

Experimental Study on Pollutant Formation in low-pressure Flames of Furanic Biofuels

L. Giarracca,

N. Lamoureux, S. Gosselin, G. Vanhove, L. Gasnot, P. Desgroux

PhD Thesis financed by Region Hauts-de-France and Université de Lille

Motivation

Biofuels are seen as an interesting and promising alternative to fossil fuels.

- from ligno-cellulosic biomass
- oxygenated fuels comparable to commercial fuels
- What is **their impact on the formation of pollutant** emissions?

"Furan family" in literature...

> <u>Oxidation in laboratory condition</u>:

> Oxidation in real condition:

Shock Tube

(Ignition delay time)

- SOMERS, K., et al." Proc. Combust. Inst., 34, (2013)
 MF
- XU, N., et al. Energy Fuels 29. (2015) DMF, F, MF.
- ...

Premixed Laminar Flame (Kinetics at High T)

- LIU, D., et al. Combust. Flame, 161, (2014) F
- TIAN, Z. et al. Combust. Flame ,158, (2011) F
- TRAN, L., et al. Combust. Flame, 162, (2015) THF
- TOGBÉ,C., et al.. Combust. Flame ,161, (2014) DMF
- ...

Isothermal quarz flow reactor (Kinetics at High T)

ALEXANDRINO, K., et al., Proc. Combust. Inst ,35,(2015)
 DMF

Rapid Compression Machine (Kinetics at Low T - Ignition delay time)

- VANHOVE, G., et al. Energy Fuels 29 (2015) THF
- FENARD, Y. et al., Combust. Flame, 178 (2017) MTHF
- ...

Nitrogen Oxides:

ALEXANDRINO, K., et al. Energy Fuels, 28, (2014) **DMF, NO**

· ...

Nitrogen Oxides

NO is one of the regulated pollutants formed during combustion. It is produced according to different, more or less well-known, pathways :

Prompt - NO

Fuel - NO

It involves intermediate hydrocarbon fragments, particulary CH, reacting with N_2 under fuel rich conditions.

(Lamoureux et al., Combustion and Flame 157.10 (2010): 1929-1941.)

Thermal - NO

Fuel Oxidation

Objectives

Aims of this study :

- Experimental characterization of NO formation during Furan and THF combustion
- Development of a model for NO formation during Furan and THF combustion

Discussion on NO formation routes

Laminar Premixed Flame

Operating conditions

Flames	φ	*%CH4	*%F	*%THF
M1.0	1.0	100	0	0
M1.2	1.2	100	0	0
FM1.0	1.0	50	50	0
FM1.2	1.2	50	50	0
THFM1.0	1.0	50	0	50
<i>THFM1.2</i>	1.2	50	0	50

* Fuel composition

Pressure 5.3 kPa

Total Flow 5 sL/min

Experimental set-up

Combustion products and stable intermediates

Gas-Chromatography Results

➢ 6 flames analyzed by gas chromatography equipped with:

- MS detector
- FID detector coupled with methanizer
- TCD detector

➢ 63 species have been detected globally:

14 in Methane flames
47 in Furan doped flames
49 in THF doped flames

Gas-Chromatography Results

Different pollutants found in Furan and THF flames :

• Aldehydes : Formaldehyde, Acetaldehyde, Acrolein, 2-Butenal, Propanal, Cyclopropane-carboxaldehyde,...

• **PAH Precursors :** *Acetylene, Propene, Propyne, Allene, 1.3Butadiene, Cyclopentadiene, Benzene,...*

Species profiles

^aDirrenberger et al., Energy Fuel, 25 (2011) 3875-3884 ^b Tran et al., Combustion and Flame, 162 (2015), 1899-1918 ^c Gibbs and Calcotte, J. Chem. Eng. Data, 4 (1959), 226-237 **Biofuels flames** are stabilized closer to the burner surface with respect to Methane flames

Furan is consumed faster than THF

Burning velocityP=101kPaT=298K $\phi=1$

 $CH_4^{a} : Su_{CH4} = 36.3 \text{ cm.s}^{-1}$ THF^b : $S_{uTHF} = 41.4 \text{ cm.s}^{-1}$ Furan^c : $S_{uFuran} = 62.5 \text{ cm.s}^{-1}$

$$S_{uFuran} > S_{uTHF}$$

Species profiles

NO measurements

Laser Setup

Excitation-Detection scheme

Experimental NO LIF excitation spectra.

NO molecules are excited by using the $Q_2(27)$ transition of the A-X(0,0) at 225.58 nm

NO LIF signal profile

> NO LIF relative profile Concentration of NO molecules $O(t) = \frac{GV\Omega}{4\pi} N_{tot} f_b (J'', v'', T) B_{12} U_v \frac{A_{21}}{A_{21} + Q_{21}}$

> NO doping calibration method in flame M1.0

NO mole fraction profiles

NO formation is enhanced in fuel-rich conditions

> NO formation is enhanced in **Furan flames** :

+27% at **φ=1** and **+11%** at **φ=1.2**

(with respect to Methane flames in same operating conditions)

- Measurement of the NO in THF flames and CH profiles in flames by LIF
- Measurement of the temperature profiles in the flames by NO-LIF thermometry

Detailed chemical kinetic modeling helps the interpretation of the data
BioFuel oxidation mechanism
available in literature

Thanks for the attention

