, instead of projecting on an orthogonal basis, it is

possible to set out a singular value decomposition (SVD).
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SVD decomposition of the previous images

0 5 10 15 20 25 30

0

5

10

15

20

25

30

-5

0

5

0
5

10
15

20
25

30

0

5

10

15

20

25

30

-2

0

2

0

10

20

30

0

5

10

15

20

25

30
-10

-5

0

5

0 5 10 15 20 25 30
0

1

2

3

4

5

6

7

8

9

10

si
gu

la
r 

va
lu

es

0 5 10 15 20 25 30 35
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

si
ng

ul
ar

 v
al

ue
s

0 5 10 15 20 25 30
0

5

10

15

20

25

30

35

si
ng

ul
ar

 v
al

ue
s

0 5 10 15 20 25 30
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

U
1(

x)
 a

nd
 V

1(
y)

Random

Space correlation

Non-uniformity distortion

The  Singular values are  giving an idea

about the « complexity » of the images

U1(x) and V1(y)Σ values

Uniform singular values distribution 

(non-compressible signal)

High order zero singular values

(compressible signal)

12

ˆ T = UnxnΣnxnVnxm
T



1-2 Systematic errors

1-2-1 Monosensor (thermocouple, resistor, pyrometer…)

• In the best case, the sensor is measuring the « temperature of the sensor »! (see

Bourouga and Bardon, 2000), several illustrations:

– Perturbation of the Isothermal lines and Position error

– Inertia of the sensor

B. Bourouga, V. Goizet, J.-P. Bardon, Les aspects théoriques régissant

l’instrumentation d’un capteur thermique pariétal à faible inertie, International Journal of Thermal Sciences 39 (1) (January 2000) 96–

109.

Isothermal

lignes

Well positioned

sensor
Badly positioned

sensor

Real temperature evolution
Observed signal 

(noisy but also delayed)
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1-2-1 Systematic error: inertia of a thermocouple
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The observable signal Y(t) is a correlated signal!

Even if N observations are made, only less than N informations are really available. 

h: exchange coefficient

ρcL: heat capacity
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1-2-2 Systematic errors with thermographic sensor arrays

Calibration emission and reflexion, with infrared thermography

-Radiative balance between the sensor and the environment (proper emission, reflexion

and influence of the environment) (see [3], [4]). 

- Luminance function of the temperature of the surface (calibration with Planck’s law)

Non uniformity correction (NUC)

A distribution of gain and offset for each pixel must be regularly re-estimated (Non 

Uniformity Correction). 

Bad or dead Pixels

Generally, these pixels are recognized initially by the device provider and corrected by a 

signal averaged from the neighbouring pixels (Bad Pixel Replacement). 

Time recording, dead time step

Thermal stability of the instrument

The freezing of the detector array and the thermal regulation is not always stable (1 

to 5 mK).

Space resolution
15



Time recording, dead time step

The integration time of FPA cameras with quantum detectors is generally about 100µs. The time for 

electronic recording and storage is greater (about 40 ms at 25 Hz). If an accurate triggering is possible, 

the heterodyne methods can be implemented. 
16



Principle of the stroboscopic effect or heterodyne technics

camexc fkf .= (k integer)

(k and N integers)( )N1kff excacq +=

It is possible to reconstruct very fast transient periodic phenomena with a 25 Hz camera! 17



Space resolution

• Slit response function
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Conclusions of part 1
• The experimental space/time temperature signal is coming from an experiment

(with unknowns and non perfect characteristics)

• Tree categories of errors can be globally considered:

– the random noise : with zero mean value is an unwanted perturbating noise but able to be 

processed with simples asumptions (related to the uniform covariance matrix).

– the systematic errors: (NUC, time derive, parasitic effects, sensor positions ...) which must be 

fought, detected or bypassed by the experimenter.

– the space and time convolutions and correlations of the signal acting on the real time and space 

resolution limit.

• The signal is then not-only noisy but also filtered, and truncated in space and in time.

• A great amount of data does not significate that all the possible data are available.

• Nevertheless a multidimensional signal gives more processing possibilities than a 

monodimensional one.

• It will be assumed for the next steps that the systematic errors are mastered!
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2. Thermal » processing of a T(x,y,t) field

In a lot of cases, the heat transfer models will consist in derivating the space and time temperature field.

20



2.1 Strategies for the estimation of the time and space 

derivative of the signal
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2.1.1 Finite differences
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Unfortunately, when the space step ∆x is tending to zero, the approximation error is 
effectively tending to zero, but the random error is tending to infinity!

Random variable : “measurement noise”:

Approximation error: )( ixε

22
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2.1.2 Polynomial fitting
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The projection of the signal on a reduced polynomial basis is giving quite good 

results (excepted with the boundaries) when the rank of the polynom is adapted. 
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2.1.3 Fourier cosinus basis
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The derivation of the “Fourier estimated expression” is giving good results when the rank 

of the serie is adapted.  
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2.1.4 Filtering with a convolution kernel
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The discrete approximation of the derivative is then conveniently considered by a convolution with a 
« derived » kernel.
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1.2.5 Singular value decomposition of the whole space and time signal
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Consider not only the Space but also the time signal!

3 dominant Singular values
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rank of SVD decomposition
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2.2 Estimation of a transverse diffusivity field from flash experiments 

(comparison of classical Non Destructive Evaluation methods):

Experimental situation and

temperature  evolution
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« Flash » lamp

Composite sample

Ox

Oy

Oz

e

l

L

IR cameraIR camera

« Flash » lamp

Composite sample

Ox

Oy

Oz
Ox

Oy

Oz

e

ll

L

Flash uniforme y=0

( ), ,T x y e t=

27



Transverse flash method and IR thermography
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• 1 T(t) measurement

• measurement with contact 

• very accurate measurement

• >10000 T(t) measurements
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• very noisy measurements
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Can we discern two very noisy thermograms ?
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2.2.1 Estimation with physical asymptotic expansions:
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Linear Estimation method, if X is well known
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Is suitable only if X is perfectly known. If f is only a reference curve obtained from 

experiment, the time logarithmic derivative will noisy and the estimation bad!

Shepard proposed to decompose the signal with a polynomial fitting, such as:

Ln(T(x,y,z=0,t))=β0(x,y)+�β1(x,y)Ln(t)+�β2(x,y)Ln2(t)+…
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2.2.3 The SVD decomposition 

=

( ) ( ), , ,
réarrangement

T x y t T X t→1. Arrangement of the information cube in a 

space time matrix

2. SVD decomposition of the resulting matrix
( ) ( ) ( )

1

,
P

T
k k k

k

T X t U X V tλ
=

= ⋅ ⋅∑
3. Arrangement of the spatial U vectors in spatial matrices

( ) ( ),
réarrangement

k kU X U x y→
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SVD and signal compression

Flash

Milieu 

hétérogène 

Caméra
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x

«
M

odes »

From a sequence (about 100 or 1000 images), the SVD will give sometime 3 
or 4 images related to the structure of the sample.
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SVD and variable separation
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temporal covariance matrix only depending on M X

Only depending on U X

Space covariance matrix only depending onN t

Only depending on  V t

( ),
SVD

TT X t U V= Σ

( ) ( ) 2
, , ,

Diagonalisation
T

i j i j

t

M T X t T X t dt U U   = ⋅ ⋅ ⇒ Σ   ∫

( ) ( ) 2
, , ,

Diagonalisation
T

i j i j

X

N T X t T X t dX V V   = ⋅ ⋅ ⇒ Σ   ∫



Comparison between SVD and asymptotic expansions
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( ) ( )
{ } { } ( ) ( )( ) { } ( )max

max

, x
moyx

moyx

TT x
T x t T t x t

T
τ τ

τ
 ∂

≈ + − ⋅ 
∂  

Asymptotic expansion:

( ) { } ( )2
x

moy

T
V t t

τ
∂

≈
∂

( ) ( )( ) ( )( )2 moy moyU x x xτ τ τ τ≈ − −

U1 (x) and V1(t) are very near from the time and space average signal.

U2(x) and V2(t) are the space and time deviation from the space and time average signal.



Practical example: NDE and tensile test on a composite 

medium
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Relative evolution of                    versus the 

stress =  transvers diffusivity variations.
( )2U x



Remarks about the previous methods

• From the great amount of data, the most 

previous methods consisted in trying to 

compress the data, by a projection on a 

suitable basis (very often non related to the 

physics)…

• Is it possible to look directly to the 

phenomena of physical interest?

37



2.3 Estimation of in-plane diffusivity field-Time-space 

correlation and elimination of the non useful data 

Randomly flying spot 
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Experiment
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« Nodal » method in the case of a source point

• Only a few pixels are available on an image at a given time

• The in-plane diffusion is approximated with a finite difference scheme:

If the system is in pure relaxation it gives

The diffusivity is to be estimated only if the correlation coefficient is near from 1:
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Correlation indicator method
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Example with an in-plane source point
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Temperature field
Evolution of a central pixel

Correlation field
Correlation at a central pixel

Diffusivity field
Diffusivity estimation  at a central pixel



Results for a heterogeneous plate
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General Conclusion

• Space/ time signal=great amount of noisy and 
« non-perfect » data.

• Several strategies:

– Analysis of the different kinds of noise and bias of 
the signal.

– Compression  (projection, filtering, averaging…) 
and estimation with a model by the 
implementation of a « suitable » basis.

– Direct use of the physical model 

(example: Correlation analysis)
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