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Abstract. In this tutorial we present a general description of state estimation 
problems within the Bayesian framework. State estimation problems are addressed, 
in which evolution and measurement stochastic models are used to predict the 
dynamic behavior of physical systems. The application of two Bayesian filters to 
linear and non-linear unsteady heat conduction problems is demonstrated, namely: 
a) the Kalman filter, and b) the Particle Filter through the sampling importance 
resampling algorithm. 

 

1. Introduction 

 State estimation problems, also designated as nonstationary inverse problems [1], are of great 
interest in innumerable practical applications. In such kinds of problems, the available measured data 

is used together with prior knowledge about the physical phenomena and the measuring devices, in 

order to sequentially produce estimates of the desired dynamic variables. This is accomplished in 
such a manner that the error is minimized statistically [2]. For example, the position of an aircraft can 

be estimated through the time-integration of its velocity components since departure. However, it 

may also be measured with a GPS system and an altimeter. State estimation problems deal with the 

combination of the model prediction (integration of the velocity components that contain errors due 
to the velocity measurements) and the GPS and altimeter measurements that are also uncertain, in 

order to obtain more accurate estimations of the system variables (aircraft position). 

 State estimation problems are solved with the so-called Bayesian filters [1,2]. In the Bayesian 
approach to statistics, an attempt is made to utilize all available information in order to reduce the 

amount of uncertainty present in an inferential or decision-making problem. As new information is 

obtained, it is combined with previous information to form the basis for statistical procedures. The 
formal mechanism used to combine the new information with the previously available information is 

known as Bayes’ theorem [1,3].  

The most widely known Bayesian filter method is the Kalman filter [1,2,4-9]. However, the 

application of the Kalman filter is limited to linear models with additive Gaussian noises. Extensions 
of the Kalman filter were developed in the past for less restrictive cases by using linearization 

techniques [1,3,6,7,8]. Similarly, Monte Carlo methods have been developed in order to represent the 

posterior density in terms of random samples and associated weights. Such Monte Carlo methods, 



 
 

usually denoted as particle filters among other designations found in the literature, do not require the 

restrictive hypotheses of the Kalman filter. Hence, particle filters can be applied to non-linear models 
with non-Gaussian errors [1,4,8-18]. 

In this tutorial we present the Kalman filter and the Sampling Importance Resampling (SIR) 

algorithm of the Particle filter. These Bayesian filters are used here to predict the temperature in a 

medium where the heat conduction model and temperature measurements contain errors. Linear and 
non-linear heat conduction problems are examined, as well as Gaussian and non-Gaussian noises. 

Before focusing on the heat conduction applications of interest, the state estimation problem is 

defined and the Kalman and Particle filters are described below. Recent applications of the Kalman 
filter and of the Particle filter by our group can be found in [19-27]. 

 

2. State Estimation Problem 
 In order to define the state estimation problem, consider a model for the evolution of the vector 

x in the form 

 

1 1( , )k k k k x f x v          (1.a) 

 

where the subscript k = 1, 2, …, denotes a time instant tk in a dynamic problem. The vector xn
Rx  is 

called the state vector and contains the variables to be dynamically estimated. This vector advances 

in accordance with the state evolution model given by equation (1.a), where f is, in the general case, 

a non-linear function of the state variables x and of the state noise vector vn
Rv .  

 Consider also that measurements zn
k Rz  are available at tk, k = 1, 2, …. The measurements are 

related to the state variables x through the general, possibly non-linear, function h in the form 

 

( , )k k k kz h x n          (1.b) 

 

where nn
Rn is the measurement noise. Equation (1.b) is referred to as the observation 

(measurement) model. 
 The state estimation problem aims at obtaining information about xk based on the state evolution 

model (1.a) and on the measurements 1: { , 1, , }k i i k z z  given by the observation model (1.b) [1-

18].  

 The evolution-observation model given by equations (1.a,b) are based on the following 

assumptions [1,4]: 
 

(i) The sequence kx for k = 1, 2, …, is a Markovian process, that is, 

 

0 1 1 1( , , , ) ( )k k k k  x x x x x x         (2.a) 

 

(ii) The sequence kz for k = 1, 2, …, is a Markovian process with respect to the history 

of kx , that is, 

 

0 1( , , , ) ( )k k k k z x x x z x         (2.b) 

 

(iii) The sequence kx  depends on the past observations only through its own history, that 

is, 

1 1: 1 1( , ) ( )k k k k k   x x z x x         (2.c) 



 
 

 

where   a b  denotes the conditional probability of a when b is given. 

 In addition, for the evolution-observation model given by equations (1.a,b) it is assumed that for 

i j  the noise vectors iv and jv , as well as in and jn , are mutually independent and also mutually 

independent of the initial state 0x . The vectors iv and jn  are also mutually independent for all i and 

j [1]. 

 Different problems can be considered with the above evolution-observation model, namely [1]: 

 

(i) The prediction problem, concerned with the determination of 1: 1( )k k x z ; 

(ii) The filtering problem, concerned with the determination of 1:( )k k x z ; 

(iii) The fixed-lag smoothing problem, concerned with the determination of 1:( )k k p x z , 

where 1p   is the fixed lag; 

(iv) The whole-domain smoothing problem, concerned with the determination of 1:( )k K x z , 

where 1: { , 1, , }K i i K z z  is the complete sequence of measurements. 

 

This paper deals only with the filtering problem. By assuming that 0 0 0( ) ( ) x z x  is 

available, the posterior probability density 1:( )k k x z  is then obtained with Bayesian filters in two 

steps [1-18]: prediction and update, as illustrated in figure 1. The Kalman filter and the particle filter 
used in this tutorial are discussed below. 

 

 
Figure 1. Prediction and update steps for the Bayesian filter [1] 
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3. The Kalman Filter 

 For the application of the Kalman filter it is assumed that the evolution and observation models 
given by equations (1.a,b) are linear. Also, it is assumed that the noises in such models are Gaussian, 

with known means and covariances, and that they are additive. Therefore, the posterior density 

1:( )k k x z  at tk, k = 1, 2, … is Gaussian and the Kalman filter results in the optimal solution to the 

state estimation problem, that is, the posterior density is calculated exactly [1,2,4-9]. With the 
foregoing hypotheses, the evolution and observation models can be written respectively as: 

 

1 1k k k k k   x F x s v         (3.a) 

k k k k z H x n          (3.b) 

 

where F and H are known matrices for the linear evolutions of the state x and of the observation z, 
respectively, and s is a known vector of inputs. By assuming that the noises v and n have zero means 

and covariance matrices Q and R, respectively, the prediction and update steps of the Kalman filter 

are given by [1,2,4-9]: 

 

Prediction: 

1
ˆ

k k k k


 x F x s          (4.a) 

1
T

k k k k k


 P F P F Q          (4.b) 

Update: 

 
1

T T
k k k k k k k


  K P H H P H R       (5.a) 

ˆ ( )k k k k k k
   x x K z H x        (5.b) 

 k k k k
P I - K H P          (5.c) 

 

The matrix K is called Kalman’s gain matrix. Notice above that after predicting the state 

variable x and its covariance matrix P with equations (4.a,b), a posteriori estimates for such 

quantities are obtained in the update step with the utilization of the measurements z. The superscript 
“^” above indicates the estimate of the state vector. 

For other cases for which the hypotheses of linear Gaussian evolution-observation models are 

not valid, the use of the Kalman filter does not result in optimal solutions because the posterior 
density is not analytic. The application of Monte Carlo techniques then appears as the most general 

and robust approach to non-linear and/or non-Gaussian distributions [1,4,8-18]. This is the case 

despite the availability of the so-called extended Kalman filter and its variations, which generally 
involves a linearization of the problem. A Monte Carlo filter is described below. 

 

4. The Particle Filter 

 The Particle Filter Method [1,4,8-18] is a Monte Carlo technique for the solution of the state 
estimation problem. The particle filter is also known as the bootstrap filter, condensation algorithm, 

interacting particle approximations and survival of the fittest [8]. The key idea is to represent the 

required posterior density function by a set of random samples (particles) with associated weights, and 
to compute the estimates based on these samples and weights. As the number of samples becomes very 

large, this Monte Carlo characterization becomes an equivalent representation of the posterior 

probability function, and the solution approaches the optimal Bayesian estimate. 
We present below the so-called Sequential Importance Sampling (SIS) algorithm for the particle 

filter, which includes a resampling step at each instant, as described in detail in references [8,9]. The 

SIS algorithm makes use of an importance density, which is a density proposed to represent another 

one that cannot be exactly computed, that is, the sought posterior density in the present case. Then, 
samples are drawn from the importance density instead of the actual density. 



 
 

 Let 
0:{ , 0, , }i

k i Nx  be the particles with associated weights { , 0, , }i

kw i N  and 

0: { , 0, , }k j j k x x  be the set of all states up to tk, where N is the number of particles. The weights 

are normalized so that 
1

1
N

i

k

i

w


 . Then, the posterior density at tk can be discretely approximated by: 

 0: 1: 0: 0:

1

( )
N

i i
k k k k k

i

w 


 x z x x        (6.a) 

 

where (.) is the Dirac delta function. By taking hypotheses (2.a-c) into account, the posterior density 
(6.a) can be written as [9]: 

 

 1:

1

( )
N

i i
k k k k k

i

w 


 x z x x        (6.b) 

 

A common problem with the SIS particle filter is the degeneracy phenomenon, where after a few 

states all but one particle will have negligible weight [1,4,8-18]. This degeneracy implies that a large 
computational effort is devoted to updating particles whose contribution to the approximation of the 

posterior density function is almost zero. This problem can be overcome by increasing the number of 

particles, or more efficiently by appropriately selecting the importance density as the prior density 

1( )i
k k x x . In addition, the use of the resampling technique is recommended to avoid the degeneracy 

of the particles.  

Resampling involves a mapping of the random measure  ,i i

k kwx  into a random measure 

 * 1,i

k N 
x  with uniform weights. It can be performed if the number of effective particles with large 

weights falls below a certain threshold number. Alternatively, resampling can also be applied 

indistinctively at every instant tk, as in the Sampling Importance Resampling (SIR) algorithm described 

in [8,9] and illustrated by figure 2. Such algorithm can be summarized in the following steps, as 
applied to the system evolution from tk-1 to tk [8,9]: 

 

Step 1.  For i=1,…, N draw new particles 
i
kx  from the prior density 1( )i

k k x x  and then use 

the likelihood density to calculate the correspondent weights 
i
kw = ( )i

k k z x . 

Step 2.  Calculate the total weight 
1

N
i

w k

i

T w


 and then normalize the particle weights, that is, 

for i=1,…, N let 1i i

k w kw T w . 

Step 3. Resample the particles as follows: 

 Step 3.1.  Construct the cumulative sum of weights (CSW) by computing 1

i

i i kc c w   

for i = 1,…, N, with 0 0c  . 

Step 3.2.  Let i = 1 and draw a starting point 1u from the uniform distribution 1[0, ]U N  . 

Step 3.3.  For j = 1, …, N 

 Move along the CSW by making 
1

1 ( 1)ju u N j   . 

 While j iu c  make i = i +1. 

 Assign samples 
j i
k kx x . 

 Assign weights 
1j

kw N  . 



 
 

 

 
Figure 2. Representation of the Sampling Importance Resampling (SIR) algorithm of the Particle filter 

 

 Although the resampling step reduces the effects of the degeneracy problem, it may lead to a 

loss of diversity and the resultant sample can contain many repeated particles. This problem, known 
as sample impoverishment, can be severe in the case of small process noise. In this situation, all 

particles collapse to a single particle within few instants tk [1,8,9,18]. Another drawback of the 

particle filter is related to the large computational cost due to the Monte Carlo method, which may 
not allow its application to complicated physical problems. On the other hand, more involved 

algorithms than the one presented above have been developed, which can reduce the number of 

particles required for appropriate representation of the posterior density, thus resulting in the 

reduction of associated computational times. Also, algorithms capable of simultaneously estimating 
state variables and parameters are available [9,18]. 

 

5. Applications 
For the sake of understanding the steps required for the application of the Kalman and particle 

filters, the Appendix A of this Tutorial presents in detail the solution of simple inverse heat transfer 

problems involving a lumped system. The MATLAB code used for the solution of these problems is 

also presented in Appendix A. In this session we apply the Bayesian filters described above to the 
estimation of the transient temperature field in heat conducting media, by using simulated 

measurements. Linear and non-linear heat conduction problems are addressed, as well as different 

models for the noises. The problems under study are described below and the results obtained with 
the Kalman and particle filters are discussed. 

 

5.1. Linear Heat Conduction Problem 
Consider heat conduction in a semi-infinite one-dimensional medium, initially at the uniform 

temperature T*. The temperature at boundary x = 0 is kept at T = 0 
o
C. Physical properties are 

constant and there is no heat generation in the medium. The formulation for this problem is given by: 

 
2

2

1 T T

t x

 


 
 in  x > 0, for t > 0       (7.a) 

0T    at x=0, for t > 0       (7.b) 

*T T   for t=0, in x > 0       (7.c) 

  
The analytical solution for this problem is given by [28]: 



 
 

 

( , ) *
4

x
T x t T erf

t

 
  

 
        (8) 

 

 The discretization of equation (7.a) by using explicit finite-differences results in: 
 

1

1 1(1 2 )k k k k

i i i iT rT r T rT

            (9) 

 

where the superscript k denotes the time step, the subscript i denotes the finite-difference node and 

 

 
2( )

t
r

x





         (10) 

 

 For the solution of problem (7.a-c) with finite-differences we have to impose a boundary 

condition at some fictitious surface at x=L. We assume L sufficiently large for the time range of 
interest, so that the finite domain behaves as a semi-infinite medium. Temperature at the surface x=L 

was assumed to be T*. 

 The finite-difference solution for problem (7.a-c) can be written as: 
 

1k k  T FT S         (11) 

where 

 

1

NT

T

T

 
 


 
  

Τ    

(1 2 )

(1 2 )

(1 2 )

(1 2 )

r r

r r r

r r r

r r

 
 


 
 
 

 
  

F   

0

0

*rT

 
 
 
 
 
 

S    

(12.a-c) 

 

 In the equations above NT is the number of internal nodes in the finite-difference discretization. 
Matrix F is NTxNT and vectors T and S are NTx1. 

Equation (11) is in appropriate form for the application of the Kalman filter (see equation 3.a). 

In the present example it is assumed that state and measured variables are the transient temperatures 

inside the medium at the equidistant finite difference nodes. Therefore, matrix H for the observation 
model (see equation 3.b) is the identity matrix. 

 The medium is considered to be concrete, with thermal diffusivity a = 4.9x10
-7

 m
2
/s. The 

standard deviation for the measurement errors is considered constant and equal to 2 
o
C. The effects 

of the standard deviation of the errors in the state model are examined below. Figures 3.a and 3.b 

present the exact temperatures and the measured temperatures in the region, respectively. The final 

time is taken as 250 seconds and measurements are supposed available in the region every 1 second. 

The thickness of the medium is considered to be L = 0.1 m and the region is discretized with NT = 50 
internal nodes. 



 
 

 
Figure 3.a – Exact temperatures 

 
Figure 3.b – Measured temperatures containing Gaussian errors with standard deviation of 2 

o
C 

 

 Figures 4.a,b present a comparison of exact, measured and predicted temperatures at positions  

x = 0.002 m and x = 0.01 m, respectively. The predicted temperatures were obtained with the Kalman 
filter. The 99% confidence intervals for the predicted temperatures are also presented in these 

figures. The results presented in figures 4.a,b were obtained with a standard deviation for the 

evolution model errors of 1 
o
C. These figures clearly show a great improvement in the predicted 

temperatures as compared to the measured temperatures at different positions inside the medium. 

Note that predicted temperatures are much closer to the exact ones than the measurements. In fact, if 

the model errors are reduced, the predicted temperatures tend to follow the model more closely. This 

is exemplified in figures 5.a,b, where the standard deviation of the evolution model errors was 
reduced to 0.5

 o
C. On the other hand, if such errors are large, the predictions of the Kalman filter tend 

to follow the measurements instead of the model. Such a fact is clear from the analysis of figures 

6.a,b, which present the results for a standard deviation for the evolution model errors of 2 
o
C. 
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(a) 

 
(b) 

Figure 4 – Temperature at (a) x = 0.002 m  and (b) x = 0.01 m – standard deviation for the evolution 

model errors of 1 
o
C –  Kalman filter 
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(a)  

 
(b) 

Figure 5 – Temperature at (a) x = 0.002 m  and (b) x = 0.01 m – standard deviation for the evolution 

model errors of 0.5  
o
C – Kalman filter 
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(a)  

 

 
(b) 

Figure 6 – Temperature at (a) x = 0.002 m  and (b) x = 0.01 m – standard deviation for the evolution 
model errors of 5  

o
C – Kalman filter 

 

 The application of the particle filter with the sampling importance resampling algorithm 

described above is presented in figures 7.a,b. These figures present the exact, measured and predicted 
temperatures at positions x = 0.002 m and x = 0.01 m, respectively. Fifty particles were used in this 
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case. A comparison of figures 4.a,b and 7.a,b show that the particle filter, similarly to the Kalman 

filter, provided accurate predictions for the temperature in the region. However, as expected, the 
computational cost of the particle filter was substantially larger than that of the Kalman filter. For 

this example, the predictions obtained with the Kalman filter took 0.5 seconds and those obtained 

with the particle filter took 6.9 seconds on a 1.8 GHz Centrino Duo computer with 1 Mbyte of RAM 

memory.  

 
(a)  

 
(b) 

Figure 7 – Temperature at (a) x = 0.002 m  and (b) x = 0.01 m – standard deviation for the evolution 
model errors of 1 

o
C – Particle filter (SIR) 
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 We now examine a case involving uniformly distributed errors in the evolution model, instead 

of Gaussian errors. For such case, the application of the Kalman filter does not result in optimal 
solutions. Consequently, only the particle filter was considered for the prediction of the temperatures 

in the region. The results obtained with errors in the evolution model uniformly distributed in the 

interval [-1,1] 
o
C are presented in figures 8.a,b for x = 0.002 m and x = 0.01 m, respectively. These 

figures show that the particle filter was not affected by the distribution of the errors and results 
similar to those obtained for the Gaussian distribution (see figures 7.a,b) were obtained. 

 

 
(a)  

 
(b) 

 

Figure 8 – Temperature at (a) x = 0.002 m  and (b) x = 0.01 m – evolution model errors having 

uniform distribution in [-1,1] 
o
C – Particle filter (SIR) 
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5.2. Non-linear Heat Conduction Problem 

 Consider heat conduction in a one-dimensional medium with thickness L, initially at the 
uniform temperature T*. The boundary at x = 0 is kept insulated and a constant heat flux q* is 

imposed at x = L. Thermophysical properties are temperature dependent and there is no heat 

generation in the medium. The formulation for this problem is given by: 

 

( ) ( )
T T

C T k T
t x x

   
  

   
 in  0 < x < L, for t > 0     (13.a) 

0
T

x





    at x=0, for t > 0      (13.b) 

( ) *
T

k T q
x





   at x=L, for t > 0      (13.c) 

*T T     for t=0, in x > 0      (13.d) 

 

 We examine here a physical problem involving the heating of a graphite sample with an oxy-

acetylene torch [19]. The temperature dependence of the thermal conductivity, k(T), and volumetric 
heat capacity, C(T), of the graphite, measured for different temperatures, were curve-fitted (see 

figure 9) with exponentials of the form: 

 

  3

1 2

T A
C T A A e


          (14.a) 

  3

1 2

T B
k T B B e


          (14.b) 

 

with the adjusted parameters A1, A2, A3, B1, B2 and B3 given in table 1.  
 

Table 1. Parameters of the curve-fitted thermophysical properties 

Parameter Mean 

A1 (Jm
-3 

ºC
-1

) 5,681,006 

A2 (Jm
-3 

ºC
-1

) 4,813,057 

A3 (ºC) 547.00 

B1 (Wm
-1 

ºC
-1

) 24.52 

B2 (Wm
-1 

ºC
-1

) 183.05 

B3 (ºC) 277.00 
 
  



 
 

 
Figure 9. Temperature-dependent thermophysical properties 

 

 

 The sample was supposed to be initially at the room temperature of T* =  20 
o
C and the imposed 

heat flux was q* = 10
5
 W/m

2
. The thickness of the slab was taken as L = 0.01 m. Finite volumes were 

used for the solution of this nonlinear heat conduction problem, with the region discretized with 50 

equal volumes. The final time was supposed to be 90 seconds and the time step was taken as 1 
second. The errors in the state evolution and observation models were supposed to be additive, 

Gaussian, uncorrelated, with zero mean and constant standard deviations.  

 In order to examine a very strict case, the standard deviation for the state evolution model was 
set to 5 

o
C and for the observation model as 10 

o
C. Figures 10.a and 10.b present the exact and 

measured temperatures, respectively, for such non linear heat conduction problem. It is apparent 

from the analysis of these figures that extremely large measurement errors were considered for this 

case. 
 State evolution and measurement models were used for the prediction of the temperature 

variation in the region. Due to the nonlinear character of the problem under consideration, only the 

particle filter, in the form of the SIR algorithm described above, was used for the predictions. Fifty 
particles were used in such filtering algorithm.  

 Figures 11.a-d present a comparison of exact, measured and predicted temperatures at the 

positions x = 0.0002 m, 0.001 m, 0.002 m and 0.004 m, respectively. An analysis of these figures 
reveals the robustness of the particle filter. Despite the very large errors in the evolution and 

observation models, the predicted average temperatures are in excellent agreement with the exact 

values. Furthermore, the 99% confidence intervals for the predicted temperatures are significantly 

smaller than the dispersion of the measurements. Differently from the case analyzed above involving 
linear heat conduction, sample impoverishment is not observed in figures 11.a-d. This is probably 

due to the large noise in the state model used for the nonlinear case. The computational time for this 

case was 61.3 seconds. 
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Figure 10.a – Exact temperatures 

 

 
Figure 10.b – Measured temperatures containing Gaussian errors with standard deviation 
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Figure 11.a – Temperature at x = 0.0002 m for the nonlinear heat conduction problem – Particle filter 

 

 
Figure 11.b – Temperature at x = 0.001 m for the nonlinear heat conduction problem – Particle filter 
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Figure 11.c – Temperature at x = 0.002 m for the nonlinear heat conduction problem – Particle filter 

 

 
Figure 11.d – Temperature at x = 0.004 m for the nonlinear heat conduction problem – Particle filter 
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6. Conclusions 

 This tutorial dealt with the application of the Kalman filter and of the particle filter to the 
estimation of the transient temperature field in linear and non-linear heat conduction problems. The 

particle filter was coded in the form of the sampling importance resampling (SIR) algorithm. For 

linear-Gaussian models, the Kalman filter and the particle filter provided results of similar accuracy. 

However, the computational cost of the particle filter was significantly larger than that of the Kalman 
filter. On the other hand, in non-linear and/or non-Gaussian models the basic hypotheses required for 

the application of the Kalman filter are not valid. The particle filter appears in the literature as an 

accurate estimation technique of general use, including for non-linear and/or non-Gaussian models. 
The particle filter was successfully applied above to a non-linear heat conduction problem. Such 

Monte Carlo technique provided accurate estimation results, even for a strict test-case involving very 

large errors in the evolution and observation models.  
We note that more involved algorithms than the one presented above have been developed for the 

particle filter, which can reduce the number of particles required for appropriate representation of the 

posterior density, thus resulting in the reduction of associated computational times. Also, algorithms 

capable of simultaneously estimating state variables and parameters are available (see [9,18]). 
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Appendix A 
 
 In this appendix, for didactical purposes, we present the solution of a simple state estimation 

problem in heat transfer, involving a lumped system. The problem is formulated and solved below, 

by using the Kalman filter and the Particle filter, coded with the SIR algorithm. Two different cases 
are examined and a MATLAB code is included. 

 

Physical Problem and Mathematical Formulation 

 We consider a slab of thickness L, initially at the uniform temperature T0, which is subjected to 
a uniform heat flux q(t) over one of its surfaces, while the other exchanges heat by convection and 

linearized radiation with a medium at a temperature T  with a heat transfer coefficient h (see figure 

A.1). Temperature gradients are neglected inside the slab and a lumped formulation is used. The 

formulation for this problem is given by [1]: 
 

( ) ( )
( )

d t mq t
m t

dt h


    for t > 0      (A.1.a) 

0       for t = 0      (A.1.b) 

 

where  
 

( ) ( )t T t T             (A.2.a) 

0 0T T              (A.2.b) 

h
m

c L
            (A.2.c) 

and is the density and c is the specific heat of the homogeneous material of the slab. 
 

 
Figure A.1. Physical problem [1] 

 

 Two illustrative cases are now examined, namely: (i) Heat Flux q(t) = q0 constant and 
deterministically known; and (ii) Heat Flux q(t) = q0 f(t) with unknown time variation. Results are 

obtained for these two cases, by assuming that the plate is made of aluminum (kgm
-3

, c = 

896 Jkg
-1

K
-1

), with thickness L = 0.03 m, q0 = 8000 Wm
-2

, T =20 
o
C, h = 50 Wm

-2
K

-1
 and T0 = 50 

o
C 

[1]. Measurements of the transient temperature of the slab are assumed available. These 

measurements contain additive, uncorrelated, Gaussian errors, with zero mean and a constant 

standard deviation z. The errors in the state evolution model are also supposed to be additive, 

uncorrelated, Gaussian, with zero mean and a constant standard deviation . 
 

 



 
 

(i) Heat Flux q(t) = q0 constant and deterministically known 

 The analytical solution for this problem is given by: 
 

0
0( ) (1 )mt mtq

t e e
h

             (A.3) 

 

 The only state variable in this case is the temperature ( )k kt   since the applied heat flux q0 is 

constant and deterministically known, as the other parameters appearing in the formulation. By using 

a forward finite-differences approximation for the time derivative in equation (A.1.a), we obtain: 
 

0
1(1 )k k

mq
m t t

h
              (A.4) 

 

 Therefore, the state and observation models given by equations (3.a,b) are obtained with: 
 

[ ]k kx
  

[(1 )]k m t  F
 

0
k

q
m t

h

 
  
 

s
 

[1]k H
 

2[ ]k Q
 

2[ ]k zR  (A5.a-f) 

 

 Figure A.2 presents a comparison of the analytical and numerical solutions given by equations 

(A.3) and (A.4), respectively, for t = 1 s. The agreement between these two solutions is perfect in 

the graph scale. Simulated measurements with a standard deviation of z = 1 
o
C are also shown in 

this figure. 

 Figures A.3 and A.4 present the estimated temperatures obtained with the Kalman filter and the 

particle filter, respectively, for a standard deviation of the evolution model  = 1 
o
C. These two 

figures illustrate the capabilities of both filters examined here; the results obtained with them are 
similar and they are capable of accurately recovering the exact temperature. The number of particles 

used in the SIR algorithm of the particle filter was 200. 

 

 
Figure A.2. Simulated measurements and comparison of analytical and numerical solutions 
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Figure A.3. Solution with the Kalman filter 

 

 
Figure A.4. Solution with the Particle filter 
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(ii) Heat Flux q(t) = q0 f(t) with unknown time variation 

 The analytical solution for this problem is given by: 
 

0
0

0

( ) ( )

t

mt mt

t

mq
t e e f t dt

h
 





  
   

  
        (A.6) 

 

 In this case, the state variables are given by the temperature ( )k kt   and the function that 

gives the time variation of the applied heat flux, that is, ( )k kf t f .As in the case examined above, 

the applied heat flux q0 is constant and deterministically known, as the other parameters appearing in 
the formulation. By using a forward finite-differences approximation for the time derivative in 

equation (A.1.a), we obtain the equation for the evolution of the state variable ( )k kt  : 

 

0
1 1(1 )k k k

mq
m t t f

h
   

 
     

 
       (A.7) 

 

 A random walk model is used for the state variable ( )k kf t f , which is given in the form: 

 

1 1k k kf f            (A.8) 

 

where k-1 is Gaussian with zero mean and constant standard deviation rw. 
 Therefore, the state and observation models given by equations (3.a,b) are obtained with: 
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 For the cases studied here, two different functions were examined for the time variation of the 
applied heat flux, specifically, a step function in the form: 

 

1, 0
2

( )
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2

final

final

final

t
t

f t
t

t t


 
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

       (A.10) 

 
and a ramp function in the form 

( )
final

tf t
t


        

(A.11) 

 

 Figure A.5 presents a comparison of the analytical and numerical solutions given by equations 
(A.6) and (A.7), respectively, for the step variation of the heat flux. Figure A.6 presents a similar 

comparison for the ramp variation of the heat flux. For both cases, we took t = 1 s. The agreement 
between these two solutions for both cases is perfect in the graph scale. Simulated measurements 

with a standard deviation of z = 1 
o
C are also shown in these figures. 



 
 

 

 
Figure A.5. Simulated measurements and comparison of analytical and numerical solutions for the 

step function 

 

 
Figure A.6. Simulated measurements and comparison of analytical and numerical solutions for the 

ramp function 
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 The results presented below were all obtained with z =  = 1 
o
C, while the standard deviation 

used in the random walk model of f(t) in equation (A.8) was rw = 0.3. The number of particles used 
in the particle filter was 500. 

We first present the results obtained for the step variation of the heat flux. Figures A.7 and A.8 

show the estimated temperatures obtained with the Kalman filter and the particle filter, respectively. 
Figures A.9 and A.10 show the estimated time variation of the heat flux obtained with the Kalman 

filter and the particle filter, respectively.  

 
Figure A.7. Solution with the Kalman filter: θ(t) estimation for the step function. 

 

 
Figure A.8. Solution with the Particle filter: θ(t) estimation for the step function. 
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Figure A.9. Solution with the Kalman filter: f(t) estimation for the step function. 

 

 
Figure A.10. Solution with the Particle filter: f(t) estimation for the step function. 

 

 The results obtained for the ramp variation of the heat flux are presented in figures A.11-A.14. 

Figures A.11 and A.12 show the estimated temperatures obtained with the Kalman filter and the 
particle filter, respectively. Figures A.13 and A.14 show the estimated time variation of the heat flux 

obtained with the Kalman filter and the particle filter, respectively 
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Figure A.11. Solution with the Kalman filter: θ(t) estimation for the ramp function. 

 
 

 
Figure A.12. Solution with the Particle filter: θ(t) estimation for the ramp function. 
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Figure A.13. Solution with the Kalman filter: f(t) estimation for the ramp function. 

 

 
Figure A.14. Solution with the Particle filter: f(t) estimation for the ramp function. 

 

Figures A.7-A.14 illustrate the capabilities of both filters examined here, for the simultaneous 

estimation of the transient temperature and of the time variation of the applied heat flux. Note that 
measurements are available only for the temperature, and that a non-informative random walk model 

was used for the variation of the heat flux. For both variations of the heat flux, and with both filters, 

the recovered heat fluxes show oscillations due to the ill-posed character of the inverse problem (see 
figures A.9 and A.10 for the step function and A.13 and A.14 for the ramp function). Such 

oscillations can be reduced by decreasing the standard deviation used for the random walk model for 

f(t) (see equation A.8), resulting in smoother recovered functions. On the other hand, fast variations 

0 50 100 150 200 250 300
-1.5

-1

-0.5

0

0.5

1

1.5

2

Time, s

f 
, 

n
o
 u

n
it
s

Kalman Filter - f estimation

Exact

Estimated

99% Bounds

0 50 100 150 200 250 300
-1.5

-1

-0.5

0

0.5

1

1.5

2

Time, s

f 
, 

n
o
 u

n
it
s

Particle Filter, SIR Algorithm - f estimation

Exact

Estimated

99% Bounds



 
 

cannot be resolved. This fact is illustrated in figures A.15-A.18 for the step variation of the heat flux, 

where rw was taken as 0.1, instead of 0.3 as above (see also figures A.7-A.10). 

  
Figure A.15. Solution with the Kalman filter: θ(t) estimation for the step function. 

 

 
Figure A.16. Solution with the Particle filter: θ(t) estimation for the step function. 
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Figure A.17. Solution with the Kalman filter: f(t) estimation for the step function. 

 

 
Figure A.18. Solution with the Particle filter: f(t) estimation for the step function. 

 

The MATLAB code used for the cases presented above can be found at the end of this 

Appendix. 
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MATLAB code for Case (i): Heat Flux q(t) = q0 is constant and deterministically known, and 

(ii): Heat Flux q(t) = q0 f(t) is a state variable 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%   Example for the Kalman Filter and the Particle Filter (SIR Algorithm) % 

%                                                                         % 

%   Slab of thickness L with lumped formulation - Example 2-4, Bayazitoglu% 

%   and Ozisik's book - page 26                                           % 

%                                                                         % 

%  Helcio R. B. Orlande, Henrique M. da Fonseca and Wellington B. da Silva% 
%   June 01, 2011                                                         % 

%                                                                         % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

clc 

clear all; 

close all; 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% physical parameters of the medium                                       % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

k = 204;                     % thermal conductivity, W/mK 

ro = 2707;                   % density, kg/m^3 

cp = 896;                    % spcific heat, J/kgK 

lthick = 0.03;               % thickness of the plate, m 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% time discretization                                                     % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

timefinal=300;                     % final time, s 

deltatime=1;                        % time step, s 

time=deltatime:deltatime:timefinal; % vector of physical time, s  

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% parameters for the equation                                             % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

temp0 = 50;         % initial temperature, oC 

q0 = 8000;          % applied heat flux, W/m^2 

tempinf=20;         % external temperature, oC 

htcoef=50;          % heat transfer coefficient, W/m^2K 

mcoef=htcoef/(ro*cp*lthick);  

q0h=q0/htcoef;                

theta0=temp0-tempinf; 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% number of particles for the Particle Filter                             % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

Nparti=200;        

Nparti1=1/Nparti; 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%  std for the measurement error, evolution model and random walk    % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

stdmeas=0.3;               % standard deviation of the measurement errors  

stdmodel=0.03;             % standard deviation of the evolution model  

stdrw=0.03;                % random walk of the estimated parameter   

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Choose of the structure of the function f                               % 

%                                                                         % 

% 1 = Constant function over all the experiment                           % 

% 2 = Square time varying function                                        % 

% 3 = Ramp function                                                       %                         

%                                                                         % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  



 
 

 hf_type=3;                                   % choose the function type 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Initializing vectors for constant heat flux                             % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

if hf_type==1     

    thetanum=zeros(1,length(time)); 

    xest=zeros(1,length(time)); 

    P=zeros(1,length(time)); 

    xestpf=zeros(1,length(time)); 

    xestsir=zeros(1,length(time)); 

    stdsir=zeros(1,length(time)); 

    xpartiold=zeros(1,length(Nparti)); 

    xpartinew=zeros(1,length(Nparti)); 

    wparti=zeros(1,length(Nparti)); 

    xpartires=zeros(1,length(Nparti)); 

    wpartires=zeros(1,length(Nparti)); 

end 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Initializing vectors for time varying heat flux                         % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

if hf_type==2||hf_type==3     

    thetanum=zeros(1,length(time)); 

    xest=zeros(2,length(time)); 

    P=zeros(2,2,length(time)); 

    xestpf=zeros(2,length(time)); 

    xestsir=zeros(2,length(time)); 

    stdsir=zeros(2,length(time)); 

    xpartiold=zeros(2,length(Nparti)); 

    xpartinew=zeros(2,length(Nparti)); 

    wparti=zeros(1,length(Nparti)); 

    xpartires=zeros(2,length(Nparti)); 

    wpartires=zeros(1,length(Nparti)); 

end 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% form of function                                                        % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

%%%%%%%%%%%%%%%% 

% constant f   % 

%%%%%%%%%%%%%%%% 

  

if hf_type==1  

    f=ones(1,(1/deltatime)*timefinal) ;          

end 

  

%%%%%%%%%%%%%%%% 

% step f       % 

%%%%%%%%%%%%%%%% 

  

if hf_type==2 

    f=[ones(1,(1/deltatime)*timefinal/2)... 

       zeros(1,(1/deltatime)*timefinal/2)];      

end 

  

%%%%%%%%%%%%%%%% 

% ramp f       % 

%%%%%%%%%%%%%%%% 

  

if hf_type==3 

    f=(1:deltatime:timefinal)/timefinal ;       % ramp 

end 

  

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%   Exact Solution                                                        % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  



 
 

%%%%%%%%%%%%%%%% 

% constant f   % 

%%%%%%%%%%%%%%%% 

  

if hf_type==1  

    thetaexa = theta0*exp(-mcoef.*time)+q0h.*(1-exp(-mcoef.*time));  

end 

  

%%%%%%%%%%%%%%%% 

% step f       % 

%%%%%%%%%%%%%%%% 

  

if hf_type==2  

    Int=[(exp(mcoef.*(1:deltatime:(timefinal/2)))-1)... 

         (exp(mcoef.*timefinal/2)-1)*ones(1,(1/deltatime)*timefinal/2)] ; 

  

    thetaexa = exp(-mcoef.*time).*(theta0+q0h.*Int);  

end 

  

%%%%%%%%%%%%%%%% 

% ramp f       % 

%%%%%%%%%%%%%%%% 

  

if hf_type==3  

    thetaexa = exp(-mcoef.*time).*(theta0+q0h.*... 

              ((1+exp(mcoef.*time).*(mcoef.*time-1))/(timefinal*mcoef)));  

end 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%   Numerical solution  (finite differece)                                % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

bigq=mcoef*q0h*deltatime; 

thetanum(1)=theta0; 

for k = 1:(length(time)-1) 

    thetanum(k+1)=(1-mcoef*deltatime)*thetanum(k)+bigq*f(k); 

end  

       

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%   Simulated measurements                                                % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

unce=randn(1,length(time));         %random vector. mean=1 and std=0 

thetameas=thetaexa+(stdmeas.*unce); %Tmeas=Texa+eps 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%   Kalman Filter                                                         % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% constant f               % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

if hf_type==1 

    F=(1-mcoef*deltatime); 

    S=bigq; 

    H=1; 

    Q=stdmodel^2; 

    R=stdmeas^2; 

  

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

    %Initial State and its Covariance Matrix                 % 

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

    xminus(1)=theta0+randn*stdmeas; 

    xest(1)=xminus(1); 

    P(1)=R; 

  

    for k = 1:(length(time)-1) 

        %%%%%%%%%%%%%%%%%%%%%%% 

        %   Prediction Kalman % 

        %%%%%%%%%%%%%%%%%%%%%%% 



 
 

         

        xminus=F*xest(k)+S; 

        Pminus=F*P(k)*F'+Q; 

         

        %%%%%%%%%%%%%%%%%%%%%%  

        %   Update Kalman    % 

        %%%%%%%%%%%%%%%%%%%%%% 

         

        Gainm=Pminus*H'*inv(H*Pminus*H'+R);  %#ok<*MINV> 

        xest(k+1)=xminus+Gainm*(thetameas(k+1)-H*xminus); 

        P(k+1)=(eye(1)-Gainm*H)*Pminus; 

    end 

  

    %%%%%%%%%%%%%%%%%%%%%%%%%%%% 

    %Confidence interval       % 

    %%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

    lbd=xest-2.576.*sqrt(P); 

    ubd=xest+2.576.*sqrt(P); 

end % of the Kalman Filter estimation for a constant heat flux  

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% time varying f           % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

if hf_type==2 || hf_type==3 

    F=[(1-mcoef*deltatime) (mcoef*deltatime*q0h);0 1]; 

    H=[1 0]; 

    Q=[stdmodel^2    0    ;... 

          0       stdrw^2]; 

    R=stdmeas^2; 

  

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  

    % Initial State and its Covariance Matrix                       % 

    % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

    xminus=[theta0+randn*stdmeas; 

              f(1)+randn*stdrw]; 

    Pminus=Q; 

    xest(:,1)=xminus; 

    P(:,:,1)=Pminus; 

  

  

    for k = 1:(length(time)-1) 

        %%%%%%%%%%%%%%%%%%%%%%% 

        %   Prediction Kalman % 

        %%%%%%%%%%%%%%%%%%%%%%% 

  

        xminus=F*xminus; 

        Pminus=F*Pminus*F'+Q; 

  

        %%%%%%%%%%%%%%%%%%%%%%  

        %   Update Kalman    % 

        %%%%%%%%%%%%%%%%%%%%%% 

  

        Gainm=Pminus*H'*inv(H*Pminus*H'+R);  %#ok<*MINV> 

        xnew=xminus+Gainm*(thetameas(k+1)-H*xminus); 

        Pnew=(eye(2)-Gainm*H)*Pminus; 

  

        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

        % Storing the predicted variables % 

        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

        xest(:,k+1)=xnew; 

        P(:,:,k+1)=Pnew; 

  

        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

        % Updating auxiliary variables   % 

        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

        xminus=xnew; 

        Pminus=Pnew;    



 
 

  

    end 

  

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

    % Confidence interval       % 

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

    lbdt=xest(1,:)-2.576.*sqrt(P(1,1)); 

    ubdt=xest(1,:)+2.576.*sqrt(P(1,1)); 

     

    lbdq=xest(2,:)-2.576.*sqrt(P(2,2)); 

    ubdq=xest(2,:)+2.576.*sqrt(P(2,2)); 

end %  of the Kalman Filter estimation for a time varying heat flux 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%   Particle Filter (SIR Algorithm)                                       % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% constant f               % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

if hf_type==1 

  

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

    % Distribution Initial Time % 

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

    xestsir(1)=theta0; 

  

    for i=1:Nparti 

        xpartiold(i)=theta0+randn*stdmodel; 

    end 

  

    %%%%%%%%%%%%%%%%%%%%%%%% 

    % Advancing Particles  % 

    %%%%%%%%%%%%%%%%%%%%%%%% 

  

    for k = 1:(length(time)-1) 

          for i=1:Nparti 

            %%%%%%%%%%%%%%%%%%%%   

            %   1 - PREDICTION % 

            %%%%%%%%%%%%%%%%%%%% 

            xpartinew(i)=F*xpartiold(i)+S+randn*stdmodel; 

            %%%%%%%%%%%%%%%%%%%% 

            %   Weights        % 

            %%%%%%%%%%%%%%%%%%%% 

            wparti(i)=exp(-((xpartinew(i)-thetameas(k+1))/stdmeas)^2); 

          end 

        wtotal=sum(wparti); 

        wpartin=wparti./wtotal; 

        %%%%%%%%%%%%%%%% 

        % 2 - UPDATE   % 

        %%%%%%%%%%%%%%%% 

        %xpartiw=xpartinew.*wparti; 

        %%%%%%%%%%%%%%%%%%%%%% 

        %   Mean at time k+1 % 

        %%%%%%%%%%%%%%%%%%%%%% 

        xestpf(k+1)=xpartinew*wpartin'; 

        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

        %   Standard Deviation at time k+1 % 

        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     

        % 3 - RESAMPLING     % 

        %%%%%%%%%%%%%%%%%%%%%% 

        cresa=zeros(Nparti,1); 

        uresa=zeros(Nparti,1); 

        cresa(1)=wpartin(1); 

        for i=2:Nparti 

            cresa(i)=cresa(i-1)+wpartin(i); 

        end 

        iresa=1; 

        uresa(1)=rand*Nparti1; 



 
 

        for j=1:Nparti 

            uresa(j)=uresa(1)+Nparti1*(j-1); 

            while uresa(j) > cresa(iresa) 

                iresa=iresa+1; 

            end 

            xpartires(j)=xpartinew(iresa); 

            wpartires(j)=Nparti1; 

        end 

        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

        % Means and standard deviation   % 

        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

        xestsir(k+1)=mean(xpartires); 

        stdsir(k+1)=std(xpartires); 

        xpartiold=xpartires; 

        %%%%%%%%%%%%%%%%%%%%% 

        % End of resampling % 

        %%%%%%%%%%%%%%%%%%%%% 

        %xpartiold=xpartinew; 

  

    end  

  

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

    % Confidence interval       % 

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

    lbdsir=xestsir-2.576.*stdsir; 

    ubdsir=xestsir+2.576.*stdsir; 

end %  of the Particle Filter estimation for a constant heat flux 

  

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% time varying f               % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

if hf_type==2 || hf_type==3 

  

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

    % Distribution Initial Time % 

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

    xestsir(:,1)=[theta0;f(1)]; 

  

    for i=1:Nparti 

        xpartiold(1,i)=theta0+randn*stdmodel; 

        xpartiold(2,i)=f(1)+randn*stdrw; 

    end 

  

    %%%%%%%%%%%%%%%%%%%%%%%% 

    % Advancing Particles  % 

    %%%%%%%%%%%%%%%%%%%%%%%% 

  

    for k = 1:(length(time)-1) 

          for i=1:Nparti 

            %%%%%%%%%%%%%%%%%%%%   

            %   1 - PREDICTION % 

            %%%%%%%%%%%%%%%%%%%% 

            xpartinew(:,i)=F*xpartiold(:,i)+randn*[stdmodel;stdrw]; 

            %%%%%%%%%%%%%%%%%%%% 

            %   Weights        % 

            %%%%%%%%%%%%%%%%%%%% 

            wparti(i)=exp(-((xpartinew(1,i)-thetameas(k+1))/stdmeas)^2); 

          end 

        wtotal=sum(wparti); 

        wpartin(1,:)=wparti./wtotal; 

        %%%%%%%%%%%%%%%% 

        % 2 - UPDATE   % 

        %%%%%%%%%%%%%%%% 

        %xpartiw=xpartinew.*wparti; 

        %%%%%%%%%%%%%%%%%%%%%% 

        %   Mean at time k+1 % 

        %%%%%%%%%%%%%%%%%%%%%% 

        xestpf(:,k+1)=xpartinew*wpartin'; 



 
 

        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

        %   Standard Deviation at time k+1 % 

        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     

        % 3 - RESAMPLING     % 

        %%%%%%%%%%%%%%%%%%%%%% 

        cresa=zeros(Nparti,1); 

        uresa=zeros(Nparti,1); 

        cresa(1)=wpartin(1); 

        for i=2:Nparti 

            cresa(i)=cresa(i-1)+wpartin(i); 

        end 

        iresa=1; 

        uresa(1)=rand*Nparti1; 

        for j=1:Nparti 

            uresa(j)=uresa(1)+Nparti1*(j-1); 

            while uresa(j) > cresa(iresa) 

                iresa=iresa+1; 

            end 

            xpartires(:,j)=xpartinew(:,iresa); 

            wpartires(j)=Nparti1; 

        end 

        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

        % Means and standard deviation   % 

        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

        xestsir(1,k+1)=mean(xpartires(1,:));     % Tempearature 

        xestsir(2,k+1)=mean(xpartires(2,:));     % f 

        stdsir(1,k+1)=std(xpartires(1,:));       % Temperature  

        stdsir(2,k+1)=std(xpartires(2,:));       % f 

        xpartiold=xpartires; 

        %%%%%%%%%%%%%%%%%%%%% 

        % End of resampling % 

        %%%%%%%%%%%%%%%%%%%%% 

        %xpartiold=xpartinew; 

  

    end  

  

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

    % Confidence interval       % 

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

    lbdsirt=xestsir(1,:)-2.576.*stdsir(1,:); 

    ubdsirt=xestsir(1,:)+2.576.*stdsir(1,:); 

     

    lbdsirf=xestsir(2,:)-2.576.*stdsir(2,:); 

    ubdsirf=xestsir(2,:)+2.576.*stdsir(2,:); 

end %  of the Particle Filter estimation for a time varying heat flux 

  

  

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% plot of the results - constant f                                        % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

if hf_type==1 

    figure (1) 

    plot(time,thetaexa,'-b',time,thetanum,'--r'); 

    xlabel('Time, s'); 

    ylabel('Theta, °C'); 

    legend('Exact','Numerical','Location','SouthEast'); 

  

    figure (2) 

    plot(time,thetaexa,'-b',time,thetanum,'-r',time,thetameas,'+k'); 

    xlabel('Time, s'); 

    ylabel('Theta, °C'); 

    legend('Exact','Numerical','Measurements','Location','SouthEast'); 

  

    figure (3) 

    plot(time,thetaexa,'-b',time,thetameas,'+k',time,xest,'-r',time,lbd,'--r',time,ubd,'--

r'); 

    xlabel('Time, s'); 

    ylabel('Theta, °C'); 

    title('Kalman Filter'); 



 
 

    legend('Exact','Measurements','Estimated','99% Bounds','Location','SouthEast');  

  

    figure (4) 

    plot(time,thetaexa,'-b',time,thetameas,'+k',time,xestsir,'-r',time,lbdsir,'--

r',time,ubdsir,'--r'); 

    xlabel('Time, s'); 

    ylabel('Theta, °C'); 

    title('Particle Filter, SIR Algorithm'); 

    legend('Exact','Measurements','Estimated','99% Bounds','Location','SouthEast');   

end 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% plot of the results - time varying f                                    % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

if hf_type==2||hf_type==3 

    figure (1) 

    plot(time,thetaexa,'-b',time,thetanum,'--r'); 

    xlabel('Time, s'); 

    ylabel('Theta, °C'); 

    legend('Exact','Numerical','Location','SouthEast'); 

  

    figure (2) 

    plot(time,thetaexa,'-b',time,thetanum,'-r',time,thetameas,'+k'); 

    xlabel('Time, s'); 

    ylabel('Theta, °C'); 

    legend('Exact','Numerical','Measurements','Location','SouthEast'); 

  

    figure (3) 

    plot(time,thetaexa,'-b',time,thetameas,'+k',time,xest(1,:),'-r',... 

         time,lbdt,'--r',time,ubdt,'--r'); 

    xlabel('Time, s'); 

    ylabel('Theta, °C'); 

    title('Kalman Filter'); 

    legend('Exact','Measurements','Estimated','99% Bounds',... 

           'Location','SouthEast');  

  

    figure (4) 

    plot(time,thetaexa,'-b',time,thetameas,'+k',time,xestsir(1,:),'-r',... 

         time,lbdsirt,'--r',time,ubdsirt,'--r'); 

    xlabel('Time, s'); 

    ylabel('Theta, °C'); 

    title('Particle Filter, SIR Algorithm'); 

    legend('Exact','Measurements','Estimated','99% Bounds',... 

           'Location','SouthEast'); 

     

    figure (5) 

    plot(time,f,'-b',time,xest(2,:),'-r',time,lbdq,'--r',time,ubdq,'--r'); 

    xlabel('Time, s'); 

    ylabel('\itf \rm, no units'); 

    title('Kalman Filter - \itf \rmestimation'); 

    legend('Exact','Estimated','99% Bounds','Location','SouthEast'); 

     

    figure (6) 

    plot(time,f,'-b',time,xestsir(2,:),'-r',time,lbdsirf,'--r',... 

         time,ubdsirf,'--r'); 

    xlabel('Time, s'); 

    ylabel('\itf \rm, no units'); 

    title('Particle Filter, SIR Algorithm - \itf \rmestimation'); 

    legend('Exact','Estimated','99% Bounds','Location','SouthEast');  

end 

 

 


