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SUMMARY 

• State estimation problems 
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STATE ESTIMATION PROBLEM 

State Evolution Model:  

Observation Model:  ( , )k k k kz h x n

xn
Rx

Subscript k = 1, 2, …, denotes an instant tk in a  

 dynamic problem  

= state variables to be estimated  

vn
Rv

zn
Rz

nn
Rn

= state noise 

= measurements  

= measurement noise  

xk = fk (xk-1, uk-1, vk-1) 

u  R 
np  =  input variable 



STATE ESTIMATION PROBLEM 

Definition: The state estimation problem aims at 

obtaining information about xk based on the state 

evolution model and on the measurements  given by 

the observation model.  



The solution of the inverse problem within the Bayesian framework  

is recast in the form of statistical inference from the posterior 

probability density, which is the model for the conditional 

probability distribution of the unknown parameters given the 

measurements. The measurement model incorporating the related 

uncertainties is called the likelihood, that is, the conditional 

probability of the measurements given the unknown parameters. 

The model for the unknowns that reflects all the uncertainty of the 

parameters without the information conveyed by the measurements, 

is called the prior model. 

BAYESIAN FRAMEWORK 



BAYESIAN FRAMEWORK 

The formal mechanism to combine the new information 

(measurements) with the previously available information (prior) is 

known as the Bayes’ theorem: 

( ) ( )
( ) ( )

( )
posterior

 
 


 

x z x
x x z

z

where posterior(x) is the posterior probability density, (x) is the 

prior density, (z|x) is the likelihood function and (z) is the 

marginal probability density of the measurements, which plays the 

role of a normalizing constant. 

 



The evolution-observation model is  based on the following assumptions : 

(i) The sequence   kx for k = 1, 2, …, is a Markovian process, that is, 

0 1 1 1( , , , ) ( )k k k k  x x x x x x      

(ii) The sequence   kz for k = 1, 2, …, is a Markovian process with respect to 

the history of   k
x

, that is, 

0 1( , , , ) ( )k k k k z x x x z x
     

(iii) The sequence   
kx

 depends on the past observations only through its own 

history, that is, 

1 1: 1 1( , ) ( )k k k k k   x x z x x
      

State Evolution Model:  

Observation Model:  ( , )k k k kz h x n

xk = fk (xk-1, uk-1, vk-1) 

STATE ESTIMATION PROBLEM 



State Evolution Model:  

Observation Model:  ( , )k k k kz h x n

xk = fk (xk-1, uk-1, vk-1) 

1. The prediction problem, concerned with the determination of 1: 1( )k k x z ; 

2. The filtering problem, concerned with the determination of 1:( )k k x z ; 

3. The fixed-lag smoothing problem, concerned the determination of 1:( )k k p x z , 

where 
1p 

 is the fixed lag; 

4. The whole-domain smoothing problem, concerned with the determination of 

1:( )k K x z , where 1: { , 1, , }K i i K z z
 is the complete sequence of 

measurements. 

Different problems can be considered:  

STATE ESTIMATION PROBLEM 



FILTERING PROBLEM 

By assuming that                                 is available, the 

posterior probability density                     is then obtained 

with Bayesian filters in two steps: prediction and update  

0 0 0( ) ( ) x z x

1:( )k k x z



(x0)

Prediction

(x1)

Update

(x1 |x0)

(z1 |x1)

(x1| z1)

Prediction

(x2 | z1)

Update

(x2 |x1)

(z2 |x2)

(x2| z1:2)

(x0)

Prediction

(x1)

Update

(x1 |x0)

(z1 |x1)

(x1| z1)

Prediction

(x2 | z1)

Update

(x2 |x1)

(z2 |x2)

(x2| z1:2)



THE KALMAN FILTER  

• Evolution and observation models are linear.  

• Noises in such models are additive and Gaussian, with 

 known means and covariances.  

• Optimal solution if these hypotheses hold. 

k k k k z H x n

State Evolution Model:  

Observation Model:  

• F and H are known matrices for the linear evolutions of the state x and of the 

observation z, respectively. 

• G is matrix that determines how the control u affects the state x. 

• Vector s is assumed to be a known input . 

• Noises v and n have zero means and covariance matrices Q and R, respectively. 

x𝑘
− = F𝑘x𝑘−1 +G𝑘u𝑘−1 + s𝑘−1+v𝑘−1 



THE KALMAN FILTER  

Prediction: 

1k k k



x F x       (4.a) 

1

T

k k k k k



 P F P F Q      (4.b) 

Update: 

 
1

T T

k k k k k k k


  K P H H P H R    (5.a) 

( )k k k k k k

   x x K z H x
    (5.b) 

 k k k k

P I - K H P
     (5.c) 

x𝑘
− = F𝑘x𝑘−1 +G𝑘u𝑘−1 + s𝑘−1+v𝑘−1 



THE PARTICLE FILTER  

• Monte-Carlo techniques are the most general and robust for 

non-linear and/or non-Gaussian distributions. 

• The key idea is to represent the required posterior density 

function by a set of random samples (particles) with associated 

weights, and to compute the estimates based on these samples 

and weights.   

• Introduced in the 50’s, but no much used until recently because 

of limited computational resources. 

• Particles degenerated very fast in early implementations, i.e., 

most of the particles would have negligible weight. The 

resampling step has a fundamental role in the advancement of 

the particle filter.   



Sampling Importance Resampling (SIR) Algorithm 
(Ristic, B., Arulampalam, S., Gordon, N., 2004, Beyond the Kalman Filter, Artech House, Boston) 



Sampling Importance Resampling (SIR) Algorithm 
(Ristic, B., Arulampalam, S., Gordon, N., 2004, Beyond the Kalman Filter, Artech House, Boston) 



Sampling Importance Resampling (SIR) Algorithm 
(Ristic, B., Arulampalam, S., Gordon, N., 2004, Beyond the Kalman Filter, Artech House, Boston) 

Although the resampling step reduces the effects of degeneracy, it 

introduces other practical problems: 

• Limitation in the parallelization. 

• Particles that have high weights are statistically selected many 

times: Loss of diversity, known as sample impoverishment, 

specially if the evolution model errors are small. 



Sampling Importance Resampling (SIR) Algorithm 
(Ristic, B., Arulampalam, S., Gordon, N., 2004, Beyond the Kalman Filter, Artech House, Boston) 

Step 1 

For 1, ,i N  draw new particles x
i

k
 from the prior 

density  1x x
i

k k  and then use the likelihood density 

to calculate the correspondent weights  z x
i i

k k kw  . 

Step 2 

Calculate the total weight 
1

N
i

w k

i

T w


  and then normalize 

the particle weights, that is, for 1, ,i N  let 1i i

k w kw T w  

Step 3 

Resample the particles as follows : 

 

Construct the cumulative sum of weights (CSW) by 

computing 
1

i

i i kc c w   for 1, ,i N , with 
0 0c  . 

Let 1i  and draw a starting point 
1u  from the uniform 

distribution 
10,U N     

For 1, ,j N  

       Move along the CSW by making  1

1 1ju u N j  
 

       While j iu c  make 1i i  . 

        Assign sample j i

k kx x  

        Assign sample 1j

kw N   

 

• Weights are easily evaluated and 

importance density easily 

sampled.  

• Sampling of the importance 

density is independent of the 

measurements at that time. The 

filter can be sensitive to outliers. 

• Resampling is applied every 

iteration, which can result in fast 

loss of diversity of the particles. 



EXAMPLE: Lumped System 

 

( ) ( )
( )

d t mq t
m t

dt h


    for t > 0      (A.1.a) 

0       for t = 0      (A.1.b) 

 

where  
 

( ) ( )t T t T             (A.2.a) 

0 0T T             

 (A.2.b) 

h
m

c L
           

 (A.2.c) 



EXAMPLE: Lumped System 

Two illustrative cases are examined:  

(i) Heat Flux q(t) = q0 constant and deterministically known;  

(ii) Heat Flux q(t) = q0 f(t) with unknown time variation.  

 

• Plate is made of aluminum ( = 2707 kgm-3, c = 896 Jkg-1K-1), 

with thickness L = 0.03 m, q0 = 8000 Wm-2, =20 oC, h = 50 Wm-2K-1 

and T0 = 50 oC.  

• Measurements of the transient temperature of the slab are 

assumed available. These measurements contain additive, 

uncorrelated, Gaussian errors, with zero mean and a constant standard 

deviation sz.  

• The errors in the state evolution model are also supposed to be 

additive, uncorrelated, Gaussian, with zero mean and a constant 

standard deviation s. 



(i) Heat Flux q(t) = q0 constant and deterministically known 

 The analytical solution for this problem is given by: 

 

0
0( ) (1 )mt mtq

t e e
h

             (A.3) 

 

 The only state variable in this case is the temperature ( )k kt   since the applied heat flux q0 

is constant and deterministically known, as the other parameters appearing in the formulation. By 

using a forward finite-differences approximation for the time derivative in equation (A.1.a), we 

obtain: 

 

0
1(1 )k k

mq
m t t

h
              (A.4) 

 
 Therefore, the state and observation models given by equations (3.a,b) are obtained with: 

 

[ ]k kx
  

[(1 )]k m t  F
 

0
k

q
m t

h

 
  
 

s
 

[1]k H
 

2[ ]k sQ
 

2[ ]k zsR

 (A5.a-f) 

k k k k z H x n

x𝑘
− = F𝑘x𝑘−1 +G𝑘u𝑘−1 + s𝑘−1+v𝑘−1 



(ii) Heat Flux q(t) = q0 f(t) with unknown time variation 

 The analytical solution for this problem is given by: 

 

0
0

0

( ) ( )

t

mt mt

t

mq
t e e f t dt

h
 





  
   

  
        (A.6) 

 

 In this case, the state variables are given by the temperature ( )k kt   and the function that 

gives the time variation of the applied heat flux, that is, ( )k kf t f .As in the case examined above, 

the applied heat flux q0 is constant and deterministically known, as the other parameters appearing in 
the formulation. By using a forward finite-differences approximation for the time derivative in 

equation (A.1.a), we obtain the equation for the evolution of the state variable ( )k kt  : 

 

0
1 1(1 )k k k

mq
m t t f

h
   

 
     

 
       (A.7) 

 

 A random walk model is used for the state variable ( )k kf t f , which is given in the form: 

 

1 1k k kf f            (A.8) 

 

where k-1 is Gaussian with zero mean and constant standard deviation srw. 



(ii) Heat Flux q(t) = q0 f(t) with unknown time variation 

k k k k z H x n

x𝑘
− = F𝑘x𝑘−1 +G𝑘u𝑘−1 + s𝑘−1+v𝑘−1 

 Therefore, the state and observation models given by equations (3.a,b) are obtained with: 

 

k

k

kf

 
  
 

x
   

0(1 )

0 1
k

mq
m t t

h

 
   

 
  

F
  

0

0
k

 
  
 

s
  

 
(A.9.a-c)

 

[1 0]k H
  

2

2

0

0
k

rw

s

s

 
  
  

Q
    

2[ ]k zsR
 

 
(A.9.d-f) 



Linear Heat Conduction Problem 

2

2

1 T T

t x

 


 
 in  0 < x < L, for t > 0 

0T    at x=0, for t > 0 

*T T  at x=L, for t > 0 

*T T
 for t=0, in 0 < x < L 

Explicit finite-differences:  
1k k  T FT S

1

N

T

T

 
 


 
  

Τ  

(1 2 )

(1 2 )

(1 2 )

(1 2 )

r r

r r r

r r r

r r

 
 


 
 
 

 
  

F  

0

0

*rT

 
 
 
 
 
 

S   

EXAMPLE: 1D Heat conduction 



• Concrete with thermal diffusivity  = 4.9x10-7 m2/s 

• Standard-deviation for the measurement errors = 2 oC 

• Final time = 250 seconds 

• Measurements available in the region every 1 second 

• L = 0.1 m  

• N = 50 internal nodes  

EXAMPLE: 1D Heat conduction 
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Kalman Filter 

(Standard-deviation for the evolution model errors of 0.5 oC) 
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Kalman Filter 

(Standard-deviation for the evolution model errors of 5 oC) 
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Particle Filter 

(Standard-deviation for the evolution model errors of 1 oC) 
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Particle Filter 

(evolution model errors with uniform distribution in [-1,1] oC) 
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Nonlinear Heat Conduction Problem   

( ) ( )
T T

C T K T
t x x

   
  
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 in  0 < x < L, for t > 0 

0
T

x


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
   at x=0, for t > 0 

( ) *
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k T q
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
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   at x=L, for t > 0 

*T T
   for t=0, in 0 < x < L 
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1 2
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EXAMPLE: 1D Heat conduction 



• T* = 20 oC  

• q* = 105 W/m2  

• L = 0.01 m 

• 50 finite-volumes  

• Final time = 90 s  

• Time step = 1 s 

• Errors in the state evolution and observation models were 

 supposed to be additive, Gaussian, uncorrelated, with 

 zero mean and constant standard-deviations 

• Standard-deviation for the state evolution model = 5 oC  

• Standard-deviation for the observation model = 10 oC 

EXAMPLE: 1D Heat conduction 
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APPLICATIONS 

Estimation of position-dependent transient heat source 

38 
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transient source term mapping from infrared images, Inverse Problems, Design and Optimization Symposium 

João Pessoa, Paraíba, Brazil, August 23-27, 2010 
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2 2

2 2

( , , )T T T h g x y t
C k k T T

t e ex y


  
    

  
 at 0 < x < L, 0 < y < L,  for t > 0   (1)             

 0
T

x





 at x = 0 and x = L, for t > 0  (2)                             

 0
T

y





 at y = 0 and y = L, for t > 0 (3) 

 0T T  for t = 0, at 0 < x < L and 0 < y < L (4) 



Estimation of position-dependent transient heat source 
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APPLICATIONS 



Estimation of position-dependent transient heat source 
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The mathematical formulation for the solid phase is given as 

 

    , ,1 1
0 ( ) 0

s s

s

T r t T r t
r in r S t and t

r r r t

  
    

   

  (1.a) 

 

while the liquid phase is described as 
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  , 0l iT r t T in r and t       (1.c) 

  , 0 0l iT r t T in t and r    (1.d) 

 

At the interface between liquid and solid phases, the following conditions must be satisfied 
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An analytical solution of this problem can be obtained for this physical problem and it is given by [8]:  
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where the eigenvalues λ and the solidification front S (t) are given by 
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 ( ) 2 sS t t   (3.b) 

 

In the above equations  iT  is the uniform initial temperature, mT  is the melting temperature of the material, L is the 

latent heat of solidification of the material,   is the density,  sk  and lk are the thermal conductivities of the solid and 

liquid phases, respectively, s  and  l  are the thermal diffusivities of the solid and liquid phases, respectively, and  

sT  and lT  are temperatures of the solid and liquid phases, respectively. 
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      The physical problem defined by Eqs. (1.a-f) was solved analytically, where we used the following data, 

corresponding to solidifying water: 25iT C  , 0mT C  , 
2

0.00118s

m

s
  , 

2

0.000146l

m

s
  , 2.22s

w
k

m c



, 

0.61l

w
k

m c



, 

3
997.1

kg

m
   , J

80 
kg

L  . The line heat sink was supposed to have a constant value equals to W
Q = 50

m
. 

In this work, the measurements (for the observation model) were obtained at r=0.01 m. The simulated noisy 

measurements were uncorrelated, additive, Gaussian, with zero mean and constant standard deviation equal to 5% of the 

maximum temperature. Figures 3.a,b show the transient measurements obtained after applying such constant line heat 
sink, with and without errors, respectively. 
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Auxiliary Sampling Importance Resampling (ASIR) Algorithm 
(Ristic, B., Arulampalam, S., Gordon, N., 2004, Beyond the Kalman Filter, Artech House, Boston) 

Step 1 

For i=1,...,N draw new particles xk
i
 from the prior density 

(xk|x
i
k-1) and then calculate some characterization of xk, 

given xi
k-1, as for example the mean i

k=E[xk|x
i
k-1]. Then 

use the likelihood density to calculate the correspondent 

weights wi
k=(zk|

i
k)w

i
k-1 

Step 2 

Calculate the total weight t=i w
i
k and then normalize the 

particle weights, that is, for i=1,...,N let wi
k = t-1 wi

k     

Step 3 

Resample the particles as follows : 

Construct the cumulative sum of weights (CSW) by 

computing ci=ci-1+wi
k for i=1,...,N, with c0=0 

Let i=1and draw a starting point u1 from the uniform 

distribution U[0,N-1]  

For j=1,...,N 

       Move along the CSW by making uj=u1+N-1(j-1)
  

       While uj>ci make i=i+1 

        Assign sample xj
k=xi

k 

        Assign sample wj
k=N-1 

        Assign parent ij=i 

Step 4 

For j=1,...,N draw particles xk
j from the prior density 

(xk|x
ij

k-1), using the parent ij, and then use the likelihood 
density to calculate the correspondent weights 

wj
k=(zk|x

j
k) / (zk|

ij
k) 

Step 5 

Calculate the total weight t=j w
j
k and then normalize the 

particle weights, that is, for j=1,...,N let wj
k = t-1 wj

k     

 

• The advantage of ASIR over SIR is that 

it naturally generates points from the 

sample at k-1, which, conditioned on the 

current measurement, are most likely to 

be close to the true state.  

• The resampling is based on some point 

estimate i
k that characterize (xk|x

i
k-1), 

which can be the mean i
k=E[(xk|x

i
k-1)] 

or simply a sample of (xk|x
i
k-1). If the 

state evolution model noise is small, 

(xk|x
i
k-1) is generally well characterized 

by i
k, so that the weights wi

k are more 

even and the ASIR algorithm is less 

sensitive to outliers than the SIR 

algorithm. On the other hand, if the state 

evolution model noise is large, the single 

point estimate i
k in the state space may 

not characterize well (xk|x
i
k-1) and the 

ASIR algorithm may not be as effective 

as the SIR algorithm. 
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Bayesian filter 
Number of Particles 

(NP) 
Time 

RMS error for the 

solidification front 

(m) 

RMS error for 

the line heat 

sink intensity 

(W/m) 

SIR 100 0.008 min. 9x10-3 1.55 

SIR 1000 0.997 min. 2x10-3 1.78 

SIR 5000 11.047 min. 1x10-4 0.34 

ASIR 100 0.161 min. 7.9x10-5 0.15 
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PHYSICAL PROBLEM 

The physical problem under picture in this paper 

involves the transient laminar natural convection 

of a fluid inside a two-dimensional square cavity. 

The fluid is initially at rest and at the uniform 

temperature Tc. At time zero, the bottom and top 

surfaces are subjected to time-dependent heat 

fluxes q1(t) and q2(t), respectively. The left and 

right surfaces are subjected to constant 

temperatures Tc and Th, respectively. The fluid 

properties are assumed constant, except for the 

density in the buoyancy term, where we consider 

Boussinesq’s approximation valid. 
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APPLICATIONS 

Estimation and Control of the Temperature Field in Oil Pipelines 

Vianna, F., Orlande, H. R. B., Dulikravich, G., 2010, Optimal Heating Control To Prevent Solid Deposits In 

Pipelines, V European Conference On Computational Fluid Dynamics - ECCOMAS CFD 2010 

X-tree 

Flowline 

(1) 

(2) 

Measurement Point 

(1) 

(2) 

R=0 

R=1 

The physical problem examined in this work is based on a critical operational condition involving a 

pipeline shutdown situation, where the produced fluid is assumed stagnant. An optimal control 

approach was used to drive the predicted temperatures above a reference level.  

 Q

Heat flux on  

boundary surface 



APPLICATIONS 

The dimensionless mathematical formulation for this one-

dimensional unsteady heat diffusion problem is given by 

The fluid was considered as homogeneous, isotropic and with 

constant thermophysical properties. 

      
R

R

RR

RR













 



 ,1,,
2

2

 0 1, 0R   

  
   


QRBi

R

R





,

,
 1 , 0R  

   10, R  0 1, 0R   

 is the dimensionless temperature distribution into the medium.     ,R



• Control strategy is in accordance with the optimum control theory for linear 

problems. 

• The aim of the associated optimal control problem is to find the control inputs uk 

(heat flux on boundary surface) that minimizes the difference between the fluid 

temperature field and a desired profile . 

Where u* and x* refer to the steady values of the control input and state variables 
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In terms of the linear quadratic regulator problem, the optimal values of the control 

input        are obtained by minimizing the following quadratic cost functional: 

where the weighting matrices Q and R are symmetric positive definite.  

The solution to the optimal control problem is the state feedback control law: 

where the discrete-time state feedback gain K is of the form 
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Matrix S is the steady state solution to the discrete-time Riccati equation: 

Thus, the control input       can be calculated from the control law  as 

However, when state variables are not directly available for control, an observer 

(KALMAN FILTER OR PARTICLE FILTER ) was built to estimate the state 

variables from the input and output variables of the system. 
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Simulated measurements with standard deviation of 3 oC in the 

observation model error 
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Evolution model with standard 

deviation of 0.01 oC 

KALMAN FILTER 



Temperature Predicted with the Kalman Filter and the Exact 

Temperature  

Evolution model with standard deviation of 0.01 oC 

 = 0.69 



Temperature Predicted with the Kalman Filter and the Exact 

Temperature  

Evolution model with standard deviation of 0.01 oC 

 = 1.1 



Evolution model with standard 

deviation of 1 OC 

KALMAN FILTER 



Temperature Predicted with the Kalman Filter and the Exact 

Temperature  

Evolution model with standard deviation of 1 oC 

 = 0.61 



Temperature Predicted with the Kalman Filter and the Exact 

Temperature  

Evolution model with standard deviation of 1 oC 

 = 0.8 



Number of Particles: 200 

Evolution model with standard 

deviation of 1 oC 

PARTICLE FILTER 



Temperature Predicted with the Particle Filter and the Exact 

Temperature  

Evolution model with standard deviation of 1 oC 

 = 0.69 



Evolution model with standard deviation of 1 oC 

 = 1.2 

Temperature Predicted with the Particle Filter and the Exact 

Temperature  



Simulated measurements with standard deviation of 3 oC in the 

observation model error 

Two-dimensional case with Particle  Filter 

Observer 

Standard deviation of the evolution model error of  1oC. Standard deviation of the evolution model error of  3oC. 

(1) (2) 

(3) 



CONCLUSIONS  

• Kalman filter provides optimal solutions for linear-Gaussian 

 evolution-observation models. 

• Particle filter is the most general and robust technique for non-

 linear models and/or non-Gaussian distributions. 

• ASIR algorithm is faster and requires less particles than the SIR 

 algorithm. 
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