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Outline

Temperature measurement by sensing the 
thermal emissive power

• Basics : Planck’s law, Wien’s law and s.o.
• Emissivity-Temperature Separation problem (ETS)

• Pyrometry
• single-color, bispectral pyrometry
• multispectral pyrometry

• ETS in airborne/satellite remote sensing
• atmosphere compensation
• Spectral-Smoothness method
• Multi-temperature method

• Conclusion
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Thermal radiation

Matter emits EM radiation
Intensity increases with 

temperature

Monitoring of emitted 
radiation offers a mean for 
temperature measurement

10nm 100nm 1µm 10µm 100µm 1mm 10mm 100mm 1m 10m 100m 1km

X
UV

Visible
IR

Microwaves
Radio

MidWave = 3 - 5,5 µm LongWave = 7 - 14 µm
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Thermal radiation monitoring

Advantages of the radiation method :
- non-contact
- surface probing (opaque material),
- surface to sub-surface probing (semi-transparent material)
- rapid : detectors with up to GHz bandwidth (and even higher)
- long distance measurement (airborne and satellite remote sensing, 

astronomy)
- point detectors (local measurement or 2D images by mechanical scanning)
- focal plane arrays (instantaneous 2D images)
- possibility of spectral measurements (multispectral, hyperspectral)
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MidWave: 3 - 5,5 µm

LongWave: 7 - 14 µmShortWave: 0.7 - 2,5 µm

Radiation sensing is dependant on the atmosphere transmission, 
(absorption bands of air constituents : H2O, CO2, O3, CH4, …)
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Basics (1/4)

• Blackbody: perfect absorber, perfect emitter (~Holy Grail…)
• Spectral radiance given by Planck’s law:
• Wien’s approximation:
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Error of Wien’s approximation is less
than 1% providing that µmKT 3124<λ
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Basics (2/4)

Wavelength selection for temperature measurement
• Maximum of radiance given by Wien’s displacement law:

• Radiance sensitivity to temperature (absolute sensitivity):

300K

500K

700K

900K

1100K

Maximum corresponding to:

µmKT 2898max =λ

µmKT 2410=λ

µm65.9=λ
for T = 300K

µm05.8=λ
for T = 300K
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Basics (3/4)

Wavelength selection for temperature measurement

• Radiance sensitivity to temperature (relative sensitivity):

300K

500K

700K

900K

1100K

Advantage of performing
measurements at short wavelengths
(sensitivity is nearly in inverse 
proportion to wavelength)

Interest in visible pyrometry or even UV 
pyrometry ?

T

B

B ∂
∂1

for T = 300K :
2% radiance increase per K at 8µm 
16% radiance increase per K at 1µm
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Basics (4/4)

Real materials (non-perfect emitters)
• with respect to blackbody, the emitted radiance                       is reduced by 

a factor called emissivity:

• emissivity depends on wavelength, temperature, and direction
• second Kichhoff’s law between emissivity and absorptance: 

• relation between absorptance and directional hemispherical reflectance
from the energy conservation law for an opaque material (the energy that is 
not absorbed by the surface is reflected in all directions):

( ) ( ) ( ) 10,,,,,,, ≤≤= ελϕθλεϕθλ TBTTL

( )ϕθλ ,,,TL

( ) ( )ϕθλαϕθλε ,,,, =

( ) ( ) 1,,,, ' =+ ∩ ϕθλρϕθλα

θ

ϕ

Emissivity can be inferred from a reflectance measurement (integrating sphere)
Drawback : need to bring the integrating sphere close to the surface
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Contributors to the optical signal 

• the surface reflects the incoming radiation (non-perfect absorber)
• downwelling radiance: 
• bidirectional reflectance :

• the radiation leaving the surface is attenuated along the optic path (absorption, 
scattering by atmosphere constituents: gases, aerosols – dust, water/ice particles)

• transmission coefficient :

• atmosphere emits and scatters radiation towards the sensor
• upwelling radiance
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First considered case 

( ) ( ) ( )TBTLs ,,,,,, λϕθλεϕθλ =

• Pyrometry of high temperature surfaces
• sensor at close range (limited or even negligible atmosphere 

contributions)
• environment much colder than the analyzed surface 
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Second considered case 

( ) ( ) ( ) ( )ϕθλλϕθλτϕθλ ,,,,,,,, ↑+= LTLTLs

( ) ( ) ( ) ( )( ) ( )λλελλελ ↓−+= LTBTL 1,,

• Airborne/satellite remote sensing
• hypothesis of lambertian surface: isotropic reflectance isotropic

emissivity
• mean downwelling radiance   

• need for atmosphere compensation step
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In all cases we need an information on emissivity to get 
temperature

• relations for emissivity : only for ideal materials , for example Drude law for pure metals
(satisfactory only for                , not valid for corroded or rough surfaces)

• databases for specific materials in particular state of roughness, corrosion, coatings, 
contaminant, moisture content …

• Practical solution : simultaneous evaluation of tempera ture and
emissivity 

µm2>λ

What about emissivity ? 
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Single-color pyrometry

One has to estimate the emissivity (a priori knowledge)

• Sensitivity of temperature to an error in emissivity estimation:

• advantage in working at short wavelength (visible or UV pyrometry): sensitivity 
to emissivity error drops.

• However, the signal drops at short wavelength                  compromise
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at 1µm    and T= 1100K  : -0.8K/% error
at 10 µm and T= 300K    : -0.6K/% error

• Measurement is performed in a narrow to large spectral band
• In any case, after sensor calibration, the retrived radiance is of the form

One equation, two unknown parameters
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Two-color pyrometry (1/2)

• Adding a new wavelength adds an equation but also an unknown parameter
namely the emissivity a this additional wavelength.

• Two spectral signals:

• by ratioing the signals:

• The problem can be solved if one has a knowledge about the emissivity ratio.

• Common hypothesis (but not necessary) : « greybody » assumption

• Sensitivity of temperature to an error in emissivity estimation:
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at 1µm/1.5µm    and T= 1100K  : -2.5K/% error =  3 times higher
at 10µm/12µm   and T= 300K    : -3.7K/% error =  6 times higher

Effective wavelength can be high : bad news !!
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Error
amplification 

on 
temperature

(curvature)(slope)
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Two-color pyrometry (2/2)

• Sensitivity of temperature to an error in emissivity estimation can be reduced by 
decreasing the effective wavelength (by increasing              )

dilemma when spreading the wavelengths : will the “greybody” assumption still hold ?

• Advantage of ratio pyrometry over single color pyrometry : immune to partial 
occultation, to variations of optical path transmis sion

• 2-color photothermal pyrometry:
A laser is used to periodically heat the surface. 
A lock-in detection is implemented to capture
the modulated radiance deprived from any reflection.
The signal ratio is:

• Emissivity-enhanced 
2-color pyrometry

Additional reflective surface for
introducing a cavity effect (increase of 
both apparent emissivities, reduction of
spurious reflections)

21 11 λλ −

laser

chopper

detector

sample in 
furnace

interference filter

T. Loarer at al., 1990 
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J.-C. Krapez at al., 1990 
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Multiwavelength pyrometry (MWP)

• Emissivity-temperature separation is essentially an underdetermined inverse 
problem:

whatever the number of wavelengths/equations, there are always one more unknown 
parameters

• Two types of solutions:
• reduce by one the degree of freedom of the discretized emissivity spectrum

• N equations, N unknowns                   the problem should be solvable (?)

interpolation-based method
• regularization by using a low-order emissivity model (continuous or step function)

• N equations, much less unknowns                   

least-square based method

• Long time controversy: does MWP bring a real advantage as compared to 
single-color or two-color pyrometry ? 

( ) ( ) ( ) NiTBTL iiis ,1,, == λλελN observables

N unknown parameters
1 unknown parameter
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i.e. extrapolation result at

Multiwavelength pyrometry. Interpolation-based
method (1/2)

“Just as needed” regularization : approximating the emissivity (or its log.) by a N-2 
degree polynomial

By considering the Wien approximation and taking the logarithm, Coates showed that this
may lead to “catastrophic” results:
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approximation induced temperature error

( )'112 TTC −
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0=λ
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λ

( )[ ]λελ ln

polynomial of degree N-1 passing through the N values
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Multiwavelength pyrometry. Interpolation-based
method (2/2)

there would be no error if a N-2 degree polynomial could be found passing exactly through 

the N values                            highly improbable !     

( )'112 TTC −

λ

( )[ ]λελ ln

?

?

Therefore, in general, one has to count on 
extrapolation properties.
Unfortunately, extrapolation based on polynomial 
interpolation leads to increasingly high errors as 
the polynomial degree rises !

( )[ ]iλεln

unpredictably high errors when adding
new wavelengths

Previous errors are systematic , i.e. method errors (errorless signal).

Same bad results are observed for measurement errors (they add to the previous ones).

The calculated temperatures are increasingly sensitive 
to measurement errors as the number of channels 
increases  : OVERFITTING problem
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Multiwavelength pyrometry. Low-order emissivity 
models (1/2)

Some examples of models :
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- Polynomials of       or         for             
- Functions involving the brightness temperature
- Sinusoïdal function of wavelength
- Step function (grey-band model with        bands).

-2 or 3 channels per band
-up to N-1 single-channel bands and one dual channel band

( )sR LBT ,1 λ−=

21λ 21−λ ( )[ ]λεln

bN

The only solution : reduce the model complexity (low order model !)
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Multiwavelength pyrometry. Low-order emissivity 
models (2/2)

Observable :

Wien approximation

Polynomial approx. of
Minimizing the weighted sum

( )[ ] iiii eCTLY += 1
5,ln λλ

( )[ ]iλεln
Linear least squares 

problem

Observable :
Planck’s law

Polynomial approx. of

Minimizing the weighted sum
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Multiwavelength pyrometry. Linear least squares 
problem (1/5)
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One is looking for the polynomial coefficients and the temperature such that:

Parameter reduction for numerical purposes:

Sensitivity matrix to the reduced parameters:
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The sensitivity to the temperature inverse 
is very smooth, close to linear. We can 
thus expect a strong correlation 
between the parameters (near collinear 
sensitivity vectors). 
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Multiwavelength pyrometry. Linear least squares 
problem (2/5)

Assuming that the measurement errors are additive, uncorrelated and of uniform variance, 
an estimation of the parameter vector        in the least squares sense is obtained by solving 
the linear system :

Near collinear sensitivity vectors lead to a high condition number of

The condition number (ratio of maximum to minimum eigenvalue) indicates the rate at
which the identified parameters will change with respect to a change of the observable 
(sensitivity to measurement errors)
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○: N=m+2, □: N=7, ◊: N=30, x: N=100 

75.1minmax =λλ
Polynomial model

Huge increase of the condition number with 
the polynomial degree
Problems are expected with models of 
degree 2 and more
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Multiwavelength pyrometry. Linear least squares 
problem (3/5)

Condition number : only an upper bound of error amplification. 

The diagonal of the covariance matrix                is of greater value for analyzing the error 
propagation

Error amplification factors               

( ) 1−
XXT

[ ] ( )( ) 212
* σσ −

= XXT
P diag

assumed uniform variance of the observable 

error around the mean estimator value due to radiance error propagation to the parameters
(does not include the bias due to model error, i.e. misfit between true emissivity and emissivity model)
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Multiwavelength pyrometry. Linear least squares 
problem (4/5)
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○: N=m+2, □: N=7, ◊: N=30, x: N=100 ○: N=m+2, □: N=7, ◊: N=30, x: N=100 
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The errors are rapidly rising with the degree of fr eedom 
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Multiwavelength pyrometry. Linear least squares 
problem (5/5)

 
Polynomial degree 

Tσ  (K) εσ  

0 1.5 0.02 
1 9.4 0.13 
2 64 0.83 

 

Polynomial 
model

Practical application :
- target at 320K, 
- 1% radiance noise
- radiometer with seven wavelengths between 8 and 14µm 

The mentioned standard errors only reflect what happens when noise corrupts the radiance 
emitted by a surface which otherwise perfectly follows the chosen model (polynomial 
model of degree 0, 1 or 2)
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Multiwavelength pyrometry. A look to the ETS 
solutions (1/2)

To each estimated temperature value     one can associate an emissivity profile                                          
according to: 

They constitute an infinite number of perfect solutions to the underdetermined
problem.
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“true” emissivity “true” temperature 

“true” emissivity is linear “true” emissivity is a 6-order polynomial

T̂ T̂

KT 320=
“true” temperature

Let us now consider a 1-degree emissivity model. Which, among all candidate profiles, 
fits a straight line at best ? 
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Multiwavelength pyrometry. A look to the ETS 
solutions (2/2)

Misleading idea : « the chosen model is used to fit the true emissivity profile »

Actually, the least squares method selects among all possible solutions, the one
which conforms at best to the model, taking into account a weighting by 
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Errorless radiance leads to a 15K bias for temperature and 0.06 to 0.2 emissivity 
underestimation (systematic or model error )
With a 2-degree polynomial model, the results are even worse :     =230K, >2 !
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“true” emissivity is a 6-order polynomial

7-channels pyrometer [8-14µm]

the solution which is closest to 
a straight line

linear profile fitting the “best” 
solution

“true” radiance (errorless)

radiance with linear 
emissivity profile
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Multiwavelength pyrometry. Non-linear least squares 
and Monte-Carlo analysis (1/3)

• Measurements are simulated by adding artificial noise to the theoretical emitted radiance 
(Gaussian distribution with a spectrally uniform standard deviation : 0.2% to 6% of the 
maximum radiance value)

• Statistical analysis on 200 simulated experiments
• Chosen model : 1-degree polynomial
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true emissivity is linear

true emissivity is a 6-order 
polynomial

x
Emissivity error Temperature error

High systematic error when the emissivity model (1-degree polynomial) doesn’t match
with the true profile ( >15K RMS !).
Otherwise, 0.1 emissivity error and 8K temperature error for 1% radiance error. Same holds when the 
true profile departs by 1% from a straight line !



31/

M
E

T
T

I  
20

11

Multiwavelength pyrometry. Non-linear least squares 
and Monte-Carlo analysis (2/3)

• Does it help to increase the number of spectral channels ?

true emissivity is linear

true emissivity is a 6-order 
polynomial

x
Emissivity error Temperature error

When the emissivity model (1-degree polynomial) matches with the true profile we observe the classical        
uncertainty reduction.

Otherwise, emissivity and temperature RMS error remain high (systematic errors always dominate); they 
even increase with N for present example !
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Conclusion on LSMWP with low-order emissivity 
models

• Reasonable RMS values can be obtained only when the implemented 
emissivity model perfectly matches the real emissivity spectrum. Otherwise, 
there are important systematic errors

• When can we guaranty that a specific model perfectly matches to reality ?
• LSMWP focuses on profile shape rather than on magnitude Add a 

penalization based on emissivity level (mean or local) to force the solution to 
remain close to a predetermined level (a priori information)

• When using only the emitted spectral radiance, there is no valuable reason for 
implementing MWP instead of the simpler one-color or bispectral pyrometry

back to one-color pyrometry !
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ETS in the field of remote sensing 

Low-altitude airborne remote sensing

High-altitude airborne remote sensing

Polar-orbiting satellites (low-earth orbit)

Geostationary satellite 
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Specific features of IR remote sensing

• Measurements are highly conditioned by the radiative properties of the 
atmosphere (transmission, emission toward the earth surface and then 
reflection, emission along the optical path, scattering, …). Optical path in air 
from ~100 m to several km.

• Atmosphere compensation is necessary

• Atmosphere properties considered uniform in images of several km2

• Footprint is generally large: from ~10 cm for low altitude airborne sensors to ~2 
km for sensors on geostationary satellites         aggregation of various 
materials and temperatures (desaggregation = inversion problem )

• In [8-14µm] band, natural surfaces (soil, vegetation, water) have high 
emissivity values (> 0.9). Generally considered as Lambertian.



36/

M
E

T
T

I  
20

11
Evaluation of atmosphere contributions

( ) ( ) ( ) ( )( ) ( )λλελλελ ↓−+= LTBTL 1,,

• Example of a grey surface 
(ε=0.9) at T=313K

• Radiative transfer simulations 
with MODTRAN; (mid-latitude 
summer atmospheric model; 
rural aerosols)



37/

M
E

T
T

I  
20

11
Evaluation of atmosphere contributions

• Example of a grey surface 
(ε=0.9) at T=313K sensed by an 
IR instrument at 1900 m altitude.

• Radiative transfer simulations 
with MODTRAN; (mid-latitude 
summer atmospheric model; 
rural aerosols)

( ) ( ) ( ) ( )ϕθλλϕθλτϕθλ ,,,,,,,, ↑+= LTLTLs

( ) ( ) ( ) ( )( ) ( )λλελλελ ↓−+= LTBTL 1,,

at-sensor radiances
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Atmosphere separate compensation

Radiative transfer simulation (MODTRAN, MATISSE…) with:
• standard atmospheric models (temperature+humidity

profiles)/climate/season/aerosols

• radiosonde data              profiles of pressure, temperature, constituents

• IR sounding near 4.3µm for CO2 and between 4.8-5.5µm for H2O + 
neural networks allows retrieving mean atmosphere temperature and
columnar water vapor under the sensor. These values are then used to 
scale a set of standard atmosphere profiles used in MODTRAN and get
closer to the true atmosphere profiles. Final MODTRAN computation

( )ϕθλτ ,,

( )ϕθλ ,,↑L

( )λ↓L
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• Proper atmosphere compensation provides ground
leaving radiance :

Emissivity-Temperature separation

( ) ( ) ( )
( ) ( ) ( ) ( )( ) ( )λλελλε
λτ

λλ
λ ↓

↑

−+=
−

= LTB
LTL

TL s 1,
,

,

( ) ( ) ( )
( ) ( )λλ

λλλε
↓

↓

−
−=

LTB

LTL
ˆ,

,ˆEmissivity estimation            from a temperature estimation  according to T̂( )λε̂
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Spectral Smoothness method (SpSm) (1/2)

( ) ( ) ( )
( ) ( )λλ

λλλε
↓

↓

−
−=

LTB

LTL
ˆ,

,ˆ• When temperature estimation     is in error , the profile 
will contain detailed spectral features originating from                 

and                (gas absorption bands)

• Adjust       until        is deprived of these artifacts

T̂

( )λ↓L( )TL ,λ

T̂ ( )λε̂ “smooth” emissivity spectrum

Knuteson, 2006
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Spectral Smoothness method (SpSm) (2/2)

• Field tests at ONERA (K. Kanani thesis)

Spectroradiometer : 
BOMEM MR254 

• SpSm requires the atmospheric compensation to be very 
precise

• SpSm requires high spectral resolution ( < 10 cm-1)  in order 
to capture sufficient details of the atmosphere spectral 
features. Restricted to hyperspectral data. Spectral 
calibration errors are highly detrimental

• Radiance error of 0.5%          1.6K RMS and 0.8K bias for 
temperature and 0.023 RMS and 0.027 bias for emissivity
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However, using Wien ’s approximation, it can be shown that, when there is no
reflection contribution, the problem remains ill-conditionned !

• With errorless radiance, there is an infinite number of solutions defined by:

• For two temperatures, the sensivity matrix is

Sensitivities are correlated as 

Multi-temperature method : a pitfall ? (1/3)

• NT temperature levels

• N channels

cst
TT tt

+= 1
ˆ
1

• N+NT unknowns
• NxNT equations

Solvable (in principle ) 
if N ≥ 2

( ) ( ) 






= cst
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λελε 2expˆ

2,2

2
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I

I

X

( ) 0det =XXT

one more unknown
N more data

is the ill-conditionning
solved ???
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Multi-temperature method (2/3)

• The problem remains badly conditioned when using Planck’s law
• Degeneracy is alleviated thanks to the presence of reflections
• Inversion robustness depends on the spectral richness of the reflections

Case of two temperatures.
Nonlinear least-squares approach for identifying the N emissivities and the two 

temperatures

Illustration for the case of a greybody (ε=0.9) at T1 =320K.
Second temperature is 1K, 5K, 10K or 30K higher.
Downwelling radiance is either:

• blackbody radiance at 300K
• same by weighting with a uniform random distribution (simulation of the presence of

detailed spectral features)

Standard errors of identified parameters obtained from covariance matrix (local 
linearization)

[ ] ( ) ( ) ( ) ( )( )( )
( ) ( ) ( ) ( )( )( )∑

= ↓

↓

−+−

+−+−
=
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Multi-temperature method (3/3)
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smooth
downwelling
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spectrally rich
downwelling
radiance

1% radiance noise

Better results are obtained by increasing the number of ch annels and the
temperature difference
High constraints to get a temperature RMS error lower tha n 1K !
Constraints on images co-registration, emissivity st ability.

40K to 4K
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Conclusion

• Radiative temperature measurement
• advantage : non-contact
• disadvantage : underdetermined inverse problem due to emissivity

• « Mirage » of multiwavelength pyrometry
• only very low order emissivity models could be considered (ex: 1 degree polyn.)
• no significant benefit vs. single or two color pyrometry

• IR remote sensing takes profit from high emissivity of natural 
surfaces and from their spectral smoothness with respect to 
downwelling radiance

• SpSm method : implementation phase for Sysiphe hyperspectral camera
• Multi-temperature method

• ineffective without reflections from spectrally rich and well characterized environment
• additional constraints




