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Abstract. Singular Value Decomposition (SVD) is a linear algebra process that allows 
to decompose any square or rectangular, real or complex, matrix into a product of three 
matrices, its central matrix being diagonal. Its diagonal coefficients are the singular 
values of the original matrix, which are all real and positive (or zero) numbers. This 
decomposition can be seen as a generalization of the eigenvalue decomposition that is 
valid only for square matrices. In this tutorial we will consider SVD either as a tool for 
calibrating a linear model (system identification) with a further use in inverse input 
problems, or for processing a large amount of space/time data that can be met when 
measuring temperatures using infrared thermography. In both applications, in order 
either to tackle the original ill-posed character of the original inverse problem (where 
the matrix at stake is the sensitivity matrix), or to perfom some specific kind of data 
reduction (where the matrix at stake is the matrix of space/time data), the original SVD 
decomposition has to be modified. It gives rise to two types of regularization: 
Truncated SVD (TSVD) or Tikhonov regularization of zero order. 
These two different problems, identification/inverse input problem and data reduction 
will be studied using two examples in this tutorial: a deconvolution problem by 
decomposition the sensitivity matrix and an initial temperature field reconstitution by 
decomposition of the space and time observable data. 

  

11.1 Input estimation, identification and data reduction    

We consider here three types of experimental inverse problems where Singular Value Decomposition 
(SVD) can be used : 
 

• estimation of input   u(t) , starting from the measurement of its output   y (t) : this problem, where 

the structure of the model   M(β )  as well as its structural parameters  β
exact are known is an inverse 

input problem; 
• identification of a model, starting from experimental measurements of both input and output; 
• data reduction or filtering, in case of multi-output time-space signal   y (P, t)  where P can be any 

pixel on a surface field (case of infrared thermography measurements for example). 
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11.2 Introduction: the SVD decomposition 

Any rectangular matrix (called K here) with real or complex coefficients and of dimensions (m, n) with 

 m ≥ n  (SVD also exists in the case  m < n , but it won't be dealt with here), can be written under the 
form: 

   K = U W V t  that is
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 (11.1) 

where superscript t stands for the conjugate transpose of the corresponding matrix. If the coefficients of  
 K  are real, it is simply its transpose. 
This expression is sometimes called "thin" or “economy size” SVD and involves: 

- U , a unitary matrix (orthogonal if  K is real) of dimensions (m, n) : its column vectors (the 
left singular vectors of K) have a unit norm and are orthogonal by pairs :   U

t U = In , where   In  
is the identity matrix of dimension n. Its columns are composed of the first n eigenvectors Uk, 
ordered according to decreasing values of the eigenvalues of matrix    K K t . Let us note that, 

in the general case,   UU t ≠ Im . 

- V , a square unitary matrix (orthogonal if  K is real)  of dimensions (n, n), :   V V t = V tV = In
. Its column vectors (the right singular vectors of K), are the n eigenvectors Vk, ordered 
according to decreasing eigenvalues, of matrix    K tK ; 

- W , a square diagonal matrix of dimensions (n x n), that contains the n so-called singular 
values of matrix  K , ordered according to decreasing values :    w1 ≥ w2 ≥! ≥ wn . The 
singular values of matrix  K  are defined as the square roots of the eigenvalues of matrix 
  K tK . If matrix  K  is square and symetric, its eigenvalues and singular values are the same. 

Another SVD form called "Full Singular Value Decomposition" is available for matrix K. In this 
equivalent definition, both matrices U and W are changed: the matrix replacing U is now square (size m x 
m) and the matrix replacing W is now diagonal but non square (size m x n). In the present case where 

 m ≥ n , this can be written: 
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and dim (Ucomp ) = m x (m - n)    

  (11.2) 
or: 
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Matrix 
  Ucomp is composed of the (m - n) left singular column vectors not present in  U. So, the concanated 

matrix   U0 verifies now: 

    U0
t U0 = U0 U0

t =UU t + Ucomp Ucomp
t = Im   (11.4) 

This singular value decomposition (11.4) can be implemented for any matrix  K ,  with real or complex 
value coefficients, for  m ≥ n . 

11.3  Interest of the Singular Value Decomposition in linear parameter 

estimation 

If all the n parameters in a parameter vector  x  are looked for, for a linear model    ymo (x)  =  S x , where m 
noised measurements   y  =  S x + ε  are  available, and if noise ε  is independent and identically distributed 

(i.i.d.), that is    cov(ε) = σε
2 Im , its Ordinary Least Square (OLS) estimator can be written (see Lecture 3 of 

this Metti school): 

 
    
x̂OLS = St S( )

−1
St y with E (ε) = 0 and cov(x̂OLS ) = σε

2 St S( )
−1

  (11.5) 

Of course, in order for the inverse of the information matrix   S
t S  to exist, matrix  S  must not be singular, 

which means that its n sensitivity column vectors should form a free system of vectors (see lecture L8 in 
this series): the rank of  S  should be equal to n. 
The potential difficulty in the estimation of  x  may stem from the possible ill-conditioning of the square 
information matrix   S

t S  whose inversion makes the standard deviations of its different parameters   x̂ j

become very large with respect to their exact value. So, a normalized criterion can be constructed in order 
to assess the quality of the estimation of the n parameters.  
We assume here that all the coefficients of  x  have the same unit as all the coefficients of  y . This is the 
case for input estimation problems where  y is for example the vector of the sampled measured 
temperatures at m times  ti and  x  the parameterized heat source   x (t) using a basis composed of n functions 

  g j (t) : 
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x (t) ≈ xparam (t) = x j
j=1

n

∑ g j (t) ⇒ xparam (ti ) = g(ti ) x

with g= g (ti ) g2 (ti ) ! gn (ti )
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t
  (11.6) 

In this parameterization a column-vector  x  composed of n coefficients has replaced a function   x (t)  of 
infinite continuous dimensions. 
So, it is now possible to write the thin SVD decomposition of    S

* , which uses the notion of Euclidian 
norm of different true vectors, see equation (11.1): 

   S = U W V t   (11.7) 

It is now possible to calculate the amplification coefficient of the relative error kr, see equation (1.7) in  
Lecture 1 of the same series: 

 

   

kr (ε) =
ex / xexact

ε / ymo xexact( )
with ex = x̂ − xexact   (11.8) 

Using the properties of matrices U and V described in section 1, one can show: 

 

   

ex = V W−1 U t ε ≤ V W−1 U t ε

ymo xexact( ) = S x ≤ U W V t x

$

%
&

'
&
⇒ kr (ε) ≤ V W−1 U t U W V t = S+ S  (11.9) 

One can recognize in the right-hand term of the last inequality (11.9) the product of the norms of two 
matrices. The second matrix is simply the SVD form of the reduced sensitivity matrix   S

* while the first 
one is just the pseudo inverse of   S

* , which is noted  S
+  here. 

Let us remind that the norm of any matrix K (which has not to be square) is defined by: 

 

   

K
2
=

z =1
Max zt K tK z( ) = w1

2 (K)   (11.10) 

where    w1 (K)  is the largest singular value of K. This singular value is simply the square root of the largest 

(positive) eigenvalue of the reduced information matrix    λ1 (S t S ) . One can show that: 

 
   

S = w1 (S) and S+ = w1 (S+ ) = 1
wn (S)

  (11.11) 

So, it can be shown, using (11.8), (11.9) and (11.11) that the maximum value of the amplification 
coefficient of the relative error kr, that is the criterion that assesses the ill-posed character of the OLS 
parameter estimation problem is equal to the condition number, noted cond (.)  here, of the reduced 
sensitivity matrix: 

 
   
kr (ε) ≤ cond(S*) =

w1 (S)
wn (S)

  (11.12) 

So, this condition number, defined here with the Euclidian L2 norm, is the pertinent criterion that can be 
used to measure the degree of ill-posedness of a linear parameter estimation problem, whatever the value 
of the noise level (for an i.i.d. noise). Since it requires the construction of the reduced sensitivity matrix, it 
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depends on the nominal values of the parameters and can vary strongly, depending on this choice, even if 
the problem is linear. 

11.4 SVD inversion of the ordinary least square estimator 

We assume now that the model    ymo (x)  =  S x is linear and that all the parameters gathered in the 
parameter vector  x have the same unit. We use the SVD of the sensitivity matrix  S , that is we write the 
generic equation (1) for  K = S  which yields   S = U W V t . Substitution of this expression in the OLS 
estimate equation (4) gives: 

 
   
x̂OLS = St S( )

−1
St y = V W −1 U t y   (11.13) 

This identity is valid only if matrix  S  is of full rank, which means that its smaller singular value    w1 (S)
should be strictly positive. As a consequence equation (11.5) can be written the following way: 

    cov(x) = σε
2 V W−2 V t   (11.14) 

This shows that the smallest singular values present in matrix   W
−2 will bring a dominant contribution to 

the diagonal coefficients of   cov(x) , that is the variances of the different parameters.  

11.5 TSVD and Tikhonov regularization of zero order 

11.5.1  TSVD regularization 

In any linear inverse input problem, the OLS solution (11.13) minimizes the following least square 
criterion: 

 
   
J (x)= y− Sx

2
= y− Sx( ) t

y− Sx( )   (11.15) 

Ideally, if no noise is present in the data  y , the best option is to choose a parameterization based on the 
largest possible number of parameters n, that is n equal to the number of measurements m, see (5). 
However, because of the presence of noise, the largest n, the largest the condition number (11.13) of the 
inversion and the largest the standard deviations of the estimated parameters because of the smallest 
singular value    wn (S) . 
So, one of the solution is to replace, in the SVD expression (11.13) of the OLS minimum of (11.15), the 
inverse of the matrix  W of the singular values by a its truncated inverse   Wα

−1 : 
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The new regularized TSVD estimate becomes: 
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    x̂α
TSVD = V Wα

−1 U t y   (11.17) 

Let us note that  Wα  cannot be calculated since the  n−α  smallest singular values of  S , 

   wα+1, wα+2 ,!, wn−1, wn , have been given an infinite level. 

The TSVD solution (11.17) can be rewritten using the left and right singular column vectors   Uk  and   Vk  
defined in section 1: 
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y = 1
wkk = 1

α

∑ Uk
t y( ) Vk  (11.18) 

The discrepancy principle can be adopted for the choice of the optimal value for α : 

    J (x̂α
TSVD ) < mσε

2 and J (x̂α+1
TSVD ) ≥mσε

2   (11.19) 

11.5.2 Tikhonov regularization of zero order 

Another popular method of regalurization is based on a penalization of the OLS sum (11.15) by an 
additive term that would prevent and explosion of the standard deviations of the different coefficients of 
 x . Tikhonov regularization of zero order consists in minimizing the following crierion: 

 
   
Jµ (x)= y− Sx

2
+ µ x

2
= y− Sx( ) t

y− Sx( ) +µ x t x   (11.20) 

The solution is explicit: 

 
   
x̂µ

Tik 0 = St S + In( )
−1

S t y   (11.21) 

This can be written using the SVD decomposition of  S : 

 
   

V W2 V t +µ In( ) x̂µ
Tik 0 = V WUt y   (11.22) 

Using the fact that   V V t = In , the preceding equation can be simplified: 

 
   
x̂µ

Tik 0 = V W2+µ In( )
−1

WUt y =
wk

wk
2+µk = 1

n

∑ Uk
t y( ) Vk   (11.23) 

Comparison of OLS (15), TSVD (11.18) and Tikhonov (11.23) estimates show that both OLS and 
regularized solutions can be written under the common form: 

 
   
x̂ reg = fk

k = 1

n

∑ Uk
t y( ) Vk   (11.24) 

where coefficients  fk  are called “filter factors, see [1] and are defined by: 
 

-   fk = 1 for k = 1 to n ≤ m  without any regularization (Ordinary Least Squares) 
 

-   fk = 1 for k = 1 to α< n ≤ m and fk = 0 for k=α+1 to n ≤ m  for TSVD regularization  
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- 
  
fk =

wk
2

wk
2+µ

for k = 1 to n ≤ m  for Tikhonov regularization of zero order 

 

11.6 Application of regularization to a deconvolution problem 

11.6.1 The convolution model in vector-matrix form 

Classicaly, since the pionneering works of J.V. Beck the aim of the Inverse Problem of Heat Conduction 
(IHCP) consists in estimating the time variation of the heat flux starting from several internal temperature 
measurements.  
Here we consider a slightly different IHCP where a heat flux (if   h1=0 ) or of the surface heat source (if 

  h1 ≠ 0 )   q(t)  (in W/m2) over the front face of a slab starting from the measurement of the transient 

temperature variations   Ts (t)  from a sensor embedded at a depth  x = xs inside the wall of thickness e, see 

figure 2. The two external heat transfer coefficients   h1  and   h2 with the surrounding environment at 

temperature  T∞ , the conductivity λ , the volumetric heat  ρc  are assumed as well as the dimensions  xs  
and e are assumed to be known. 
 

 
 

Fig. 2  Inverse Heat Conduction Problem for a homogeneous slab in 1 D 
 

The initial temperature distribution in the slab is assumed to be uniform and equal to  T∞ . So, the solution 

of the direct problem consists in finding the response   Ts (t)  of the sensor for a know thermal excitation 

  q(t) .  
Since the heat equation and all its boundary conditions are linear here: 

 

  

λ
∂2θ
∂x2

= ρc ∂θ
∂t

with θ = T (x, t)− T∞

− λ
∂θ
∂x

= q (t) − h1θ at x = 0 ; − λ ∂θ
∂x

= h2θ at x = e ; θ = 0 for t=0
  (11.25) 

 
(26) 
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with coefficients that do not depend on time, its solution in any point x (for example x =  xs ) can  be 
written under the form of a convolution product: 

 
  
θs (t) = z (t) * q(t) = z (t - t')

0

t
∫ (t ' ) d t '   (11.26) 

This response can be easily calculated in the Laplace domain [2]: 

   θs (p)= z (p) q(p)  with 
  
z (p)=

A2

C +(h1+ h2 ) A +h1 h2 B
 (11.27) 

with the the notation 
  
g  (p) =  

0

+∞

∫ g (t) exp (-pt) d t  

and where: 

 
  
A = cosh (e p / a ) ; B =

sinh(e p / a )

λ p / a
; C = λ p / a sinh(e p / a ) ; A2 = cosh ((e−xs ) p / a )    

  (11.28) 
and where   z (p)  is the operational impedance and p the Laplace parameter. 
Let us note that the inverse Laplace transform of   z (p) , to get values of   z (t) over a discrete time grid, can 
be made numerically (Stehfest algorithm [2, chapter 9]). 
Here we assume that the measurements   θs

exp (ti )  are made for discrete time values  tk = k Δ t  over a 

  
t0 = 0 tend = tm =mΔ t"

#$
%
&'  time interval. So the temperature response of model (11.27) can be vectorized 

on the corresponding discrete time grid: 

 
   
Θs = θs 1 θs 2 ! θs m

#
$%

&
'(

t

with θs i = θs (ti ) for i= 1 to m   (11.29) 

Parameterization of the flux   q(t)  is made according to (11.6) for  x = q , using the same number n of 
functions as the number of measurement times m: 

 
   
q(t) ≈ qparam (t) = q j

j=1

m

∑ g j (t) ⇒ qparam (ti ) = g(ti ) q   (11.30) 

where the basis functions   g j (t) are piecewise constant (unit) functions over the ]  t j−1 , t j ] interval. The 
interest of this parameterization is to keep the heat balance of the material system, since: 

 
  
q j =

1
Δt

q(t) dt
t j−1

t j∫ for j = 1 to m   (11.31) 

A numerical quadrature of equation of equation (11.26) written at time  t = ti  yields: 

 
  
θs (ti ) = z (ti - t j+1)

j =1

i

∑ q j Δt = z (ti− j+1)
j =1

i

∑ q j Δt   (11.32) 

This quadrature does not derive from the trapezoidal rule since  q j  is an integral value, see (11.31), and 

  z (ti− j+1)  an instantaneous one. 
Equation (11.32) can be put on a matrix/vector form: 
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    Θs = M (z) q  where 
   
z = z1 z2 ! zm

!
"#

$
%&

t

with zk = z (tk ) for k= 1 to m  (11.33) 

where   M (.)  is a (square) matrix function of a column vector, here a Toeplitz matrix defined for any 
column vector  x by : 

 

     

M (x) ≡ Δt

x1
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$

%

&
&
&
&
&
&
&
&

'

(

)
)
)
)
)
)
)
)

  (11.34) 

So, at the model level, convolution product (11.26) becomes the product of a square lower diagonal matrix 
by a column vector. It is this model     ymo (q) =θs  that has to be  inverted (with regularization) starting 

from noisy measurements    y=θs
exp = θs + ε  of   θs (t)  after its sampling and parameterization  of   q(t) , to get 

an estimation of its parameter vector. 
We simulate here the response for the following values of the different structural parameters: 

  h1= 0 ; h2 = 10 W.m−2.K−1 ; λ = 1 W.m−1.K−1 ; ρc= 3106 J.m−3.K−1; e=0.2 m ; xs = e  
Inversion of   z (p)  yields the following time impedance   z (t) that is plotted using m = 200 points on the [0, 
tfinal = 4 e2/a] time interval in figure 3: 
 

 
 

Fig. 3 – Transfer function (xs = e) 
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11.6.2 Inverse input problem 

So, the inverse problem input consists in solving (11.15), with    y=θs
exp = θs + ε ,    ymo (q) =θs and 

  S = M (z) . Here the exact and (simulated) noised temperature responses are plotted (for tfinal = 2 e2/a) in 
figure 4 for a i.i.d. normal noise of standard deviation  σε =0.1K and m = 200 points in time. 
 

 
 

Fig. 4 – Excitation and response (xs = e) 
 
The inverse problem consists in finding a regularized estimation of the heat flux : 

 
   
q̂reg = fk

k = 1

n

∑ Uk
t Θexp( ) Vk = V Wreg

−1 U t Θexp where M (q) = U W V t   (11.35) 

where    Wreg
−1  is a filtered version of   W

−1 , see equation (11.18) 

11.6.3 Inverse identification and inverse input problems 

Here we assume that the transfer function is unknown. So, in a first stage, we have to estimate it using a 
modified version of the convolution product (11.26) which is, un der a vector/matrix for see (11.33): 

    Θs
calib= M (qcalib ) z   (11.36) 

So a specific calibration experiment has to be run, where both excitation and response have to be 
measured, which yields an estimation   ẑ  of  z : 

 
   
reg = fk

k = 1

n

∑ Uk
t y( ) Vk = V Wreg

−1 U t Θexp where M (qcalib
exp ) = U W V t   (11.37) 

In a second stage, the inverse input problem of the experiment the inverter is interested into, can be 
considered (as in section 5.2 above, with the following model: 

 
   Θs = M (ẑ) q ⇒ q̂reg = V Wreg

−1 U t Θexp where M (ẑ) = U W V t   (11.38) 
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11.7 Data reduction using TSVD-Initial temperature field reconstitution by 

decomposition of the space and time observable data. 

11.7.1 General remarks 

The general 1-D problem of diffusion with initial condition, without internal source, in an infinite medium 
can be presented under the following system : 

 
  

∂T
∂t

= a ∂
2T
∂x2   (11.39) 

with at initial time :    T (x,t = 0) = f (x)  
It is here assumed that the 1D medium is infinite and the temperature is zero for   T (x,t)  and   f (x)  when x 
tend to infinite. 
Such a system is corresponding to a simple experiment. One illustration example is corresponding to the 
observation of the transient temperature response   T (x,t) to a pulse heating of a laser spot  on a beam 
graduated following the x-direction. 
Thanks to infrared thermography, the instantaneous temperature fields can be measured by infrared 
thermography at  Nx  different space steps  xi  (lying between 0 and L)  and at  Nt different time steps  t j  at 

 Nt different time steps (lying between 0 and tmax). It is classically assumed that the measurement errors at 

each space and time step are uncorrelated, of zero mean and on uniform variance  σ 2  or standard deviation 
σ . The processing of the observable temperature response:   T̂ (x,t)  will be illustrated in this examples. 
The objective, is to use the great amount of data ( Nx X  Nt  data) in order to filter the estimation of the 
initial temperature field   T (x,t = 0) . The solution of the forward problem is considered first. The 
estimation of    T (x,t = 0)  is then illustrated first by a Fourier transform method and then a TSVD directly 
applied on the observable field. 

11.7.2 Solution by the Green’s function approach 

One way to consider the solution of the previous system is the « Green’s function » approach. 
It can be presented with an integral form such as : 

 
  
T (x,t) = K (x − s,t) f (s)ds

−∞

+∞

∫  or: 
  
T (x,t) = K (x,s,t) f (s)ds

−∞

+∞

∫  (11.40) 

  K (x − s,t) is called the « Green’s function », or the kernel defined as: 

 
  
K (x − s,t) = Q

ρc

exp −
x − s( )2

4at

#

$

%
%

&

'

(
(

πat
 for t>0 (11.41) 

and: 

   K (x − s,t) = 0  for t=0 for any x (11.42) 

The time variable t can be here fixed because such variable is non depending on x and s and non 
concerned with the inversion problem. 
Such problem can also be presented under a general form such as:  
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  Ω
∫ system X input  dΩ = output  (11.43) 

The expression (11.40) with variables x  and s, is very near from the expression (11.26) with variables t et 
t’, except with  the bounds ((11.40) : integral equation of Fredholm and (11.26): integral equation of 
Volterra).  
In a particular case, when f(x) is a Dirac distribution, the output is directly the “Green’s function” 
expressed versus time and space. It is experimentally simple to get such realisation by considering the 
temperature response of a thin infinite 1D sample to a short pulse from a laser spot. The very localised 
initial condition can be considered at a “very short time” after the initial time.  
In a general case (f(x)  is not a Dirac distribution but a continuous function), a numerical quadrature of the 
expression (11.40) or (11.43) and a linear system can be considered. A variant is to consider a space 
Fourier transform of the temperature field. 

11.7.3 Fourier  integral transform approach 

An other way can be to consider the previous problem by implementing a space Fourier transform (see 
[7]): 

 
  
θ (αn ,t) = T (x,t)cos(

0

L

∫ αnx)dx  with   αn = nπ / L  ; n >or=0 (11.44) 

L is here assumed as a “large” bound of the x-domain, where the temperature is zero and no gradient is to 
be considered. 
The system (11.39) becomes after Fourier transform: 

 
  
−αn

2θ (αn ,t) = 1
a

dθ
dt

 (11.45) 

The initial condition becomes:   θ (αn ,0) = F(αn )        
The solution of the forward problem is then: 

   θ (αn ,t) =θ (αn ,0)exp(−aαn
2t)  for every n; (11.46) 

Or in the real space: 

 
  
T (x,t) = 1

L
θ (0,0)+ 1

2 cos(αnx)θ (αn ,0)exp(−aαn
2t)

n=1

∞

∑
&

'
(

)

*
+  (11.47) 

Or under vector-matrix form in the Fourier space: 

 

  

θ (α0 ,t)
θ (α1,t)

.

.
θ (αn ,t)

#

$

%
%
%
%
%
%
%
%

&

'

(
(
(
(
(
(
(
(

=

exp(−aα0
2t)

exp(−aα1
2t) 0

.
0 .

exp(−aαn
2t)

.

#

$

%
%
%
%
%
%
%
%

&

'

(
(
(
(
(
(
(
(

θ (α0 ,0)

θ (α1,0)

.

.
θ (αn ,0)

#

$

%
%
%
%
%
%
%
%

&

'

(
(
(
(
(
(
(
(

 (11.48) 

Or under condensed matrix-form in Fourier Space: 

   Θ(t) = diag(exp(-aα 2t)Θ(0)  (11.49) 
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The relation between the vectors   Θ(t)  and   Θ(0)  is linear. If the vector   Θ(0)  is truncated it is a vector of 
“parameters” to be estimated.   Θ(t)  can be observed at any time even the initial time. Generally, the 

“observed” vector (noted    
⌢
Θ(t) ) is noisy and numerically computed from a discrete thermographic signal. 

The initial time is also observable noted as:    
⌢
Θ(0) , but also noisy. The noise affecting the “observed 

vector” is the Fourier transform of the “measurement noise” in x-space.  It is here an orthogonal transform 
of a discrete signal (measured in x-space) regarded as a sequence of serially uncorrelated random variables 
with zero mean and finite variance. Such a “transformed noise” is also with zero mean and finite variance.  
It is here proposed to use the great amount of data obtained at the successive time steps in order to 
decrease the influence of the noise measurement on the observed    

⌢
Θ(0)  or directly in the real space: 

  T (xi ,t = 0) . 
Two ways are here possible. The Fourier method or the direct SVD decomposition on the observed 
temperature field which appears here as a matrix at different time and space steps. 

11.7.4 Estimation of the initial temperature distribution with the Fourier method 

With infrared thermography, it is possible to process a great number of temperature images at different 
time steps. The initial temperature vector can then be expressed from (11.48) and (11.49) as: 

 

   

Θ(0)

Θ(t1)

Θ(t j )

"

#

$
$
$
$
$
$
$
$

%

&

'
'
'
'
'
'
'
'

=

I
diag(exp(-aα 2t1)

diag(exp(-aα 2t j )

"

#

$
$
$
$
$
$
$
$

%

&

'
'
'
'
'
'
'
'

Θ(0)"# %&= X1 Θ(0)"# %& (11.50) 

The X1 matrix is a sensitivity matrix. The initial vector to be estimated is here also directly observable but 
noisy. The great amount of data here given by the space and time observation can be exploited in order to 
reduce the influence of the measurement noise on the initial temperature field. The measured temperature 
vector in Fourier space   Θ̂(t j )  can be expressed versus the real vector   Θ(t j )  by: 

 
   
Θ̂(t j ) =Θ(t j )+ eΘ(t j )  (11.51) 

   
eΘ(t j )  is the vector where each component is a random variable called “measurement error”. Each 

component of such vector 
   
eΘ(t0)eΘ(t1 ) ...eΘ(t j ) ...
"
#

$
%

T
 has zero mean and the covariance matrix of this vector is 

diagonal and uniform (the Fourier transform is an orthogonal transform of the “measurement noise” in the 
x-space).  

 

A new estimator of  Θ(0)  is then 
ˆ̂Θ(0)  such as : 

 
   
ˆ̂Θ(0) = X1T X1( )

−1
X1

T
Θ̂(0)Θ̂(t1)...Θ̂(t j )...#
$

%
&

T
 (11.52) 

An other presentation of the previous expression is: 
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ˆ̂θ (αn ,0) =
θ̂ (αn ,t j )exp(−aαn

2t j )
j=0

Nt

∑

exp(−2aαn
2t j )

j=0

Nt

∑
 (11.53) 

The diagonal terms of the covariance matrix of the previous estimator are then: 

 
  
cov ˆ̂θ (0,0)"

#
$

%
&
'=

σ 2L2

Nx Nt

 and 

  

cov ˆ̂θ (αn ,0)#
$
%

&
'
(=

σ 2L2

Nx

1

exp(−2aαn
2t j )

j=0

Nt

∑

#

$

%
%
%
%
%

&

'

(
(
(
(
(

if n non zero (11.54) 

Then, the standard deviation of the estimator in the x-space ( σ E ) are in the following interval: 

   σ / Nt <σ E <σ  (11.55) 

It is necessary to remark that the processing of such amount of data is efficient if: 
- The time steps related to the observation are near from 0.  
- It is absolutely necessary to be sure of the forward model (diffusion with adiabatic 

boundaries) and to know exactly the thermal diffusivity: a. 
The SVD approach is here presenting similarities with the Fourier approach (related to the orthogonality 
of the space transform) but will not require to know the exact physical model. 

11.7.5 Estimation of the initial temperature distribution with the SVD  

Several authors who are confronted to the challenge of the processing of great amount of data with IR 
cameras (see [3] Rajic, 2002,  [4] Bamford et al, 2008) use SVD in order to obtain a suitable 
decomposition of the space and time temperature signal. 
The observable discrete temperature fields   T̂ (xi ,t j )  measured by infrared thermography at  Nx  different 

space steps  xi  (lying between 0 and L)  and at  Nt different time steps  t j  at  Nt different time steps (lying 
between 0 and tmax) can be decomposed as: 

 
  
T̂ (xi ,t j ) = Ur

x (xi )
r=1

r 0

∑ Wr
xVr

x (t j )  or     T̂ =UxWxVx
T  (11.56) 

The properties of such a decomposition are not only containing a lot of the previously remarked properties 
(orthogonality of  U  and  V , singular decreasing values in the diagonal matrix:  W ,   r0 =min(Nx , Nt ) , 
…); but also gives here a sum of “separated” terms depending on x and t (similarly as the Fourier method 
in expression (11.47)). 
The truncation of the previous decomposition will allow to use her the “filtering” properties of the TSVD.  
The truncation is made at  r = rtx  such as the conserved singular values are greater than the variance of the 

temperature signal:  σ 2 . It is then possible to obtain an estimation of the initial temperature without any 
consideration about the physical transfer model. Such a filter is generally better than a moving average 
filter taking only the local values of the temperature field. 
By the same way a 2D problem can then be considered. Let us consider that the initial condition in a 
similar system as (11.39) is then depending on two space variables: x  and y  and that such initial condition 
is separable such as: 
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   f (x, y) = fx (x) f y ( y)  (11.57) 

With the Fourier transform method, the solution of the 2D problem is then a product of two series 
depending on x and t and y and t, such as : 

  
T (x, y,t) = 1

L
θ (0,0,0)+ 1

2 cos(αnx)θ (αn ,0,0)exp(−aαn
2t)

n=1

∞

∑
&

'
(

)

*
+
1
l
θ (0,0,0)+ 1

2 cos(βm y)θ (0,βm ,0)exp(−aβm
2t)

m=1

∞

∑
&

'
(

)

*
+

   
  (11.58) 

 βm is a spatial frequency related to the y-direction, equivalent to  αn  related to the x-direction.  
The expression (11.57) is then separable in the Fourier space such as: 

 
  
θ (αn ,βm ,t) =θ (αn ,βm ,t = 0)exp −a αn

2 +βm
2( )t( )  (11.59) 

or: 

 
  
θ (αn ,βm ,t) =θ (αn ,0,t = 0)exp −aαn

2t( )θ (0,βm ,t = 0)exp −aβm
2t( )  (11.60) 

The analogous estimator in the 2D Fourier space is also separable ans gives by the same way as in 
expression (11.53): 
 

  

ˆ̂θ (αn ,βm ,0) =
θ̂ (αn ,0,t j )exp(−aαn

2t j )
j=0

Nt

∑

exp(−2aαn
2t j )

j=0

Nt

∑

θ̂ (0,βm ,t j )exp(−aβm
2t j )

j=0

Nt

∑

exp(−2aβm
2t j )

j=0

Nt

∑
  (57-a) 

instead of: 

 

  

ˆ̂θ (αn ,βm ,0) =
θ̂ (αn ,βm ,t j )exp(−a αn

2 +βm
2( )t j )

j=0

Nt

∑

exp(−2a αn
2 +βm

2( )t j )
j=0

Nt

∑
 (11.61) 

In such a particular case where each instantaneous temperature field is separable versus the x-direction and 
y-direction, it is suitable to consider preliminarily a SVD, versus x and y at each time step such as: 

 
  
T̂ (xi , y j ,t) = Uk (xi ,t)Wk (t)

k
∑ Vk ( y j ,t)  (11.62) 

Only the first term of such a decomposition is then to be taken into account. The order of magnitude of the 
second term must be much lower than the first one. 
It is then suitable to consider a secondary decomposition vers the x and y  directions such as: 

 
  
U1(xi ,t j ) = Ur

x (xi )Wk
xVr

x (t j )
r=1

r 0x

∑  and 
  
V1( yi ,t j ) = Ur

y ( yi )Wk
yVr

y (t j )
r=1

r 0 y

∑  (11.63) 

The advantage of such a truncated double-decomposition is to operate a strong data reduction. For 
example, if   Nx = N y = Nt =1000 ; the global number of data to be processed is 109. But the successive 
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truncations allow to reduce the number of data to be considered to 12000 (if r0x=r0y=3). The 
measurement noise attenuation is than more than 100 times higher (see [5]). 
One example where the Fourier methods are not necessarily well adapted even if the thermal 
diffusivity is perfectly known is the 2D temperature response to a punctual heat pulse in a semi-
infinite medium such as: 

 
  
T (x, y,t) = Q

ρcp

exp − x − x0( )2
/ (4at)( )

πat

exp − y − y0( )2
/ (4at)( )

πat
 (11.64) 

The  figures 5-a to 5-c are illustrating that even when the noise level is of the same order of magnitude as 
the signal, the TSVD decomposition allows the detection of a very localised point source. 
This argue in favour of the bolometric detection of localised radiative source of very low amplitude such 
as terahertz radiations (see [6]). 
 
 

 

 
 

Fig 5 : Initial temperature field (expression (60) a-without noise, b-with a high noise/signal ratio, c- 

filtered and reduced  by  TSVD with r0=3. 

7.5. Cas de di�usion tridimensionnelle suivant (Ox), (Oy) et (Oz)

Figure 7.5.5: La reconstitution du champ 3D initial T̃ (x, y, z = 0, 0)SV D avec r0 = 3 pour
SNR = 1

Figure 7.5.6: Champs de température initiaux exact et bruité T̂ (x, y, z = 0, 0) suite à une
excitation par un point source impulsionnel avec SNR = 1, 38

165

7.5. Cas de di�usion tridimensionnelle suivant (Ox), (Oy) et (Oz)

Figure 7.5.7: La reconstitution du champ 3D initial T̃ (x, y, z = 0, 0)SV D avec r0 = 4 pour
SNR = 1, 38 suite à une excitation par un point source impulsionnel

Des résultats que nous pouvons qualifier de très intéressants compte tenu de la simplicité
de la méthode, qui démontre sa robustesse quant au bruit de mesure et o�re ainsi de nou-
velles perspectives d’imagerie dans des conditions expérimentales di�ciles, mais également de
nouvelles perspectives quantitatives pour les caméras à bas coûts.

Nous tenons à souligner que le paramètre influent n’est pas tellement le niveau du bruit
de mesure, il peut être relativement conséquent, en contre partie le nombre d’images traitées
doit lui être proportionnellement équivalent. Autrement dit, pour un niveau de bruit donné, en
traitant une quantité de données bruitées su⇥santes, nous pouvons aisément remonter au champ
de température initial. En ce sens on se rapproche de la philosophie des méthodes périodiques,
à savoir que le bruit de mesure est réduit de manière importante en réitérant l’expérience n fois
[19], ce qui dans notre cas revient à traiter une grande quantité de données.

La méthode qui vient d’être exposée pourrait trouver des applications dans le domaine du
contrôle non destructif. En e�et, l’analyse des champs de température fortement bruités, suite à
une impulsion flash uniforme sur des matériaux composites comportant des délaminages ou des
inclusions, pourrait être grandement améliorée grâce à cette nouvelle méthode. Le traitement
d’une grande quantité de données permettrait d’accroitre les très faibles contrastes thermiques
engendrés par la présence de défauts.

166
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