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Outline

Temperature measurement by sensing the
thermal emissive power
- Basics : Planck’s law, Wien’s law and s.o.

- Emissivity-Temperature Separation problem (ETS)

Pyrometry
* single-color, bispectral pyrometry
* multispectral pyrometry
ETS in airborne/satellite remote sensing
e atmosphere compensation
» Spectral-Smoothness method
» Multi-temperature method

. Conclusion
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Thermal radiation

Matter emits EM radiation ] Monitoring of emitted
Intensity increases with > ) radiation offers a mean for
temperature temperature measurement

X Visible Microwaves
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Thermal radiation monitoring

Advantages of the radiation method :
non-contact
surface probing (opaque material),
surface to sub-surface probing (semi-transparent material)
rapid : detectors with up to GHz bandwidth (and even higher)

long distance measurement (airborne and satellite remote sensing,
astronomy)

point detectors (local measurement or 2D images by mechanical scanning)
focal plane arrays (instantaneous 2D images)
possibility of spectral measurements (multispectral, hyperspectral)
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Radiation sensing is dependant on the atmosphere transmission,
(absorption bands of air constituents : H,O, CO,, O;, CH,, ...)

MidWave: 3 - 5,5 ym

ShortWave: 0.7 - 2,5 ym LongWave: 7 - 14 ym
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Basics (1/4)

- Blackbody: perfect absorber, perfect emitter (~Holy Grall...)

- Spectral radiance given by Planck’s law: B(/LT)=% ;{é j
exg —=2 |-1

- Wien’s approximation: B\N(A,T):%ex;{—&]
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| Error of Wien’s approximation is less
than 1% providing that T < 3124umK
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Basics (2/4)

Wavelength selection for temperature measurement
- Maximum of radiance given by Wien'’s displacement law: A __T =2898umK

!

A=965um

- Radiance sensitivity to temperature (absolute sensitivity): T for T = 300K

dB/dT (W/m3/sr/K)

Wavelength (um)

Maximum corresponding to: AT =2410umK

 :

A =805um
for T = 300K




Basics (3/4)

Wavelength selection for temperature measurement

- Radiance sensitivity to temperature (relative sensitivity): 1 6_B

BoT
10
for T= 300K :
2% radiance increase per K at 8um
16% radiance increase per K at 1um
< 10"
2 - Advantage of performing
5 measurements at short wavelengths
% 5 (sensitivity is nearly in inverse
S 10 proportion to wavelength)

Interest in visible pyrometry or even UV
pyrometry ?

10 10"
Wavelength (um)
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Basics (4/4)

Real materials (non-perfect emitters)

. with respect to blackbody, the emitted radiance L(A,T,6,4) is reduced by
a factor called emissivity:

L(A,T.6,¢)=£(1,T,6,4)B(A,T) O<es<l
- emissivity depends on wavelength, temperature, and direction
- second Kichhoff's law between emissivity and absorptance:

£(A,6,¢)=a(1,6,¢)

- relation between absorptance and directional hemispherical reflectance
from the energy conservation law for an opague material (the energy that is
not absorbed by the surface is reflected in all directions):

a(1,6,4)+0"(1,6,¢)=1

| Emissivity can be inferred from a reflectance measurement (integrating sphere)
Drawback : need to bring the integrating sphere close to the surface
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Contributors to the optical signal

- the surface reflects the incoming radiation (non-perfect absorber)
downwelling radiance: L' (1,6.4,)
bidirectional reflectance : £ (1,6,8.6,.4,)
- the radiation leaving the surface is attenuated along the optic path (absorption,
scattering by atmosphere constituents: gases, aerosols — dust, water/ice particles)
transmission coefficient : T(ﬂ,5,¢)

- atmosphere emits and scatters radiation towards the sensor
upwelling radiance L' (/1,6’,¢)

o | at-sensor radiance
L.(A,T.0,6)=1(1,6,6)L(1,T,6,¢)+L (1,6,4)

surface leaving radiance

L(A.T.6.)=€(1.6.0)BA.T)+ [ 07(1.6.4.8.4, )" (1.6,¢,)cosgd
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First considered case

- Pyrometry of high temperature surfaces

sensor at close range (limited or even negligible atmosphere
contributions)

environment much colder than the analyzed surface

L.(A,T.6,8)=¢(1,6,4)B(1,T)




Second considered case

- Airborne/satellite remote sensing
hypothesis of lambertian surface: isotropic reflectance === isotropic
emissivity
« mean downwelling radiance
need for atmosphere compensation step

1
L' {(A)==|L..\A.6.8 1dQ,
)= [ Ll 6.9 )cos800,
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What about emissivity ?

In all cases we need an information on emissivity to get

temperatu re
relations for emissivity : only for ideal materials , for example Drude law for pure metals
(satisfactory only for 4 >2um , not valid for corroded or rough surfaces)

databases for specific materials in particular state of roughness, corrosion, coatings,
contaminant, moisture content ...

— & (Oiidized galwanized Steel Metal
'] — ---1t---Galvanized Steel Metal 1
———— Metallic Silver Paint
09 4 —t— Brassplate
|:| 8 ———— Copper metal /\/\ /_\_/./'\\\_ })f'\l\ |:|95
2 A A
07 ; e 09
e A v A g° |
E \ i w“ - fl MMMMMMMMMMMM 7] 0as
0 05 C— e e ,; L
E 04 IJ',"---— “_j\_‘_ == LE S Conifer
L ns — - |— Decidous
[:]3 ‘ J ——F— Grass
— |— Concrete
gf _\}I‘ I o7 —— 0 ;:Ii;fzzsumdunesand
. % 07 - - --|- - - Aragonite CaC032 I
D T T T T T T T T T T ’ ' ' ' ' ' ' ' ' ' ' !
3 4 5 B 7 8 9 10 11 12 12 14 24 5 6 7 &8 9 10 11 12 13 14
Wavelength (um) Wavelength (um)
. Practical solution : simultaneous evaluation of tempera ture and
emissivity
s




Single-color pyrometry

- Measurement is performed in a narrow to large spectral band
« In any case, after sensor calibration, the retrived radiance is of the form

L.(A,T)= Ev(\/\&,j)

One equation, two unknown parameters
.
One has to estimate the emissivity (a priori knowledge)

- Sensitivity of temperature to an error in emissivity estimation:

dT _ (T dB)"ds / AT de
T BdT) ¢ . C, ¢

L__, at lum and T=1100K : -0.8K/% error
at 10 pm and T= 300K : -0.6K/% error

- advantage in working at short wavelength (visible or UV pyrometry): sensitivity
to emissivity error drops.

- However, the signal drops at short wavelength —_> compromise
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Two-color pyrometry (1/2)

Adding a new wavelength adds an equation but also an unknown parameter
namely the emissivity a this additional wavelength.

Two spectral signals: |_(,11,T) = g(/]l)B(/]l’T)
{L(AZ,T): £(1,)B(A,,T)

by ratioing the signals: In(L2)|25)— |n(|_1)|15) = |n[&j _&(i _ij
e AA,

effective wavelength: A, =
’ ” A=A
Effective wavelength can be high : bad news !!

The problem can be solved if one has a knowledge about the emissivity ratio.
Common hypothesis (but not necessary) : « greybody » assumption £(4,) = £(1,)
Sensitivity of temperature to an error in emissivity estimation:

aT_ [ A,T [dgl dng

L__, at 1lum/1.5um and T= 1100K : -2.5K/% error = 3 times higher
at 10um/12um and T= 300K : -3.7K/% error = 6 times higher
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Ratio pyrometry vs 1-color pyrometry

1-color 2-color 3-color
& 2
Input & & £E,
(slope) | (curvature)
Error
rror it/ N A
amplification _ N 1V
on C, “~ 7 x(—j
temperature ~_ A




Two-color pyrometry (2/2)

Sensitivity of temperature to an error in emissivity estimation can be reduced by
decreasing the effective wavelength (by increasing 1/A,-1/4, )

==) dilemma when spreading the wavelengths : will the “greybody” assumption still hold ?

Advantage of ratio pyrometry over single color pyrometry : immune to partial
occultation, to variations of optical path transmis sion

2-color photothermal pyrometry:
A laser is used to periodically heat the surface. R 1_ . _}U . /

. . .. 1 T /
A lock-in detection is implemented to capture 3 :
. ) . laser sample in
the modulated radiance deprived from any reflection. furnace
The signal ratio is: g(/]l)aB/aT (/]l’-r)
£(1,)oB/oT (1,,T)
L interference filter
. .. T. Loarer at al., 1990
- Emissivity-enhanced eson e soceseng o
o I IS
2-color pyrometry eyl
Additional reflective surface for ::zcmgﬂpﬁ Lamferla.tu.-e
. . . . Bty ret W isplayi
introducing a cavity effect (increase of \ chopper — 1" L N Sy
both apparent emissivities, reduction of {1 oeroptccave :LL _E
spurious reflections) /{5,
§ prete head
E _______ ]
: retal sheat | Opated J.-C. Krapez at al., 1990
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Multiwavelength pyrometry (MWP)

- Emissivity-temperature separation is essentially an underdetermined inverse
problem: _ .
N observables —, LS(AI’T)_Eb(\AI)B(/]I’T) | _:LN

1 unknown parameter
N unknown parameters

whatever the number of wavelengths/equations, there are always one more unknown
parameters

- Two types of solutions:

reduce by one the degree of freedom of the discretized emissivity spectrum
* N equations, N unknowns — the problem should be solvable (?)
=== iNt€rpolation-based method

regularization by using a low-order emissivity model (continuous or step function)
* N equations, much less unknowns

=== |€ast-square based method

- Long time controversy: does MWP bring a real advantage as compared to
single-color or two-color pyrometry ?
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Multiwavelength pyrometry. Interpolation- bj

method (1/2)

“Just as needed” regularization : approximating the emissivity (or its log.) by a N-2

degree polynomial

By considering the Wien approximation and taking the logarithm, Coates showed that this
may lead to “catastrophic” results:

-~

~

Aln[e(A)]

C,yT-yT)["

4

A

n|L(A.T)A%/C]=mn(g)-C,JAT  i=1N
approximation> > induced temperature error
In:L(/li,T)/]iS/Cl]:NZ:_Zainj -C,/AT"  i=1N

polynomial of degree N-1 passing through the N values 4 |n[€(/‘i )]

~
~
~
~
~
~
Seo

2

constant parameter = temperature error C, (]/T YT )
l.e. extrapolation resultat A=0
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Multiwavelength pyrometry. Interpolation- bj

method (2/2)

there would be no error if a N-2 degree polynomial could be found passing exactly through
the N values In[()] === highly improbable !

Therefore, in general, one has to count on

Alne(a)] extrapolation properties.
“\ 2 Unfortunately, extrapolation based on polynomial
C,WT-y1) interpolation leads to increasingly high errors as
;5-~~::::::=-_*/0/.\'/.\. the polynomial degree rises !
/l unpredictably high errors when adding
new wavelengths

Previous errors are systematic , i.e. method errors (errorless signal).

Same bad results are observed for measurement errors (they add to the previous ones).

The calculated temperatures are increasingly sensitive
to measurement errors as the number of channels
increases : OVERFITTING problem
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Multiwavelength pyrometry. Low-order emls SIV

e gl

models (1/2)

The only solution : reduce the model complexity (low order model !)

Some examples of models :
s(/li)=zm:aj)lij i=1..,N m<N-2
j=0

In[e(/]i)]:iaj/]ij i=1..,.N m<N-2
eA)=1/li+a?)  i=1..N

- Polynomials of A2 or x¥2 for In[¢(A)]
- Functions involving the brightness temperature T, =B™(4,L,)
- Sinusoidal function of wavelength

- Step function (grey-band model with N, bands).
-2 or 3 channels per band
-up to N-1 single-channel bands and one dual channel band

0
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Multiwavelength pyrometry. Low-order

models (2/2)

measurement error (noise)

Observable : Y, =In[L(/1i,T)/1i5/C1]+q
Wien approximation

Polynomial approx. of In[g(A )] w e )Y problem
Minimizing the weighted sum ZJ{Z(Yi —(Zaj/]i‘ —ﬁn )
j=0 i

i=1

> =) Linear least squares

measurement error (noise)

Observable : Y, =L(A,T)+e ~

Planck’s law
B0l i () - mm) Non-linear least squares
olynomial approx. of  &(A )2 oroblem

_/

Minimizing the weighted sum ZN:ai‘z(Yi -B(/ ,T)Zm:ajili‘

i=1




Multiwavelength pyrometry. Linear least s'c:if'ﬁ |

5,
R

problem (1/5)

One is looking for the polynomial coefficients and the temperature such that:

- N m c 2
3, .. a_ T]T:argMinZEYi-[;ainJ_/]i__er

a; T i=1

b

Il
'c?.)_'

Parameter reduction for numerical purposes:

A=A _
A¥=2———2—-1 P> =T /T such that CZ//‘iTref =1
Amax - Amin
Sensitivity matrix to the reduced parameters: a, % q
- c 15 ‘ /——\
1 A* A% 2 3 / 3 \ \
ATt 1 : : :
-C RS I R W AT
1 A A : > 0.5 | T
AnTees S R L | -
- — N,m+2 "5 0 ,,,,,,,,,,, :,,,,,""::’-j:.’,z.‘.:‘..-,---:'i ,,,,,,,, :, ,,,,,,,, ref/
@
o e | | /
P08 —d
The sensitivity to the temperature inverse | 7 | | -
is very smooth, close to linear. We can SApt - i”:_: o nmmdmeme T TTI :
thus expect a strong correlation | | |
- between the parameters (near collinear -1.5 17 14 16
- sensitivity vectors). Reduced wavelength j'= 4/} _
i min
=
OMERA
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Multiwavelength pyrometry. Linear least

problem (2/5)

Assuming that the measurement errors are additive, uncorrelated and of uniform variance,
an estimation of the parameter vector P* in the least squares sense is obtained by solving

the linear system : (XTX)IE’* _ Ty

Near collinear sensitivity vectors lead to a high condition number  of (XTX)

The condition number (ratio of maximum to minimum eigenvalue) indicates the rate at
which the identified parameters will change with respect to a change of the observable

(sensitivity to measurement errors)
/]max//‘min = 175
Polynomial model

108 | i T é
0% . y |
BS] | | 8 Huge increase of the condition number with
% ; ; ; the polynomial degree
< 10 4 i Problems are expected with models of
% o: N=m+2, o N=7, 0: N=30, x N=100 degree 2 and more
Swilg ]

o | |
1975 1 2 3

Polynomial degree
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Multiwavelength pyrometry. Linear least Sqff"' I

problem (3/5)

Condition number : only an upper bound of error amplification.

The diagonal of the covariance matrix (XTX)_1 is of greater value for analyzing the error
propagation
[Jp*z] = diag((XTX)_l)(f2

\ v\assumed uniform variance of the observable

error around the mean estimator value due to radiance error propagation to the parameters
(does not include the bias due to model error, i.e. misfit between true emissivity and emissivity model)

K., K-
Error amplification factors l
K

91—k a T

min



Multiwavelength pyrometry. Linear least squi "
problem (4/5) 3

5 S
S 8
5 S
Polynomial & 8
model = S
= S
= @
¢ X ‘ x
L2 o: N=m+2, o: N=7, ¢: N:30, x: N=100
1 i |
lllustration for 10 0 1 2 3 )
A _JA =175 Polynomial degree Polynomial degree
max min "

The errors are rapidly rising with the degree of fr eedom
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Multiwavelength pyrometry. Linear least squ '

problem (5/5) B
Practical application :
- target at 320K,

- 1% radiance noise
- radiometer with seven wavelengths between 8 and 14um

Polynomial Polynomial degree o, (K) o,
model 0 1.5 0.02
1 9.4 0.13

The mentioned standard errors only reflect what happens when noise corrupts the radiance
emitted by a surface which otherwise perfectly follows the chosen model (polynomial
model of degree 0, 1 or 2)
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Multiwavelength pyrometry. A look to the Eg En

-

solutions (1/2)

To each estimated temperature value T one can associate an emissivity profile
é\‘(/] f) according to: ‘true” emlssmty\( “true” temperature
’ s )

L(A,T
B, T B/],T
They constitute an infinite number of perfect solutions to the underdetermined

problem.
“true” temperature

“true” emissivity is linear T =32K “true” emissivity is a 6-order polynomial
14 / ! / \1.4
1.2 1 1.2
1 N Pa
> T > T
%) 08 - 290 % 0. - 290
2 - 304 29 |« 304
L% 0.6 320 uEJ . <320
0.4 o33 0.4 - 338
< 400 ~ 400
0.2 500 0.2 | | - 500
% 10 12 14 % 10 12 14
Wavelength (um) Wavelength (um)

Let us now consider a 1-degree emissivity model. Which, among all candidate profiles,
fits a straight line at best ?




Multiwavelength pyrometry. A look to the E
solutions (2/2) A

Misleading idea : « the chosen model is used to fit the true emissivity profile »

Actually, the least squares method selects among all possible solutions, the one
which conforms at best to the model, taking into account a weighting by B(A,f)

7-channels pyrometer [8-14um]

“true” emissivity is a 6-order polynomial “true” radiance (errorless)
6
1 12X 10 / ‘ (
1 radiance withilinear
,,,,,,, [ ,,,,,,,emmsm rotlle,,,,,,,,,,,
08 ESt — 10" ~~~~~~~~~~~~~~~~~~~~ ‘ ty p
wn S~
L L
3] 8-—————————————:— ‘3\—:\— —————————————————————
206 = e
= 9 320 = e
0 I Ry 335 @ | TR
E04r f 7777777 R S A = | | N
L | | 8 A e m e e B TR
| | T kS | |
0.5l _the solutidn which is closestto & : :
' a straight | ﬁne ] 2f S e
% 10 12 14 % 10 12 14
Wavelength (um) Wavelength (um)
2 Errorless radiance leads to a 15K bias for temperature and 0.06 to 0.2 emissivity
£ underestimation (systematic or model error )
= With a 2-degree polynomial model, the results are even worse : T =230K, £ >2
OMNERA
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Multiwavelength pyrometry.

- Measurements are simulated by adding artificial noise to the theoretical emitted radiance
(Gaussian distribution with a spectrally uniform standard deviation : 0.2% to 6% of the
maximum radiance value)

- Statistical analysis on 200 simulated experiments o tue emissivity is a 6-order
. lynomial
. Chosen model : 1-degree polynomial pobmomiE
o X true emissivity is linear
Emissivity error Temperature error
10— T e e e ; ; c T
e et et Wt R {1 ] NP
I I i | l X === ==== - - - === t- == Rl el N
- L a_x_ 79 e R
O | | | | L et T - - - - -~ I L I R
Fonfi S T Lo F,,,)@L,,Q,A ,,,,,,,,,,,, 4 4o N P
© | | , O R I I [
(j) (3 ””””” 6 ”””” 9 ”””””” [ I T é | | Q | | |
= | | o O R RREEEEE CHBRRREARE
X 5t . ‘ Ll] S 0 o @ oo
42‘10 EEEEEEEEEETFEEEEEEE?EEEEEEE;EEEE:EEEFEQEE GL') 101::::::::113‘11:::::j‘,:::::::i::::::::i::::f
= i::::::;::::;::::;:::;::;:i;: (é) ::::::::::j‘:::::::1‘:::::::‘1::::;:::‘1::;::
U) 7777777777 x 7777777 To - - T T T~ | R e B I Y R R
Q 7777777777 N L — = N f—-———~~~~~"~"~""~3 9~ ~"~“"~“"~“"~“""“"7°"""""“"T"" 77" """~ "“"°"°1v°"°7.°°
S [ [ e Xooo---- .
w0 L L L] [
: NS : S N
100.2 0.5 1 2 3 456 100.2 0.5 1 2 3 456
Radiance error (%) Radiance error (%)

High systematic error when the emissivity model (1-degree polynomial) doesn’t match

with the true profile ( >15K RMS !).

Otherwise, 0.1 emissivity error and 8K temperature error for 1% radiance error. Same holds when the
true profile departs by 1% from a straight line !
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Conclusion on LSMWP with low-order “

models

Reasonable RMS values can be obtained only when the implemented
emissivity model perfectly matches the real emissivity spectrum. Otherwise,
there are important systematic errors

When can we guaranty that a specific model perfectly matches to reality ?

LSMWP focuses on profile shape rather than on magnitude = Adda
penalization based on emissivity level (mean or local) to force the solution to
remain close to a predetermined level (a priori information)

b back to one-color pyrometry !

When using only the emitted spectral radiance, there is no valuable reason for
iImplementing MWP instead of the simpler one-color or bispectral pyrometry
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ETS in the field of remote sensing

B CCRSfCET

Polar-orbiting satellites (low-earth orbit)

High-altitude airborne remote sensing

B CERS § CET
Geostationary satellite



SYSIPHE main caracteristics

DLR Dornier DO-228
2000 m, 73 m/s

Spectral sampling

10nm from 0.4 to 2.5 pm

¢ H',rpercuhe ” 20 cm™ from 3 to 5.3 pm
10 cm™! from 8 to 11.5 pm
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Specific features of IR remote sensing

Measurements are highly conditioned by the radiative properties of the
atmosphere (transmission, emission toward the earth surface and then
reflection, emission along the optical path, scattering, ...). Optical path in air
from ~100 m to several km.

Atmosphere compensation is necessary

Atmosphere properties considered uniform in images of several km?

Footprint is generally large: from ~10 cm for low altitude airborne sensors to ~2

km for sensors on geostationary satellites ==> aggregation of various
materials and temperatures (desaggregation = inversion problem )

In [8-14um] band, natural surfaces (soil, vegetation, water) have high
emissivity values (> 0.9). Generally considered as Lambertian.




Evaluation of atmosphere contributions

- Example of a grey surface
(e=0.9) at T=313K

. Radiative transfer simulations By ————
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- Example of a grey surface

00012

(e=0.9) at T=313K sensed by an

IR instrument at 1900 m altitude.

- Radiative transfer simulations
with MODTRAN; (mid-latitude
summer atmospheric model;

rural aerosols)
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Atmosphere separate compensation

Radiative transfer simulation (MODTRAN, MATISSE...) with:

standard atmospheric models (temperature+humidity
profiles)/climate/season/aerosols

radiosonde data ==> profiles of pressure, temperature, constituents

IR sounding near 4.3um for CO, and between 4.8-5.5um for H,O +
neural networks allows retrieving mean atmosphere temperature and
columnar water vapor under the sensor. These values are then used to
scale a set of standard atmosphere profiles used in MODTRAN and get
closer to the true atmosphere profiles. Final MODTRAN computation

7(1,6,9)
L'(1,6.9)
{ L' (1)
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Emissivity-Temperature separation

- Proper atmosphere compensation provides ground

leaving radiance

)= ST L) e T e ) ()

() VT Y

Emissivity estimation 3‘(/1) from a temperature estimation T according to

_LaT1)-1' (1)
B, T)-L (1)
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- When temperature estimation T is in error , the profile—\_> &)= L(/‘f[)‘ L' (4)
will contain detailed spectral features originating from B(/I,T)— L (A)

L(A,T) and L (1)

Emissivity (-)

(gas absorption bands)

I ountilé(4) is deprived of these artifacts =) 'Smooth” emissivity spectrum
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Spectroradiometer :
BOMEM MR254

- SpSm requires the atmospheric compensation to be very

precise

SpSm requires high spectral resolution ( <10 cm) in order
to capture sufficient details of the atmosphere spectral
features. Restricted to hyperspectral data. Spectral
calibration errors are highly detrimental

- Radiance error of 0.5% =) 1.6K RMS and 0.8K bhias for

temperature and 0.023 RMS and 0.027 bias for emissivity
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one more unknown is the ill-conditionning

N more data solved ???
- N; temperature levels — N+N unknowns} Solvable (in principle )
. N channels - NxN; equations ifN=2

However, using Wien ’s approximation, it can be shown that, when there is no
reflection contribution, the problem remains ill-conditionned !
With errorless radiance, there is an infinite number of solutions defined by:

1 1
— =—+cst
T
. C,
£(1)=£(1)exg =Zcst ] _
A -G,
0
/]1Tref
N
ol
For two temperatures, the sensivity matrix is X = N fref c
0 2
/]1Tref
N
e s wgw T _ _C2
Sensitivities are correlated as del(X X)—O 0 =
L N "ref JoN,N+2
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Multi-temperature method (2/3)

- The problem remains badly conditioned when using Planck’s law
- Degeneracy is alleviated thanks to the presence of reflections
- Inversion robustness depends on the spectral richness of the reflections

Case of two temperatures.

Nonlinear least-squares approach for identifying the N emissivities and the two
temperatures

< T~ araMin N (L(/1i,T1)—(¢‘,‘i B(/]i,Tl)+(1_£i)Ll (/‘i )))2 N
[i,Tl,Tz] B gigrll\ﬁz ;(L(Ai,TZ)—(giB(Ai,T2)+(1_£i)|_l (/])))2

lllustration for the case of a greybody (¢=0.9) at T, =320K.
Second temperature is 1K, 5K, 10K or 30K higher.
Downwelling radiance is either:

blackbody radiance at 300K

same by weighting with a uniform random distribution (simulation of the presence of
detailed spectral features)

Standard errors of identified parameters obtained from covariance matrix (local
linearization)
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Conclusion

- Radiative temperature measurement

advantage : non-contact
disadvantage : underdetermined inverse problem due to emissivity

- « Mirage » of multiwavelength pyrometry
only very low order emissivity models could be considered (ex: 1 degree polyn.)
no significant benefit vs. single or two color pyrometry

- IR remote sensing takes profit from high emissivity of natural
surfaces and from their spectral smoothness with respect to
downwelling radiance

SpSm method : implementation phase for Sysiphe hyperspectral camera

Multi-temperature method
* ineffective without reflections from spectrally rich and well characterized environment
 additional constraints






